競爭是現(xiàn)代社會(huì)的主旋律,無論是學(xué)業(yè)還是職場,我們都需要具備競爭力才能脫穎而出。通過總結(jié)工作中的經(jīng)驗(yàn)和教訓(xùn),可以幫助我們更好地規(guī)劃和執(zhí)行下一步的工作計(jì)劃。以下是小編為大家整理的日記范文,供大家參考借鑒。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇一
摘要:在計(jì)算機(jī)網(wǎng)絡(luò)越來越普及的社會(huì)中造就信息傳播的便利性提高,也讓社交網(wǎng)絡(luò)漸漸發(fā)展成為虛擬社群形態(tài),從早期的電子布告欄(bbs)到現(xiàn)在的社交網(wǎng)站(socialnetworksites),都可以讓人們密切討論與互動(dòng)。本文將主要探討基于數(shù)據(jù)挖掘模型的社交網(wǎng)絡(luò)關(guān)聯(lián)預(yù)測分析,并對相關(guān)技術(shù)進(jìn)行闡述。
在社交網(wǎng)絡(luò)上,依據(jù)先前國外學(xué)者viswanath,mislove,chaandgummadi和nguyenandtran都是針對theneworleans地區(qū)社群使用者發(fā)布數(shù)據(jù)來研究使用者發(fā)布的關(guān)系,而臺(tái)灣地區(qū)針對使用者社群發(fā)布的分析多以問卷方法居多,故本研究欲使用直接抓取頁面數(shù)據(jù)與卷標(biāo)的方法,觀察使用者社群網(wǎng)站上發(fā)布行為,利用先前用學(xué)者所提數(shù)據(jù)呈現(xiàn)方式,結(jié)合關(guān)鍵詞標(biāo)記方式來了解使用者在社群網(wǎng)絡(luò)上的發(fā)布關(guān)系。而其中社群人數(shù)拓展最快速就是微信平臺(tái),利用了社交網(wǎng)絡(luò)的特性讓使用者能更有效率的在網(wǎng)絡(luò)上找到有關(guān)系的親朋好友,將這世界的每個(gè)人、每個(gè)群體透過各種關(guān)系快速的串連起來[1]。
當(dāng)要對hdfs讀寫數(shù)據(jù)時(shí),檔案將被切割成小的64mbblock,namenode將告知每個(gè)datanode,切割后的block是存放在哪,datanode將負(fù)責(zé)做本地端檔案的block數(shù)據(jù)對應(yīng),并且同時(shí)datanode將對其他datanode進(jìn)行數(shù)據(jù)復(fù)制備份的動(dòng)作。hadoop系統(tǒng)的容錯(cuò)率和可擴(kuò)充性來自于datanode,當(dāng)datanode出錯(cuò)意外關(guān)機(jī),其它節(jié)點(diǎn)上的數(shù)據(jù)將依然存在,且當(dāng)需動(dòng)態(tài)增刪系統(tǒng)的運(yùn)算量,只需增加datanode節(jié)點(diǎn)或停止datanode運(yùn)作。在進(jìn)行社群資料收集與前處理之前,要先了解一下信息擷取與信息過濾的不同之處。在社群網(wǎng)站上隨機(jī)尋找開放目錄上的使用者,而后進(jìn)行下載該使用者發(fā)布數(shù)據(jù)的動(dòng)作是謂信息擷?。欢鴮⑹褂谜咄盔f墻上大筆數(shù)據(jù)寫進(jìn)本地端的hdfs系統(tǒng)后,并通過預(yù)先設(shè)定的一些篩選條件式和過濾方法,剔除雜亂的數(shù)據(jù),變成對本研究有用的信息,以利后續(xù)卷標(biāo)計(jì)算與關(guān)鍵詞計(jì)算,這個(gè)過程就叫信息過濾[2]。
關(guān)鍵詞分析部份則是針對個(gè)人涂鴉墻頁面和使用者自訂信息頁面進(jìn)行關(guān)鍵詞標(biāo)記,其關(guān)鍵詞來源是使用者自訂信息頁面上含的運(yùn)動(dòng)、音樂、書籍、電影、電視、游戲、宗教、政治八組關(guān)鍵詞。相關(guān)度計(jì)算是利用本研究所提相關(guān)度公式來進(jìn)行個(gè)人涂鴉墻頁面、使用者自訂信息頁面和模擬頁面間的關(guān)聯(lián)運(yùn)算,利用頁面間所含的關(guān)鍵詞,計(jì)算出仿真頁面與使用頁面間的相關(guān)度。并在相關(guān)度計(jì)算階段把社群發(fā)布分析與關(guān)鍵詞分析的結(jié)果做個(gè)交叉分析。之后對此分析結(jié)果進(jìn)行研究評估。使用者自訂信息頁面有讓使用者自己標(biāo)記自己興趣的分類項(xiàng)目,分為大四大類自訂選項(xiàng),其自訂選項(xiàng)下,包含子項(xiàng)目讓使用者自訂標(biāo)記自己的興趣,而該表的使用者自訂分類項(xiàng)目就是本研究挑選關(guān)鍵詞的依據(jù),本研究挑選運(yùn)動(dòng)、音樂、書籍、電影、電視、游戲、宗教、政治這八個(gè)字作為關(guān)鍵詞標(biāo)記投擲的項(xiàng)目,在此就不考慮同義不同字、字面背后意涵等問題,只考慮第一層的字義[3]。
3社交網(wǎng)絡(luò)關(guān)聯(lián)預(yù)測的相關(guān)技術(shù)與應(yīng)用。
社交網(wǎng)絡(luò)分析一直以來都是個(gè)熱門的話題,所有團(tuán)體成員彼此之間社交關(guān)系的集合就是這個(gè)團(tuán)體的社交網(wǎng)絡(luò),而透過社交網(wǎng)絡(luò)分析可以了解團(tuán)體成員之間的互動(dòng),這分析可應(yīng)用在各種與人有關(guān)的領(lǐng)域上。在學(xué)校里,學(xué)生之間小團(tuán)體的組成及班級中領(lǐng)導(dǎo)人物與被孤立者的存在,一直都是教育者相當(dāng)關(guān)心的部份。在團(tuán)體精神治療中,成員之間的交流情況是分析治療成果的指標(biāo)之一。在網(wǎng)絡(luò)社群中,了解使用者群體之間的互動(dòng)可以幫助廠商開發(fā)更人性化的網(wǎng)絡(luò)產(chǎn)品。人格特質(zhì)分析也是個(gè)熱門的話題,每個(gè)人的行為都有一套固定的行為模式,而分析這行為模式就是所謂的人格特質(zhì)分析,這分析也可應(yīng)用在各種與人有關(guān)的領(lǐng)域上。在學(xué)校里,不同類型的學(xué)生需要不同方式的教育。在公司面試上,公司透過分析應(yīng)征者的.人格模式來錄取所需要的人才[4]。然而,一般心理學(xué)使用的社交網(wǎng)絡(luò)分析與人格特質(zhì)分析都是透過紙筆測驗(yàn),使用大量的人力去取得人際互動(dòng)的信息,考慮團(tuán)體成員間友好的互動(dòng)關(guān)系,并使用方向性的連結(jié)來表達(dá)人們之間的互動(dòng)關(guān)系。目前使用計(jì)算機(jī)視覺技術(shù)的社交網(wǎng)絡(luò)分析系統(tǒng),僅考慮人們同時(shí)出現(xiàn)頻率當(dāng)作親密程度的指針,而且使用無方向性的連結(jié)來表示人們之間的互動(dòng)關(guān)系。因此,我們使用擁有計(jì)算機(jī)視覺技術(shù)的多攝影機(jī)系統(tǒng),透過分析人們之間的互動(dòng)行為,互動(dòng)行為包含互動(dòng)的對象、所表達(dá)的肢體語言與情緒信息,根據(jù)分析所有的互動(dòng)得到團(tuán)體內(nèi)所有成員之間的社交態(tài)度,而這就是這團(tuán)體的社交網(wǎng)絡(luò)。除了友好的互動(dòng)關(guān)系之外,我們還考慮了厭惡的互動(dòng)關(guān)系,并且使用方向性的連結(jié)來表達(dá)人們之間的互動(dòng),這讓我們的社交網(wǎng)絡(luò)分析能更貼切現(xiàn)實(shí)的互動(dòng)情況。通過分析一個(gè)人所有的社交互動(dòng)行為,可以得知此人的行為擁有何種傾向,而這行為模式就是這個(gè)人的人格特質(zhì)。
總之,我們可以根據(jù)觀察分析人們的互動(dòng)行為,得到與人們觀察得到的結(jié)果大同小異的社交網(wǎng)絡(luò)分析,證明我們能透過計(jì)算機(jī)視覺技術(shù)取得貼近現(xiàn)實(shí)的社交網(wǎng)絡(luò)分析,并且比起一般心理學(xué)的社交網(wǎng)絡(luò)分析省下許多不必要的人力。
參考文獻(xiàn):
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇二
摘要:在本科高年級學(xué)生中開設(shè)符合學(xué)術(shù)研究和工業(yè)應(yīng)用熱點(diǎn)的進(jìn)階課程是十分必要的。以數(shù)據(jù)挖掘課程為例,本科高年級學(xué)生了解并掌握數(shù)據(jù)挖掘的相關(guān)技術(shù),對于其今后的工作、學(xué)習(xí)不無裨益。著重闡述數(shù)據(jù)挖掘等進(jìn)階課程在本科高年級學(xué)生中的教學(xué)方法,基于本科高年級學(xué)生的實(shí)際情況,以及進(jìn)階課程的知識(shí)體系特點(diǎn),提出有針對性的教學(xué)方法參考,從而提高進(jìn)階課程的教學(xué)效果。
關(guān)鍵詞:數(shù)據(jù)挖掘;進(jìn)階課程;教學(xué)方法研究;本科高年級。
學(xué)生在本科高年級學(xué)生中開設(shè)數(shù)據(jù)挖掘等進(jìn)階課程是十分必要的,以大數(shù)據(jù)、數(shù)據(jù)挖掘?yàn)槔湎嚓P(guān)技術(shù)不僅是當(dāng)前學(xué)術(shù)界的研究熱點(diǎn),也是各家企事業(yè)單位招聘中重要崗位的要求之一。對于即將攻讀碩士或博士學(xué)位的學(xué)生,對于即將走上工作崗位的學(xué)生,了解并掌握一些大數(shù)據(jù)相關(guān)技術(shù),尤其是數(shù)據(jù)挖掘技術(shù),都是不無裨益的。在目前本科教學(xué)中,對于數(shù)據(jù)挖掘等課程的教學(xué),由于前序課程的要求,往往是放在本科四年級進(jìn)行。如何激發(fā)本科四年級學(xué)生在考研,找工作等繁雜事務(wù)中的學(xué)習(xí)興趣,從而更好地掌握數(shù)據(jù)挖掘的相關(guān)技術(shù)是本課程面臨的主要挑戰(zhàn),也是所有本科進(jìn)階課程所面臨的難題之一。
1數(shù)據(jù)挖掘等進(jìn)階課程所面臨的問題。
1.1進(jìn)階課程知識(shí)體系的綜合性。
進(jìn)階課程由于其理論與技術(shù)的先進(jìn)性,往往是學(xué)術(shù)研究的前沿,工業(yè)應(yīng)用的熱點(diǎn),是綜合多方面知識(shí)的課程。以數(shù)據(jù)挖掘課程為例,其中包括數(shù)據(jù)庫、機(jī)器學(xué)習(xí)、模式識(shí)別、統(tǒng)計(jì)、可視化、高性能技術(shù),算法等多方面的知識(shí)內(nèi)容。雖然學(xué)生在前期的本科學(xué)習(xí)中已經(jīng)掌握了部分相關(guān)內(nèi)容,如數(shù)據(jù)庫、統(tǒng)計(jì)、算法等,但對于其他內(nèi)容如機(jī)器學(xué)習(xí)、人工智能、模式識(shí)別、可視化等,有的是與數(shù)據(jù)挖掘課程同時(shí)開設(shè)的進(jìn)階課程,有的已經(jīng)是研究生的教學(xué)內(nèi)容。對于進(jìn)階課程繁雜的知識(shí)體系,應(yīng)該如何把握廣度和深度的關(guān)系尤為重要。
1.2進(jìn)階課程的教學(xué)的目的要求。
進(jìn)階課程的知識(shí)體系的綜合性體現(xiàn)在知識(shí)點(diǎn)過多、技術(shù)特征復(fù)雜。從教學(xué)效益的角度出發(fā),進(jìn)階課程的教學(xué)目的是在有限的課時(shí)內(nèi)最大化學(xué)生的知識(shí)收獲。從教學(xué)結(jié)果的可測度出發(fā),進(jìn)階課程的教學(xué)需要能夠有效驗(yàn)證學(xué)生掌握重點(diǎn)知識(shí)的.學(xué)習(xí)成果。1.3本科高年級學(xué)生的實(shí)際情況本科高年級學(xué)生需要處理考研復(fù)習(xí),找工作等繁雜事務(wù),往往對于剩余本科階段的學(xué)習(xí)不重視,存在得過且過的心態(tài)。進(jìn)階課程往往是專業(yè)選修課程,部分學(xué)分已經(jīng)修滿的學(xué)生往往放棄這部分課程的學(xué)習(xí),一來沒有時(shí)間,二來怕拖累學(xué)分。
2數(shù)據(jù)挖掘等進(jìn)階課程的具體教學(xué)方法。
進(jìn)階課程的教學(xué)理念是在有限的課時(shí)內(nèi),盡可能地提高課程的廣度,增加介紹性內(nèi)容,在授課中著重講解1~2個(gè)關(guān)鍵技術(shù),如在數(shù)據(jù)挖掘課程中,著重講解分類中的決策樹算法,聚類中的k-means算法等復(fù)雜度一般,應(yīng)用廣泛的重要知識(shí)點(diǎn),并利用實(shí)踐來檢驗(yàn)學(xué)習(xí)成果。
2.1進(jìn)階課程的課堂教學(xué)。
數(shù)據(jù)挖掘等進(jìn)階課程所涉及的知識(shí)點(diǎn)眾多,在課堂上則采用演示和講授相結(jié)合的方法,對大部分知識(shí)點(diǎn)做廣度介紹,而對需要重點(diǎn)掌握知識(shí)點(diǎn)具體講授,結(jié)合實(shí)踐案例及板書。在介紹工業(yè)實(shí)踐案例的過程中,對于具體數(shù)據(jù)挖掘任務(wù)的來龍去脈解釋清楚,尤其是對于問題的歸納,數(shù)據(jù)的處理,算法的選擇等步驟,并在不同的知識(shí)點(diǎn)的教學(xué)中重復(fù)介紹和總結(jié)數(shù)據(jù)挖掘的一般性流程,可以加深學(xué)生對于數(shù)據(jù)挖掘的深入理解。對于一些需要記憶的知識(shí)點(diǎn),在課堂上采用隨機(jī)問答的方式,必要的時(shí)候可以在每堂課的開始重復(fù)提問,提高學(xué)習(xí)的效果。
2.2進(jìn)階課程的課后教學(xué)。
對于由于時(shí)間限制無法在課上深入討論的知識(shí)點(diǎn),只能依靠學(xué)生在課后自學(xué)掌握。本科高年級學(xué)生的課后自學(xué)的動(dòng)力不像低年級學(xué)生那么充足,可以布置需要?jiǎng)邮謱?shí)踐并涵蓋相關(guān)知識(shí)點(diǎn)的課后實(shí)踐,但盡量降低作業(yè)的工程量。鼓勵(lì)學(xué)生利用開源軟件和框架,基于提供的數(shù)據(jù)集,實(shí)際解決一些簡單的數(shù)據(jù)挖掘任務(wù),讓學(xué)生掌握相關(guān)算法技術(shù)的使用,并對算法有一定的了解。利用學(xué)院與大數(shù)據(jù)相關(guān)企業(yè)建立的合作關(guān)系,在課后通過參觀,了解大數(shù)據(jù)技術(shù)在當(dāng)前企業(yè)實(shí)踐中是如何應(yīng)用的,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.3進(jìn)階課程的教學(xué)效果考察進(jìn)階課程的考察不宜采取考試的形式,可以采用大作業(yè)的形式。從具體的數(shù)據(jù)挖掘?qū)嵺`中檢驗(yàn)教學(xué)的成果,力求是學(xué)生在上完本課程后可以解決一些簡單的數(shù)據(jù)挖掘任務(wù),將較復(fù)雜的數(shù)據(jù)挖掘技術(shù)的學(xué)習(xí)留給學(xué)生自己。
3結(jié)語。
數(shù)據(jù)挖掘是來源于實(shí)踐的科學(xué),學(xué)習(xí)完本課程的學(xué)生需要真正理解,掌握相關(guān)的數(shù)據(jù)挖掘技術(shù),并能夠在實(shí)際數(shù)據(jù)挖掘任務(wù)中應(yīng)用相關(guān)算法解決問題。這也對教師的教學(xué)水平提出了挑戰(zhàn),并直接與教師的科研水平相關(guān)。在具體的教學(xué)過程中,發(fā)現(xiàn)往往是在講授實(shí)際科研中遇到的問題時(shí),學(xué)生的興趣較大,對于書本上的例子則反映一般。進(jìn)階課程在注重教學(xué)方法的基礎(chǔ)上,對于教師的科研水平提出了新的要求,這也是對于教師科研的反哺,使教學(xué)過程變成了教學(xué)相長的過程。
參考文獻(xiàn):
[1]孫宇,梁俊斌,鐘淑瑛.面向工程的《數(shù)據(jù)挖掘》課程教學(xué)方法探討[j].現(xiàn)代計(jì)算機(jī),2014(13).
[2]蔣盛益,李霞,鄭琪.研究性學(xué)習(xí)和研究性教學(xué)的實(shí)證研究———以數(shù)據(jù)挖掘課程為例[j].計(jì)算機(jī)教育,2014(24).
[3]張曉芳,王芬,黃曉.國內(nèi)外大數(shù)據(jù)課程體系與專業(yè)建設(shè)調(diào)查研究[c].2ndinternationalconferenceoneducation,managementandsocialscience(icemss2014),2014.
[4]郝潔.《無線傳感器網(wǎng)絡(luò)》課程特點(diǎn)、挑戰(zhàn)和解決方案[j].現(xiàn)代計(jì)算機(jī),2016(35).
[5]王永紅.計(jì)算機(jī)類專業(yè)剖析中課程分析探討[j].現(xiàn)代計(jì)算機(jī),2011(04).
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇三
根據(jù)20xx年4月國家教育部等五部關(guān)于印發(fā)《職業(yè)學(xué)校學(xué)生實(shí)習(xí)管理規(guī)定》的通知(教職成[20xx]3號(hào))精神,針對旅游管理專業(yè)頂崗實(shí)習(xí)企業(yè)的實(shí)際情況以及頂崗實(shí)習(xí)現(xiàn)狀,多角度分析新《職業(yè)學(xué)校學(xué)生頂崗實(shí)習(xí)管理規(guī)定》(以下簡稱新《規(guī)定》)對旅游管理專業(yè)頂崗實(shí)習(xí)的新要求,探索可操作的改進(jìn)辦法,為旅游管理專業(yè)實(shí)施頂崗實(shí)習(xí)教學(xué)課程提供借鑒和幫助。
(1)實(shí)習(xí)企業(yè)較多,大部分企業(yè)需求人數(shù)少,實(shí)習(xí)生分布零散,跟蹤管理難度大。
(2)由學(xué)校安排實(shí)習(xí)的,大多是由學(xué)校和實(shí)習(xí)企業(yè)簽訂雙方協(xié)議,實(shí)習(xí)生簽閱《實(shí)習(xí)生管理守則》。
(3)中職學(xué)校旅游管理專業(yè)頂崗實(shí)習(xí)學(xué)生大多未滿18周歲。
(4)實(shí)習(xí)評價(jià)體系不完善,對實(shí)習(xí)生的考核主觀成分多,量化標(biāo)準(zhǔn)少。
(5)實(shí)習(xí)期仍以學(xué)生平安險(xiǎn)作為學(xué)生意外傷害保險(xiǎn),尚未為學(xué)生購買專門的實(shí)習(xí)責(zé)任險(xiǎn)。
2.新《規(guī)定》對頂崗實(shí)習(xí)的影響及改進(jìn)方法。
(1)新《規(guī)定》再次強(qiáng)調(diào)對實(shí)習(xí)過程的全程指導(dǎo),并明確提出,對自行安排實(shí)習(xí)的學(xué)生也要進(jìn)行跟蹤管理(新《規(guī)定》第七條、第八條)。而旅游管理專業(yè)實(shí)習(xí)企業(yè)特別是旅行社,企業(yè)多,規(guī)模小,需求人數(shù)少,實(shí)習(xí)生分布零散,甚至一個(gè)企業(yè)只有一個(gè)實(shí)習(xí)生,管理和指導(dǎo)難度大。調(diào)查資料顯示,旅游專業(yè)實(shí)習(xí)企業(yè)中90%是旅行社,而實(shí)習(xí)生中只有50%在旅行社實(shí)習(xí)。這種情況實(shí)習(xí)指導(dǎo)教師如果要實(shí)現(xiàn)對每個(gè)實(shí)習(xí)生的指導(dǎo)管理,那么大部分時(shí)間都在外跑實(shí)習(xí)點(diǎn),學(xué)校對專業(yè)教師的教學(xué)任務(wù)、科研任務(wù)及其他工作都很難完成。針對這一現(xiàn)狀,結(jié)合新《規(guī)定》要求,可從以下方面著手改進(jìn):
1)建立校企生聯(lián)動(dòng)實(shí)習(xí)管理制度。在學(xué)校數(shù)字化平臺(tái)增加實(shí)習(xí)管理模塊,將實(shí)習(xí)操作流程、標(biāo)準(zhǔn)分單元錄入模塊內(nèi),實(shí)習(xí)生定期在平臺(tái)上提交單元作業(yè),企業(yè)指導(dǎo)教師和學(xué)校指導(dǎo)教師定期在平臺(tái)上提交實(shí)習(xí)生單元成績,最后的實(shí)習(xí)總成績由單元成績按比例匯總而成。這樣既可參與和掌控實(shí)習(xí)過程,又能優(yōu)化實(shí)習(xí)考核體系,增加量化標(biāo)準(zhǔn)。如數(shù)字平臺(tái)無法立即實(shí)施,可先采用電子文檔或紙質(zhì)文檔方式。
2)實(shí)習(xí)面試結(jié)束后,組織召開實(shí)習(xí)指導(dǎo)教師動(dòng)員會(huì),由學(xué)校安排的指導(dǎo)教師和各企業(yè)安排的指導(dǎo)教師參加,共同學(xué)習(xí)和調(diào)整實(shí)習(xí)計(jì)劃、操作標(biāo)準(zhǔn)、達(dá)標(biāo)考核、指導(dǎo)流程等。
3)實(shí)習(xí)收尾階段,組織召開實(shí)習(xí)總結(jié)會(huì),對實(shí)習(xí)工作進(jìn)行交流分享,對實(shí)際工作中遇到的問題提出改進(jìn)建議,為即將開展的新一輪實(shí)習(xí)工作做好鋪墊。
(2)新《規(guī)定》第十二條、第十三條要求,頂崗實(shí)習(xí)前學(xué)校、企業(yè)、學(xué)生須簽訂三方協(xié)議,這對制約企業(yè)、約束學(xué)生有了明確依據(jù)。旅游企業(yè)淡旺季明顯,一些企業(yè)到了淡季就將學(xué)生解聘;學(xué)生實(shí)習(xí)中無法適應(yīng)而中途離職的也時(shí)有發(fā)生,所以協(xié)議內(nèi)容除新《規(guī)定》列示內(nèi)容外,還應(yīng)增加實(shí)習(xí)生到崗后應(yīng)遵守的相關(guān)管理制度、學(xué)生違反規(guī)定的處理辦法等內(nèi)容。
(3)新《規(guī)定》第十四條要求,未滿18周歲的學(xué)生參加頂崗實(shí)習(xí),須由監(jiān)護(hù)人簽閱知情同意書。大部分中職學(xué)校學(xué)生在實(shí)習(xí)時(shí)都未達(dá)到該年齡標(biāo)準(zhǔn),因此中職學(xué)校在實(shí)習(xí)前應(yīng)按戶口登記年齡進(jìn)行一次篩選,將“頂崗實(shí)習(xí)學(xué)生監(jiān)護(hù)人知情同意書”以統(tǒng)一格式發(fā)放給未滿18周歲學(xué)生,并告知監(jiān)護(hù)人,請監(jiān)護(hù)人簽閱?!爸橥鈺苯粚W(xué)校后方可參加實(shí)習(xí)面試。
(4)新《規(guī)定》第三十五條要求,職業(yè)學(xué)?;?qū)嵙?xí)單位應(yīng)為實(shí)習(xí)學(xué)生投保實(shí)習(xí)責(zé)任保險(xiǎn)。實(shí)習(xí)責(zé)任險(xiǎn)是指學(xué)生在實(shí)習(xí)期間,因?qū)W校的管理疏忽對學(xué)生造成的身體、心理傷害應(yīng)由學(xué)校承擔(dān)責(zé)任的保險(xiǎn)。據(jù)調(diào)查,保險(xiǎn)公司目前尚未推出專門的實(shí)習(xí)責(zé)任險(xiǎn),但可先為實(shí)習(xí)生購買一年期限的意外險(xiǎn)。但意外險(xiǎn)與實(shí)習(xí)責(zé)任險(xiǎn)在投保范圍、價(jià)格等方面還有差異,所以,職業(yè)學(xué)校也應(yīng)同時(shí)與保險(xiǎn)行業(yè)接觸,積極推進(jìn)實(shí)習(xí)責(zé)任險(xiǎn)的設(shè)計(jì)出臺(tái)。
總之,旅游管理專業(yè)頂崗實(shí)習(xí)在實(shí)施過程中還存在一些問題和困難,如企業(yè)與學(xué)校的需求差異、旅游行業(yè)淡旺季與實(shí)習(xí)期的時(shí)間矛盾、實(shí)習(xí)生生活管理和心理疏導(dǎo)問題等,有待在《新規(guī)定》的要求和指導(dǎo)下,與企業(yè)深度合作,探索出一套有效的、可操作的頂崗實(shí)習(xí)實(shí)施標(biāo)準(zhǔn)。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇四
摘要:大數(shù)據(jù)和智游都是當(dāng)下的熱點(diǎn),沒有大數(shù)據(jù)的智游無從談“智慧”,數(shù)據(jù)挖掘是大數(shù)據(jù)應(yīng)用于智游的核心,文章探究了在智游應(yīng)用中,目前大數(shù)據(jù)挖掘存在的幾個(gè)問題。
隨著人民生活水平的進(jìn)一步提高,旅游消費(fèi)的需求進(jìn)一步上升,在云計(jì)算、互聯(lián)網(wǎng)、物聯(lián)網(wǎng)以及移動(dòng)智能終端等信息通訊技術(shù)的飛速發(fā)展下,智游應(yīng)運(yùn)而生。大數(shù)據(jù)作為當(dāng)下的熱點(diǎn)已經(jīng)成了智游發(fā)展的有力支撐,沒有大數(shù)據(jù)提供的有利信息,智游無法變得“智慧”。
旅游業(yè)是信息密、綜合性強(qiáng)、信息依存度高的產(chǎn)業(yè)[1],這讓其與大數(shù)據(jù)自然產(chǎn)生了交匯。2010年,江蘇省鎮(zhèn)江市首先提出“智游”的概念,雖然至今國內(nèi)外對于智游還沒有一個(gè)統(tǒng)一的學(xué)術(shù)定義,但在與大數(shù)據(jù)相關(guān)的描述中,有學(xué)者從大數(shù)據(jù)挖掘在智游中的作用出發(fā),把智游描述為:通過充分收集和管理所有類型和來源的旅游數(shù)據(jù),并深入挖掘這些數(shù)據(jù)的潛在重要價(jià)值信息,然后利用這些信息為相關(guān)部門或?qū)ο筇峁┓?wù)[2]。這一定義充分肯定了在發(fā)展智游中,大數(shù)據(jù)挖掘所起的至關(guān)重要的作用,指出了在智游的過程中,數(shù)據(jù)的收集、儲(chǔ)存、管理都是為數(shù)據(jù)挖掘服務(wù),智游最終所需要的是利用挖掘所得的有用信息。
2011年,我國提出用十年時(shí)間基本實(shí)現(xiàn)智游的目標(biāo)[3],過去幾年,國家旅游局的相關(guān)動(dòng)作均為了實(shí)現(xiàn)這一目標(biāo)。但是,在借助大數(shù)據(jù)推動(dòng)智游的可持續(xù)性發(fā)展中,大數(shù)據(jù)所產(chǎn)生的價(jià)值卻亟待提高,原因之一就是在收集、儲(chǔ)存了大量數(shù)據(jù)后,對它們深入挖掘不夠,沒有發(fā)掘出數(shù)據(jù)更多的價(jià)值。
智游的發(fā)展離不開移動(dòng)網(wǎng)絡(luò)、物聯(lián)網(wǎng)、云平臺(tái)。隨著大數(shù)據(jù)的不斷發(fā)展,國內(nèi)許多景區(qū)已經(jīng)實(shí)現(xiàn)wi-fi覆蓋,部分景區(qū)也已實(shí)現(xiàn)人與人、人與物、人與景點(diǎn)之間的實(shí)時(shí)互動(dòng),多省市已建有旅游產(chǎn)業(yè)監(jiān)測平臺(tái)或旅游大數(shù)據(jù)中心以及數(shù)據(jù)可視化平臺(tái),從中進(jìn)行數(shù)據(jù)統(tǒng)計(jì)、行為分析、監(jiān)控預(yù)警、服務(wù)質(zhì)量監(jiān)督等。通過這些平臺(tái),已基本能掌握跟游客和景點(diǎn)相關(guān)的數(shù)據(jù),可以實(shí)現(xiàn)更好旅游監(jiān)控、產(chǎn)業(yè)宏觀監(jiān)控,對該地的旅游管理和推廣都能發(fā)揮重要作用。
但從智慧化的發(fā)展來看,我國的信息化建設(shè)還需加強(qiáng)。雖然通訊網(wǎng)絡(luò)已基本能保證,但是大部分景區(qū)還無法實(shí)現(xiàn)對景區(qū)全面、透徹、及時(shí)的感知,更為困難的是對平臺(tái)的建設(shè)。在數(shù)據(jù)共享平臺(tái)的建設(shè)上,除了必備的硬件設(shè)施,大數(shù)據(jù)實(shí)驗(yàn)平臺(tái)還涉及大量部門,如政府管理部門、氣象部門、交通、電子商務(wù)、旅行社、旅游網(wǎng)站等。如此多的部門相關(guān)聯(lián),要想建立一個(gè)完整全面的大數(shù)據(jù)實(shí)驗(yàn)平臺(tái),難度可想而知。
大數(shù)據(jù)時(shí)代缺的不是數(shù)據(jù),而是方法。大數(shù)據(jù)在旅游行業(yè)的應(yīng)用前景非常廣闊,但是面對大量的數(shù)據(jù),不懂如何收集有用的數(shù)據(jù)、不懂如何對數(shù)據(jù)進(jìn)行挖掘和利用,那么“大數(shù)據(jù)”猶如礦山之中的廢石。旅游行業(yè)所涉及的結(jié)構(gòu)化與非結(jié)構(gòu)化數(shù)據(jù),通過云計(jì)算技術(shù),對數(shù)據(jù)的收集、存儲(chǔ)都較為容易,但對數(shù)據(jù)的挖掘分析則還在不斷探索中。大數(shù)據(jù)的挖掘常用的方法有關(guān)聯(lián)分析,相似度分析,距離分析,聚類分析等等,這些方法從不同的角度對數(shù)據(jù)進(jìn)行挖掘。其中,相關(guān)性分析方法通過關(guān)聯(lián)多個(gè)數(shù)據(jù)來源,挖掘數(shù)據(jù)價(jià)值。但針對旅游數(shù)據(jù),采用這些方法挖掘數(shù)據(jù)的價(jià)值信息,難度也很大,因?yàn)槁糜螖?shù)據(jù)中冗余數(shù)據(jù)很多,數(shù)據(jù)存在形式很復(fù)雜。在旅游非結(jié)構(gòu)化數(shù)據(jù)中,一張圖片、一個(gè)天氣變化、一次輿情評價(jià)等都將會(huì)對游客的旅行計(jì)劃帶來影響。對這些數(shù)據(jù)完全挖掘分析,對游客“行前、行中、行后”大數(shù)據(jù)的實(shí)時(shí)性挖掘都是很大的挑戰(zhàn)。
2017年,數(shù)據(jù)安全事件屢見不鮮,伴著大數(shù)據(jù)而來的數(shù)據(jù)安全問題日益凸顯出來。在大數(shù)據(jù)時(shí)代,無處不在的數(shù)據(jù)收集技術(shù)使我們的個(gè)人信息在所關(guān)聯(lián)的數(shù)據(jù)中心留下痕跡,如何保證這些信息被合法合理使用,讓數(shù)據(jù)“可用不可見”[4],這是亟待解決的問題。同時(shí),在大數(shù)據(jù)資源的開放性和共享性下,個(gè)人隱私和公民權(quán)益受到嚴(yán)重威脅。這一矛盾的存在使數(shù)據(jù)共享程度與數(shù)據(jù)挖掘程度成反比。此外,經(jīng)過大數(shù)據(jù)技術(shù)的分析、挖掘,個(gè)人隱私更易被發(fā)現(xiàn)和暴露,從而可能引發(fā)一系列社會(huì)問題。
大數(shù)據(jù)背景下的旅游數(shù)據(jù)當(dāng)然也避免不了數(shù)據(jù)的安全問題。如果游客“吃、住、行、游、娛、購”的數(shù)據(jù)被放入數(shù)據(jù)庫,被完全共享、挖掘、分析,那游客的人身財(cái)產(chǎn)安全將會(huì)受到嚴(yán)重影響,最終降低旅游體驗(yàn)。所以,數(shù)據(jù)的安全管理是進(jìn)行大數(shù)據(jù)挖掘的前提。
大數(shù)據(jù)背景下的智游離不開人才的創(chuàng)新活動(dòng)及技術(shù)支持,然而與專業(yè)相銜接的大數(shù)據(jù)人才培養(yǎng)未能及時(shí)跟上行業(yè)需求,加之創(chuàng)新型人才的外流,以及數(shù)據(jù)統(tǒng)計(jì)未來3~5年大數(shù)據(jù)行業(yè)將面臨全球性的人才荒,國內(nèi)智游的構(gòu)建還缺乏大量人才。
在信息化建設(shè)上,加大政府投入,加強(qiáng)基礎(chǔ)設(shè)施建設(shè),整合結(jié)構(gòu)化數(shù)據(jù),抓取非結(jié)構(gòu)化數(shù)據(jù),打通各數(shù)據(jù)壁壘,建設(shè)旅游大數(shù)據(jù)實(shí)驗(yàn)平臺(tái);在挖掘方法上,對旅游大數(shù)據(jù)實(shí)時(shí)性數(shù)據(jù)的挖掘應(yīng)該被放在重要位置;在數(shù)據(jù)安全上,從加強(qiáng)大數(shù)據(jù)安全立法、監(jiān)管執(zhí)法及強(qiáng)化技術(shù)手段建設(shè)等幾個(gè)方面著手,提升大數(shù)據(jù)環(huán)境下數(shù)據(jù)安全保護(hù)水平。加強(qiáng)人才的培養(yǎng)與引進(jìn),加強(qiáng)產(chǎn)學(xué)研合作,培養(yǎng)智游大數(shù)據(jù)人才。
參考文獻(xiàn)。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇五
隨著我國的旅游業(yè)的迅猛發(fā)展,旅游產(chǎn)業(yè)正邁向國際化的軌道,傳統(tǒng)旅游業(yè)積累的海量數(shù)據(jù),沒有被有效利用,資源被極大浪費(fèi)。將數(shù)據(jù)挖掘引入到旅游產(chǎn)業(yè)是大勢所趨。當(dāng)前數(shù)據(jù)挖掘在旅游信息化建設(shè)中的應(yīng)用與研究情況主要集中在高校理論界的研究,大多數(shù)研究僅僅是學(xué)術(shù)研究,真正運(yùn)用到旅游行業(yè)的文章多是從某個(gè)具體的方面出發(fā),針對個(gè)別應(yīng)用進(jìn)行數(shù)據(jù)挖掘的融合。筆者主要研究決策樹方法在旅游信息化建設(shè)中的應(yīng)用。目前,決策樹算法有cls算法、id3算法、c4.5算法、cart算法、sliq算法、z統(tǒng)計(jì)算法、并行決策樹算法和sprint算法等。不同算法在執(zhí)行效率、輸出結(jié)果、可擴(kuò)容性、可理解性、預(yù)測的準(zhǔn)確性等方面各不相同。總的來說,這么多決策樹算法各有優(yōu)缺點(diǎn),真正將數(shù)據(jù)挖掘運(yùn)用到整個(gè)旅游信息化建設(shè)中還有很多問題需要解決。
數(shù)據(jù)挖掘中常用的基本分類算法有決策樹、貝葉斯、基于規(guī)則的算法等等。其中,決策樹是目前主流的分類技術(shù),己經(jīng)成功的應(yīng)用于更多行業(yè)的數(shù)據(jù)分析。在關(guān)聯(lián)規(guī)則挖掘研究中,最重要的是apriori算法,這個(gè)算法后來成為絕大多數(shù)關(guān)聯(lián)規(guī)則分類的基礎(chǔ)。聚類算法也是數(shù)據(jù)挖掘技術(shù)中極為重要的組成部分。與分類技術(shù)不同的是,聚類不要求對數(shù)據(jù)進(jìn)行事先標(biāo)定,就數(shù)據(jù)挖掘功能而言,聚類能夠可以針對數(shù)據(jù)的相異度來分析評估數(shù)據(jù),可以作為其他對發(fā)現(xiàn)的簇運(yùn)行的數(shù)據(jù)挖掘算法的預(yù)處理步驟。各種算法分類模型建立有所不同,但原理是大致相同的。筆者考慮決策樹算法結(jié)構(gòu)簡單,便于理解,且很擅長處理非數(shù)值型數(shù)據(jù),建模效率高,分類速度快,特別適合大規(guī)模的數(shù)據(jù)處理的優(yōu)點(diǎn),結(jié)合旅游產(chǎn)業(yè)數(shù)據(jù)特點(diǎn),故作重點(diǎn)分析。
旅游業(yè)數(shù)據(jù)挖掘系統(tǒng)的基本特點(diǎn)如下:統(tǒng)計(jì)旅游興趣;購物消費(fèi)趨向;推薦其感興趣的旅游景點(diǎn);在后臺(tái)管理中,通過決策樹算法對游客數(shù)量、平均年齡、景點(diǎn)收費(fèi)、游客來自地區(qū)等進(jìn)行分析總結(jié),為旅游消費(fèi)者和旅游管理者提供服務(wù):為消費(fèi)者提供吃住行購?qiáng)蕵诽鞖飧鞣矫嫘畔⒉樵?、機(jī)票、車船票、酒店、景區(qū)門票、餐飲等方面的預(yù)定與現(xiàn)金支付、第三方支付、消費(fèi)者評價(jià)、在線咨詢等方面的便利、快捷服務(wù)。為管理者提供推薦、游客管理、線路管理、景點(diǎn)管理、特色服務(wù)管理、機(jī)票管理、在線咨詢管理、旅游客戶關(guān)系管理等服務(wù),提高整體服務(wù)效率和水平。
旅游業(yè)信息管理系統(tǒng)包括游客信息管理與游客信息分析兩個(gè)子模塊。根據(jù)系統(tǒng)日常運(yùn)行出現(xiàn)的問題及時(shí)對系統(tǒng)進(jìn)行維護(hù),如添加或者刪除某個(gè)模塊功能,系統(tǒng)整體運(yùn)行速度的更近等。系統(tǒng)運(yùn)用數(shù)據(jù)庫層、持久化層、業(yè)務(wù)邏輯層、表示層四層體系結(jié)構(gòu),主要利用id3算法達(dá)到旅游數(shù)據(jù)信息的快速、準(zhǔn)確分類。考慮了游客與酒店之間的關(guān)系、游客與旅游路線之間的關(guān)系、游客與旅游景點(diǎn)之間的關(guān)系、游客與機(jī)票、車票之間的關(guān)系、管理員與游客之間的關(guān)系、邏輯結(jié)構(gòu)設(shè)計(jì)。程序之間的獨(dú)立性增加,易于擴(kuò)展,規(guī)范化得到保證的同時(shí)提高了系統(tǒng)的安全性。詳細(xì)功能設(shè)計(jì)包括:用戶登錄、用戶查詢、預(yù)定及支付、后臺(tái)管理、旅游客戶管理和數(shù)據(jù)分析等方面。本系統(tǒng)中主要運(yùn)用java語言就行邏輯上的處理。系統(tǒng)主要使用struts2和hibernate這兩個(gè)框架來進(jìn)行整個(gè)系統(tǒng)的搭建。其中struts2主要處理業(yè)務(wù)邏輯,而hibernate主要是處理數(shù)據(jù)存儲(chǔ)、查詢等操作。系統(tǒng)采用tomcat服務(wù)器。系統(tǒng)模塊需要實(shí)現(xiàn)酒店推薦實(shí)現(xiàn)、景點(diǎn)推薦實(shí)現(xiàn)、天氣預(yù)報(bào)實(shí)現(xiàn)、旅游線路實(shí)現(xiàn)、特產(chǎn)推薦、數(shù)據(jù)分析展現(xiàn)功能、報(bào)表數(shù)據(jù)獲取、景區(qū)客流量變化分析實(shí)現(xiàn)等。需要進(jìn)行后臺(tái)信息管理等功能測試以及時(shí)間測試、數(shù)據(jù)測試等性能測試。
在對數(shù)據(jù)挖掘的基本方法與技術(shù)進(jìn)行總結(jié)的基礎(chǔ)上,結(jié)合當(dāng)今數(shù)據(jù)挖掘的發(fā)展方向和研究熱點(diǎn),可以發(fā)現(xiàn)旅游業(yè)數(shù)據(jù)挖掘算法系統(tǒng)有待進(jìn)一步完善之處:訂票系統(tǒng)尚待完善。界面美化需要進(jìn)一步改進(jìn)。數(shù)據(jù)表之間的結(jié)構(gòu)關(guān)系需要優(yōu)化,以提高數(shù)據(jù)處理能力和效率。數(shù)據(jù)挖掘工具及算法有待精細(xì)化改進(jìn)。
作者:朱暉單位:河南職業(yè)技術(shù)學(xué)院。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇六
[1]劉瑩?;跀?shù)據(jù)挖掘的商品銷售預(yù)測分析[j].科技通報(bào)。2014(07)。
[2]姜曉娟,郭一娜?;诟倪M(jìn)聚類的電信客戶流失預(yù)測分析[j].太原理工大學(xué)學(xué)報(bào)。2014(04)。
[3]李欣海。隨機(jī)森林模型在分類與回歸分析中的應(yīng)用[j].應(yīng)用昆蟲學(xué)報(bào)。2013(04)。
[4]朱志勇,徐長梅,劉志兵,胡晨剛。基于貝葉斯網(wǎng)絡(luò)的客戶流失分析研究[j].計(jì)算機(jī)工程與科學(xué)。2013(03)。
[5]翟健宏,李偉,葛瑞海,楊茹?;诰垲惻c貝葉斯分類器的網(wǎng)絡(luò)節(jié)點(diǎn)分組算法及評價(jià)模型[j].電信科學(xué)。2013(02)。
[6]王曼,施念,花琳琳,楊永利。成組刪除法和多重填補(bǔ)法對隨機(jī)缺失的二分類變量資料處理效果的比較[j].鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版).2012(05)。
[7]黃杰晟,曹永鋒。挖掘類改進(jìn)決策樹[j].現(xiàn)代計(jì)算機(jī)(專業(yè)版).2010(01)。
[8]李凈,張范,張智江。數(shù)據(jù)挖掘技術(shù)與電信客戶分析[j].信息通信技術(shù)。2009(05)。
[9]武曉巖,李康?;虮磉_(dá)數(shù)據(jù)判別分析的隨機(jī)森林方法[j].中國衛(wèi)生統(tǒng)計(jì)。2006(06)。
[10]張璐。論信息與企業(yè)競爭力[j].現(xiàn)代情報(bào)。2003(01)。
[13]俞馳?;诰W(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)2009。
[14]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)2009。
[15]于寶華?;跀?shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)2009。
[16]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)2010。
[19]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)2005。
[22]阮偉玲。面向生鮮農(nóng)產(chǎn)品溯源的基層數(shù)據(jù)庫建設(shè)[d].成都理工大學(xué)2015。
[23]明慧。復(fù)合材料加工工藝數(shù)據(jù)庫構(gòu)建及數(shù)據(jù)集成[d].大連理工大學(xué)2014。
[25]岳雪?;诤A繑?shù)據(jù)挖掘關(guān)聯(lián)測度工具的設(shè)計(jì)[d].西安財(cái)經(jīng)學(xué)院2014。
[28]張曉東。全序模塊模式下范式分解問題研究[d].哈爾濱理工大學(xué)2015。
[30]王化楠。一種新的混合遺傳的基因聚類方法[d].大連理工大學(xué)2014。
“大數(shù)據(jù)”到底有多大?根據(jù)研究機(jī)構(gòu)統(tǒng)計(jì),僅在2011年,全球數(shù)據(jù)增量就達(dá)到了1.8zb(即1.8萬億gb),相當(dāng)于全世界每個(gè)人產(chǎn)生200gb以上的數(shù)據(jù)。這種增長趨勢仍在加速,據(jù)保守預(yù)計(jì),接下來幾年中,數(shù)據(jù)將始終保持每年50%的增長速度。
縱觀人類歷史,每一次劃時(shí)代的變革都是以新工具的出現(xiàn)和應(yīng)用為標(biāo)志的。蒸汽機(jī)把人們從農(nóng)業(yè)時(shí)代帶入了工業(yè)時(shí)代,計(jì)算機(jī)和互聯(lián)網(wǎng)把人們從工業(yè)時(shí)代帶入了信息時(shí)代,而如今大數(shù)據(jù)時(shí)代已經(jīng)到來,它源自信息時(shí)代,又是信息時(shí)代全方位的深化應(yīng)用與延伸。大數(shù)據(jù)時(shí)代的生產(chǎn)原材料是數(shù)據(jù),生產(chǎn)工具則是大數(shù)據(jù)技術(shù),是對信息時(shí)代所產(chǎn)生的海量數(shù)據(jù)的挖掘和分析,從而快速地獲取有價(jià)值信息的技術(shù)和應(yīng)用。
概括來講,大數(shù)據(jù)有三個(gè)特征,可總結(jié)歸納為“3v”,即量(volume)、類(variety)、時(shí)(velocity)。量,數(shù)據(jù)容量大,現(xiàn)在數(shù)據(jù)單位已經(jīng)躍升至zb級別。類,數(shù)據(jù)種類多,主要來自業(yè)務(wù)系統(tǒng),例如社交網(wǎng)絡(luò)、電子商務(wù)和物聯(lián)網(wǎng)應(yīng)用。時(shí),處理速度快,時(shí)效性要求高,從傳統(tǒng)的事務(wù)性數(shù)據(jù)到實(shí)時(shí)或準(zhǔn)實(shí)時(shí)數(shù)據(jù)。
數(shù)據(jù)挖掘,又稱為知識(shí)發(fā)現(xiàn)(knowledgediscovery),是通過分析每個(gè)數(shù)據(jù),從大量數(shù)據(jù)中尋找其規(guī)律的技術(shù)。知識(shí)發(fā)現(xiàn)過程通常由數(shù)據(jù)準(zhǔn)備、規(guī)律尋找和規(guī)律表示3個(gè)階段組成。數(shù)據(jù)準(zhǔn)備是從數(shù)據(jù)中心存儲(chǔ)的數(shù)據(jù)中選取所需數(shù)據(jù)并整合成用于數(shù)據(jù)挖掘的數(shù)據(jù)集;規(guī)律尋找是用某種方法將數(shù)據(jù)集所含規(guī)律找出來;規(guī)律表示則是盡可能以用戶可理解的方式(如可視化)將找出的規(guī)律表示出來。
“數(shù)據(jù)海量、信息缺乏”是相當(dāng)多企業(yè)在數(shù)據(jù)大集中之后面臨的尷尬問題。目前,大多數(shù)事物型數(shù)據(jù)庫僅實(shí)現(xiàn)了數(shù)據(jù)錄入、查詢和統(tǒng)計(jì)等較低層次的功能,無法發(fā)現(xiàn)數(shù)據(jù)中存在的有用信息,更無法進(jìn)一步通過數(shù)據(jù)分析發(fā)現(xiàn)更高的價(jià)值。如果能夠?qū)@些數(shù)據(jù)進(jìn)行分析,探尋其數(shù)據(jù)模式及特征,進(jìn)而發(fā)現(xiàn)某個(gè)客戶、群體或組織的興趣和行為規(guī)律,專業(yè)人員就可以預(yù)測到未來可能發(fā)生的變化趨勢。這樣的數(shù)據(jù)挖掘過程,將極大拓展企業(yè)核心競爭力。例如,在網(wǎng)上購物時(shí)遇到的提示“瀏覽了該商品的人還瀏覽了如下商品”,就是在對大量的購買者“行為軌跡”數(shù)據(jù)進(jìn)行記錄和挖掘分析的基礎(chǔ)上,捕捉總結(jié)購買者共性習(xí)慣行為,并針對性地利用每一次購買機(jī)會(huì)而推出的銷售策略。
隨著社會(huì)的進(jìn)步和信息通信技術(shù)的發(fā)展,信息系統(tǒng)在各行業(yè)、各領(lǐng)域快速拓展。這些系統(tǒng)采集、處理、積累的數(shù)據(jù)越來越多,數(shù)據(jù)量增速越來越快,以至用“海量、爆炸性增長”等詞匯已無法形容數(shù)據(jù)的增長速度。
2011年5月,全球知名咨詢公司麥肯錫全球研究院發(fā)布了一份題為《大數(shù)據(jù):創(chuàng)新、競爭和生產(chǎn)力的。下一個(gè)新領(lǐng)域》的報(bào)告。報(bào)告中指出,數(shù)據(jù)已經(jīng)滲透到每一個(gè)行業(yè)和業(yè)務(wù)職能領(lǐng)域,逐漸成為重要的生產(chǎn)因素;而人們對于大數(shù)據(jù)的運(yùn)用預(yù)示著新一波生產(chǎn)率增長和消費(fèi)者盈余浪潮的到來。2012年3月29日,美國政府在白宮網(wǎng)站上發(fā)布了《大數(shù)據(jù)研究和發(fā)展倡議》,表示將投資2億美元啟動(dòng)“大數(shù)據(jù)研究和發(fā)展計(jì)劃”,增強(qiáng)從大數(shù)據(jù)中分析萃取信息的能力。
在電力行業(yè),堅(jiān)強(qiáng)智能電網(wǎng)的迅速發(fā)展使信息通信技術(shù)正以前所未有的廣度、深度與電網(wǎng)生產(chǎn)、企業(yè)管理快速融合,信息通信系統(tǒng)已經(jīng)成為智能電網(wǎng)的“中樞神經(jīng)”,支撐新一代電網(wǎng)生產(chǎn)和管理發(fā)展。目前,國家電網(wǎng)公司已初步建成了國內(nèi)領(lǐng)先、國際一流的信息集成平臺(tái)。隨著三地集中式數(shù)據(jù)中心的陸續(xù)投運(yùn),一級部署業(yè)務(wù)應(yīng)用范圍的拓展,結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中心的上線運(yùn)行,電網(wǎng)業(yè)務(wù)數(shù)據(jù)從總量和種類上都已初具規(guī)模。隨著后續(xù)智能電表的逐步普及,電網(wǎng)業(yè)務(wù)數(shù)據(jù)將從時(shí)效性層面進(jìn)一步豐富和拓展。大數(shù)據(jù)的“量類時(shí)”特性,已在海量、實(shí)時(shí)的電網(wǎng)業(yè)務(wù)數(shù)據(jù)中進(jìn)一步凸顯,電力大數(shù)據(jù)分析迫在眉睫。
當(dāng)前,電網(wǎng)業(yè)務(wù)數(shù)據(jù)大致分為三類:一是電力企業(yè)生產(chǎn)數(shù)據(jù),如發(fā)電量、電壓穩(wěn)定性等方面的數(shù)據(jù);二是電力企業(yè)運(yùn)營數(shù)據(jù),如交易電價(jià)、售電量、用電客戶等方面的數(shù)據(jù);三是電力企業(yè)管理數(shù)據(jù),如erp、一體化平臺(tái)、協(xié)同辦公等方面的數(shù)據(jù)。如能充分利用這些基于電網(wǎng)實(shí)際的數(shù)據(jù),對其進(jìn)行深入分析,便可以提供大量的高附加值服務(wù)。這些增值服務(wù)將有利于電網(wǎng)安全檢測與控制(包括大災(zāi)難預(yù)警與處理、供電與電力調(diào)度決策支持和更準(zhǔn)確的用電量預(yù)測),客戶用電行為分析與客戶細(xì)分,電力企業(yè)精細(xì)化運(yùn)營管理等等,實(shí)現(xiàn)更科學(xué)的需求側(cè)管理。
例如,在電力營銷環(huán)節(jié),針對“大營銷”體系建設(shè),以客戶和市場為導(dǎo)向,省級集中的95598客戶服務(wù)、計(jì)量檢定配送業(yè)務(wù)屬地化管理的營銷管理體系和24小時(shí)面向客戶的營銷服務(wù)系統(tǒng),可通過數(shù)據(jù)分析改善服務(wù)模式,提高營銷能力和服務(wù)質(zhì)量;以分析型數(shù)據(jù)為基礎(chǔ),優(yōu)化現(xiàn)有營銷組織模式,科學(xué)配置計(jì)量、收費(fèi)和服務(wù)資源,構(gòu)建營銷稽查數(shù)據(jù)監(jiān)控分析模型;建立各種針對營銷的系統(tǒng)性算法模型庫,發(fā)現(xiàn)數(shù)據(jù)中存在的隱藏關(guān)系,為各級決策者提供多維的、直觀的、全面的、深入的分析預(yù)測性數(shù)據(jù),進(jìn)而主動(dòng)把握市場動(dòng)態(tài),采取適當(dāng)?shù)臓I銷策略,獲得更大的企業(yè)效益,更好地服務(wù)于社會(huì)和經(jīng)濟(jì)發(fā)展。此外,還可以考慮在電力生產(chǎn)環(huán)節(jié),利用數(shù)據(jù)挖掘技術(shù),在線計(jì)算輸送功率極限,并考慮電壓等因素對功率極限的影響,從而合理設(shè)置系統(tǒng)輸出功率,有效平衡系統(tǒng)的安全性和經(jīng)濟(jì)性。
公司具備非常好的從數(shù)據(jù)運(yùn)維角度實(shí)現(xiàn)更大程度信息、知識(shí)發(fā)現(xiàn)的條件和基礎(chǔ),完全可以立足數(shù)據(jù)運(yùn)維服務(wù),創(chuàng)造數(shù)據(jù)增值價(jià)值,提供并衍生多種服務(wù)。以數(shù)據(jù)中心為紐帶,新型數(shù)據(jù)運(yùn)維的成果將有可能作為一種新的消費(fèi)形態(tài)與交付方式,給客戶帶來全新的使用體驗(yàn),打破傳統(tǒng)業(yè)務(wù)系統(tǒng)間各自為陣的局面,進(jìn)一步推動(dòng)電網(wǎng)生產(chǎn)和企業(yè)管理,從數(shù)據(jù)運(yùn)維角度對企業(yè)生產(chǎn)經(jīng)營、管理以及堅(jiān)強(qiáng)智能電網(wǎng)建設(shè)提供更有力、更長遠(yuǎn)、更深入的支撐。
這個(gè)問題太籠統(tǒng),基本上算法和應(yīng)用是兩個(gè)人來做的,可能是數(shù)據(jù)挖掘職位。做算法的比較少,也比較高級。
其實(shí)所謂做算法大多數(shù)時(shí)候都不是設(shè)計(jì)新的算法(這個(gè)可以寫論文了),更多的是技術(shù)選型,特征工程抽取,最多是實(shí)現(xiàn)一些已經(jīng)有論文但是還沒有開源模塊的算法等,還是要求扎實(shí)的算法和數(shù)據(jù)結(jié)構(gòu)功底,以及豐富的分布式計(jì)算的知識(shí)的,以及不錯(cuò)的英文閱讀和寫作能力。但即使是這樣也是百里挑一的,很難找到。
絕大讀書數(shù)據(jù)挖掘崗位都是做應(yīng)用,數(shù)據(jù)清洗,用現(xiàn)成的庫建模,如果你自己不往算法或者架構(gòu)方面繼續(xù)提升,和其他的開發(fā)崗位的性質(zhì)基本沒什么不同,只要會(huì)編程都是很容易入門的。
實(shí)際情況不太清楚,由于數(shù)據(jù)挖掘和大數(shù)據(jù)這個(gè)概念太火了,肯定到處都有人招聘響應(yīng)的崗位,但是二線城市可能僅僅是停留在概念上,很多實(shí)際的工作并沒有接觸到足夠大的數(shù)據(jù),都是生搬硬套框架(從我面試的人的工作經(jīng)驗(yàn)上看即使是在北上廣深這種情況也比較多見)。
只是在北上廣深,可能接觸到大數(shù)據(jù)的機(jī)會(huì)多一些。而且做數(shù)據(jù)挖掘現(xiàn)在熱點(diǎn)的技術(shù)比如python,spark,scala,r這些技術(shù)除了在一線城市之外基本上沒有足夠的市場(因?yàn)闀?huì)的人太少了,二線城市的公司找不到掌握這些技術(shù)的人,不招也沒人學(xué))。
所以我推測二線城市最多的還是用java+hadoop,或者用java寫一些spark程序。北上廣深和二線城市程序員比待遇是欺負(fù)人,就不討論了。
和傳統(tǒng)的前后端程序員相比,最主要的去別就是對編程水平的要求。從我招聘的情況來看,做數(shù)據(jù)挖掘的人編程水平要求可以降低一個(gè)檔次,甚至都不用掌握面向?qū)ο蟆?BR> 但是要求技術(shù)全面,編程、sql,linux,正則表達(dá)式,hadoop,spark,爬蟲,機(jī)器學(xué)習(xí)模型等技術(shù)都要掌握一些。前后端可能是要求精深,數(shù)據(jù)挖掘更強(qiáng)調(diào)廣博,有架構(gòu)能力更好。
打基礎(chǔ)是最重要的,學(xué)習(xí)一門數(shù)據(jù)挖掘常用的語言,比如python,scala,r;學(xué)習(xí)足夠的linux經(jīng)驗(yàn),能夠通過awk,grep等linux命令快速的處理文本文件。掌握sql,mysql或者postgresql都是比較常用的關(guān)系型數(shù)據(jù)庫,搞數(shù)據(jù)的別跟我說不會(huì)用數(shù)據(jù)庫。
補(bǔ)充的一些技能,比如nosql的使用,elasticsearch的使用,分詞(jieba等模塊的使用),算法的數(shù)據(jù)結(jié)構(gòu)的知識(shí)。
我覺得應(yīng)當(dāng)學(xué)習(xí),首先hadoop和hive很簡單(如果你用aws的話你可以開一臺(tái)emr,上面直接就有hadoop和hive,可以直接從使用學(xué)起)。
我覺得如果不折騰安裝和部署,還有l(wèi)inux和mysql的經(jīng)驗(yàn),只要半天到一天就能熟悉hadoop和hive的使用(當(dāng)然你得有l(wèi)inux和mysql的基礎(chǔ),如果沒有就先老老實(shí)實(shí)的學(xué)linux和mysql,這兩個(gè)都可以在自己的pc上安裝,自己折騰)。
spark對很多人來說才是需要學(xué)習(xí)的,如果你有java經(jīng)驗(yàn)大可以從java入門。如果沒有那么還是建議從scala入門,但是實(shí)際上如果沒有java經(jīng)驗(yàn),scala入門也會(huì)有一定難度,但是可以慢慢補(bǔ)。
所以總的來說spark才足夠難,以至于需要學(xué)習(xí)。
如果上面任何一個(gè)問題的答案是no,我都不建議直接轉(zhuǎn)行或者申請高級的數(shù)據(jù)挖掘職位(因?yàn)槟愫茈y找到一個(gè)正經(jīng)的數(shù)據(jù)挖掘崗位,頂多是一些打擦邊球的崗位,無論是實(shí)際干的工作還是未來的成長可能對你的幫助都不大)。
無論你現(xiàn)在是學(xué)生還是已經(jīng)再做一些前段后端、運(yùn)維之類的工作你都有足夠的時(shí)間補(bǔ)齊這些基礎(chǔ)知識(shí)。
補(bǔ)齊了這些知識(shí)之后,第一件事就是了解大數(shù)據(jù)生態(tài),hadoop生態(tài)圈,spark生態(tài)圈,機(jī)器學(xué)習(xí),深度學(xué)習(xí)(后兩者需要高等數(shù)學(xué)和線性代數(shù)基礎(chǔ),如果你的大學(xué)專業(yè)學(xué)這些不要混)。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇七
我國中央經(jīng)濟(jì)會(huì)議明確指出解決“三農(nóng)”問題是現(xiàn)階段工作中的重點(diǎn)內(nèi)容,這進(jìn)一步體現(xiàn)出我國對農(nóng)村旅游發(fā)展的重視?;跁r(shí)代背景給予農(nóng)村旅游發(fā)展的支持,進(jìn)一步促進(jìn)了農(nóng)村產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整與農(nóng)村經(jīng)濟(jì)的良好發(fā)展。在時(shí)代的背景下,農(nóng)業(yè)旅游這種新興的旅游模式順應(yīng)市場的需求得以產(chǎn)生和發(fā)展。不僅能夠切實(shí)的促進(jìn)農(nóng)民的收入取得相應(yīng)的提高,還能夠進(jìn)一步促進(jìn)農(nóng)村地區(qū)的全面發(fā)展。農(nóng)業(yè)資源作為農(nóng)業(yè)旅游發(fā)展的主要資源,農(nóng)村旅游的開發(fā)能夠有效的保障農(nóng)村土地的經(jīng)濟(jì)性質(zhì),進(jìn)而對耕地?cái)?shù)量的保護(hù)起著強(qiáng)有力的保障作用。
一、探討農(nóng)業(yè)旅游開發(fā)管理的模式。
1、農(nóng)戶分散經(jīng)營模式。
目前,在我國農(nóng)業(yè)旅游發(fā)展的基礎(chǔ)階段是由農(nóng)戶作為農(nóng)業(yè)旅游開發(fā)的主體,農(nóng)業(yè)旅游的經(jīng)營模式主要是以分散式經(jīng)營模式為主。以農(nóng)戶為主體進(jìn)行經(jīng)營直接具有一定的弊端,一是開發(fā)的規(guī)模相對較小并且分散,而一些農(nóng)戶為了追求短期的利益沒有對農(nóng)業(yè)旅游資源進(jìn)行合理的開發(fā),而相應(yīng)附屬農(nóng)產(chǎn)品的開發(fā)也因?yàn)槿狈茖W(xué)理論支持出現(xiàn)單一缺乏吸引力的情況。二是農(nóng)戶缺乏雄厚的經(jīng)濟(jì)實(shí)力,在農(nóng)業(yè)旅游開發(fā)中沒有足夠的資金投入。這直接影響著產(chǎn)品的開發(fā)和宣傳。除此之外,經(jīng)營者缺乏統(tǒng)一的規(guī)劃,對原有的田園風(fēng)光進(jìn)行過度的修建,從而導(dǎo)致環(huán)境污染更加嚴(yán)重[1]。
2、企業(yè)主導(dǎo)經(jīng)營模式。
分散的農(nóng)戶經(jīng)營模式為農(nóng)業(yè)旅游開發(fā)和經(jīng)營帶來嚴(yán)重的外部問題。而通過引進(jìn)有經(jīng)濟(jì)實(shí)力和市場經(jīng)營能力的企業(yè)進(jìn)行農(nóng)業(yè)旅游的開發(fā),能夠在一定程度上解決這些外部問題。但引進(jìn)的企業(yè)作為外來者很難考慮到鄉(xiāng)村公共資源對后代具有的重要作用,因此仍然可能導(dǎo)致對農(nóng)業(yè)資源進(jìn)行過度的開發(fā)利用和破壞[2]。
3、村民自主開發(fā)模式。
以村民自主開發(fā)模式作為農(nóng)業(yè)旅游經(jīng)營模式中的主體,主要基于具有一定規(guī)模的社區(qū)內(nèi),村民自發(fā)聯(lián)合形成的農(nóng)業(yè)旅游開發(fā)組組織。一般情況下,會(huì)成立相應(yīng)的管理委員會(huì)對農(nóng)業(yè)旅游資源的占用、供應(yīng)等活動(dòng)進(jìn)行組織和監(jiān)督。并結(jié)合相應(yīng)的規(guī)章制度對農(nóng)業(yè)旅游資源和鄉(xiāng)村整體文化環(huán)境進(jìn)行合理的使用和維護(hù)。這一經(jīng)營模式是目前比較符合我國農(nóng)業(yè)旅游開發(fā)的模式[3]。
二、分析農(nóng)業(yè)旅游開發(fā)管理現(xiàn)存問題及形成原因。
1、農(nóng)業(yè)旅游開發(fā)管理現(xiàn)存的問題。
我國農(nóng)業(yè)旅游發(fā)展相對較晚,大部分地區(qū)都處在基礎(chǔ)發(fā)展階段。對于現(xiàn)階段農(nóng)業(yè)旅游開發(fā)中普遍存在的問題主要有三種,一是農(nóng)民的收入提高效果不明顯。二是農(nóng)村的鄉(xiāng)土民俗和自然資源環(huán)境遭到嚴(yán)重的破壞,三是對于農(nóng)業(yè)旅游資源很難實(shí)現(xiàn)可持續(xù)發(fā)展。
通過對現(xiàn)階段我國農(nóng)業(yè)旅游開發(fā)管理中存在問題的分析可以總結(jié)出,形成這些問題的原因主要有四個(gè)方面。一是經(jīng)營者的思想觀念沒有跟隨時(shí)代的發(fā)展進(jìn)行及時(shí)的更新,這直接導(dǎo)致產(chǎn)品類型較少。二是對農(nóng)業(yè)旅游開發(fā)和管理沒有進(jìn)行長期的規(guī)劃,缺乏相應(yīng)的品牌產(chǎn)品和足夠的營銷力度。三是人才和資金的短缺導(dǎo)致旅游市場淡季和旺季差距較大。四是相關(guān)的基礎(chǔ)設(shè)施和配套設(shè)施不完善,并且缺乏相應(yīng)的體制,導(dǎo)致市場形成嚴(yán)重的無序競爭。
三、探究農(nóng)業(yè)旅游開發(fā)管理相關(guān)對策。
1、正確認(rèn)識(shí)農(nóng)業(yè)旅游。
農(nóng)業(yè)旅游的開發(fā)和管理要以正確的思想觀念作為前提指導(dǎo),因此要想確保農(nóng)業(yè)旅游能夠保持正確的發(fā)展方向就要對其具有正確的認(rèn)識(shí)。農(nóng)業(yè)旅游的開發(fā)和管理一定要樹立正確的旅游資源觀念,打破傳統(tǒng)觀念的限制,對農(nóng)業(yè)旅游資源存在的本質(zhì)內(nèi)涵和具有的重要價(jià)值進(jìn)行充分的認(rèn)識(shí),改進(jìn)和創(chuàng)新農(nóng)業(yè)旅游開發(fā)和管理意識(shí)。相關(guān)部門和所涉及人員應(yīng)該投入更多的精力對于農(nóng)業(yè)旅游進(jìn)行合理的開發(fā)和科學(xué)的管理,從而為農(nóng)業(yè)旅游發(fā)展質(zhì)量提供強(qiáng)有力的基礎(chǔ)保障。
2、農(nóng)業(yè)旅游規(guī)劃開發(fā)。
農(nóng)業(yè)旅游主要是向游客展示出農(nóng)村生產(chǎn)生活的整體,讓游客能夠感受到傳統(tǒng)的鄉(xiāng)土民俗文化和農(nóng)業(yè)資源。這也要求我們要通過有效的開發(fā)和管理形成一個(gè)綜合的資源系統(tǒng),必須要從整體上對農(nóng)業(yè)旅游進(jìn)行合理的規(guī)劃和科學(xué)的開發(fā)。對于農(nóng)業(yè)旅游的規(guī)劃和開發(fā)不僅要保護(hù)地區(qū)生物多樣性好農(nóng)村生態(tài)系統(tǒng),還要重視農(nóng)業(yè)科學(xué)配置,保證農(nóng)業(yè)旅游資源的完整性和合理性。
3、加強(qiáng)相應(yīng)制度規(guī)范。
現(xiàn)階段,我國農(nóng)業(yè)旅游開發(fā)管理十分需要建立相關(guān)的制度規(guī)范。這不僅有利于農(nóng)業(yè)旅游開發(fā)主體在使用公共資源時(shí)能夠主動(dòng)考慮社會(huì)成本,進(jìn)而對公共資源的消費(fèi)數(shù)量進(jìn)行合理的限制。還能夠在一定程度上保證農(nóng)業(yè)旅游經(jīng)營組織在進(jìn)行科學(xué)健康的可持續(xù)發(fā)展。
4、加強(qiáng)旅游人才培養(yǎng)。
加強(qiáng)對農(nóng)村旅游人才的培養(yǎng)可以從三個(gè)方面入手,一是組織相應(yīng)的旅游知識(shí)培訓(xùn)。二是要與相應(yīng)的旅游企業(yè)和高等院校建立緊密的合作,為農(nóng)村旅游人才提供更多的培訓(xùn)機(jī)會(huì)。三是要充分結(jié)合現(xiàn)代化信息技術(shù)手段,一方面要利用現(xiàn)代化網(wǎng)絡(luò)信息技術(shù)拓寬農(nóng)村旅游人才的知識(shí)面,另一方面還要利用網(wǎng)絡(luò)信息技術(shù)倡導(dǎo)農(nóng)民不斷加強(qiáng)自身的學(xué)習(xí),從而使農(nóng)民的整體素質(zhì)取得提高。
四、結(jié)語。
農(nóng)業(yè)旅游作為新農(nóng)村建設(shè)和發(fā)展的重要內(nèi)容,推動(dòng)著人民生活水平的提高和國家經(jīng)濟(jì)的發(fā)展,要想更好的進(jìn)行農(nóng)業(yè)旅游的開發(fā)和管理,我們要明確目前我國農(nóng)業(yè)旅游發(fā)展管理模式存在的不足,正確的認(rèn)識(shí)農(nóng)業(yè)旅游的重要性。要加強(qiáng)對其規(guī)劃開發(fā),并建立相應(yīng)的制度規(guī)范對旅游人才的培養(yǎng),從而促進(jìn)農(nóng)業(yè)旅游的可持續(xù)發(fā)展。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇八
摘要:主要通過對數(shù)據(jù)挖掘技術(shù)的探討,對職教多年累積的教學(xué)數(shù)據(jù)運(yùn)用分類、決策樹、關(guān)聯(lián)規(guī)則等技術(shù)進(jìn)行分析,從分析的結(jié)果中發(fā)現(xiàn)有價(jià)值的數(shù)據(jù)模式,科學(xué)合理地實(shí)現(xiàn)教學(xué)評估,讓教學(xué)管理者能夠從中發(fā)現(xiàn)教學(xué)活動(dòng)中存在的主要問題以便及時(shí)改進(jìn),進(jìn)而輔助管理者決策做好教學(xué)管理。
關(guān)鍵詞:教學(xué)評估;數(shù)據(jù)挖掘;教學(xué)評估體系;層次分析法。
1概述。
近年來國家對中等職業(yè)教育的發(fā)展高度重視,在政策扶持與職教工作者的努力下,職業(yè)教育獲得了蓬勃的發(fā)展。如何提高教學(xué)質(zhì)量、培養(yǎng)合格的高技術(shù)人才成為職教工作者研究的課題。各種調(diào)查研究結(jié)果表明:加強(qiáng)師資隊(duì)伍的建設(shè),強(qiáng)化教師教學(xué)評估對教學(xué)質(zhì)量的提高尤為重要。
所謂教學(xué)評估,就是運(yùn)用系統(tǒng)科學(xué)的方法對教學(xué)活動(dòng)或教育行為的價(jià)值、效果作出科學(xué)的判斷過程。教學(xué)評估方式要靈活多樣,要多途徑、多方位、多形式的發(fā)揮評估的導(dǎo)學(xué)作用,以鼓勵(lì)評估為主,充分發(fā)揮評估的激勵(lì)功能,促進(jìn)教學(xué)的健康發(fā)展。
在中等職業(yè)學(xué)校多年的教育教學(xué)工作中積累了大量的教務(wù)管理數(shù)據(jù)、教師檔案數(shù)據(jù)等,怎樣從龐雜大量的數(shù)據(jù)中挖掘出有效提高教學(xué)質(zhì)量的關(guān)鍵因素是個(gè)難題。數(shù)據(jù)挖掘技術(shù)卻可以從人工智能的角度很好地解決這一課題。通過數(shù)據(jù)挖掘技術(shù),得到隱藏在教學(xué)數(shù)據(jù)背后的有用信息,在一定程度上為教學(xué)部門提供決策支持信息促使更好地開展教學(xué)工作,提高教學(xué)質(zhì)量和教學(xué)管理水平,使之能在功能上更加清晰地認(rèn)識(shí)教師教與學(xué)生學(xué)的關(guān)系及促進(jìn)教育教學(xué)改革。
數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機(jī)的數(shù)據(jù)中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識(shí)的過程。數(shù)據(jù)挖掘應(yīng)該更正確地命名為“從數(shù)據(jù)中挖掘知識(shí)”。即數(shù)據(jù)挖掘是對巨大的數(shù)據(jù)集進(jìn)行尋找和分析的計(jì)算機(jī)輔助處理過程,在這一過程中顯現(xiàn)先前未曾發(fā)現(xiàn)的模式,然后從這些數(shù)據(jù)中發(fā)掘某些內(nèi)涵信息,包括描述過去和預(yù)測未來趨勢的信息。人工智能領(lǐng)域習(xí)慣稱知識(shí)發(fā)現(xiàn),而數(shù)據(jù)庫領(lǐng)域習(xí)慣將其稱為數(shù)據(jù)挖掘。
數(shù)據(jù)挖掘過程包括對問題的理解和提出、數(shù)據(jù)收集、數(shù)據(jù)處理、數(shù)據(jù)變換、數(shù)據(jù)挖掘、模式評估、知識(shí)表示等過程,以上的過程不是一次完成的,其中某些步驟或者全過程可能要反復(fù)進(jìn)行。對問題的理解和提出在開始數(shù)據(jù)挖掘之前,最基礎(chǔ)的工作就是理解數(shù)據(jù)和實(shí)際的業(yè)務(wù)問題,在這個(gè)基礎(chǔ)之上提出問題,對目標(biāo)作出明確的定義。
2.3.1分類分析方法:是通過分析訓(xùn)練集中的數(shù)據(jù),為每個(gè)類別做出準(zhǔn)確的描述或建立分析模型或挖掘出分類規(guī)則,以便以后利用這個(gè)分類規(guī)則對其它數(shù)據(jù)庫中的記錄進(jìn)行分類的方法。2.3.2決策樹算法:是一種常用于分類、預(yù)測模型的算法,它通過將大量數(shù)據(jù)有目的的分類,從而找到一些有價(jià)值的、潛在的信息。它的主要優(yōu)點(diǎn)是描述簡單,分類速度快,特別適合大規(guī)模的數(shù)據(jù)處理。2.3.3聚類算法:聚類分析處理的數(shù)據(jù)對象的類是未知的。聚類分析就是將對象集合分組為由類似的對象組成的多個(gè)簇的過程。在同一個(gè)簇內(nèi)的對象之間具有較高的相似度,而不同簇內(nèi)的對象差別較大。2.3.4關(guān)聯(lián)規(guī)則算法:側(cè)重于確定數(shù)據(jù)中不同領(lǐng)域之間的關(guān)系,即尋找給定數(shù)據(jù)集中的有趣聯(lián)系。提取描述數(shù)據(jù)庫中數(shù)據(jù)項(xiàng)之間所存在的潛在關(guān)系的規(guī)則,找出滿足給定支持度和置信度閾值的多個(gè)域之間的依賴關(guān)系。
在以上各種算法的研究中,比較有影響的是關(guān)聯(lián)規(guī)則算法。
3教學(xué)評估體系。
評價(jià)指標(biāo)體系是教學(xué)評估的基礎(chǔ)和依據(jù),對評估起著導(dǎo)向作用,因此制定一個(gè)科學(xué)全面的評價(jià)指標(biāo)體系就成為改革、完善評價(jià)的首要目標(biāo)。評價(jià)指標(biāo)應(yīng)以指導(dǎo)教學(xué)實(shí)踐為目的,通過評價(jià)使教師明確教學(xué)過程中應(yīng)該肯定的和需要改進(jìn)的地方;以及給出設(shè)計(jì)評價(jià)指標(biāo)的導(dǎo)向問題。
3.1教學(xué)評估體系的構(gòu)建方法。
層次分析法(簡稱ahp法)是美國運(yùn)籌學(xué)家t·l·saaty教授在20世紀(jì)70年代初期提出的一種簡便、靈活而又實(shí)用的多準(zhǔn)則決策的系統(tǒng)分析方法,其原理是把一個(gè)復(fù)雜問題分解、轉(zhuǎn)化為定量分析的方法。它需要建立關(guān)于系統(tǒng)屬性的各因素多級遞階結(jié)構(gòu),然后對每一層次上的因素逐一進(jìn)行比較,得到判斷矩陣,通過計(jì)算判斷矩陣的特征值和特征向量,得到其關(guān)于上一層因素的相對權(quán)重,并可自上而下地用上一層次因素的相對權(quán)重加權(quán)求和,求出各層次因素關(guān)于系統(tǒng)整體屬性(總目標(biāo)層)的綜合重要度。
3.2構(gòu)建教學(xué)評估指標(biāo)體系的作用。
3.2.1構(gòu)建的教學(xué)評估指標(biāo),作為挖掘庫選擇教學(xué)信息屬性的依據(jù)。
3.2.2通過ahp方法,能篩選出用來評價(jià)教學(xué)質(zhì)量的相關(guān)重要屬性,從而入選為挖掘庫字段,這樣就減去了挖掘庫中對于挖掘目標(biāo)來說影響較小的屬性,進(jìn)而大大減少了挖掘的工作量,提高挖掘效率。3.2.3通過構(gòu)建教學(xué)評估指標(biāo),減少了挖掘?qū)ο蟮淖侄?,從而避免因挖掘字段過多,導(dǎo)致建立的決策樹過大,出現(xiàn)過度擬合挖掘?qū)ο?,進(jìn)而造成挖掘規(guī)則不具有很好的評價(jià)效果的現(xiàn)象。3.2.4提高教學(xué)質(zhì)量評估實(shí)施工作的效率。
4.1學(xué)習(xí)效果評價(jià)學(xué)習(xí)評價(jià)是教育工作者的重要職責(zé)之一。評價(jià)學(xué)生的學(xué)習(xí)情況,既對學(xué)生起到信息反饋和激發(fā)學(xué)習(xí)動(dòng)機(jī)的作用,又是檢查課程計(jì)劃、教學(xué)程序以至教學(xué)目的的手段,也是考查學(xué)生個(gè)別差異、便于因材施教的途徑。評價(jià)要遵循“評價(jià)內(nèi)容要全面、評價(jià)方式要多元化、評價(jià)次數(shù)要多次化,注重自評與互評的有機(jī)結(jié)合”的原則。利用數(shù)據(jù)挖掘工具,對教師業(yè)務(wù)檔案數(shù)據(jù)庫、行為記錄數(shù)據(jù)庫、獎(jiǎng)勵(lì)處罰數(shù)據(jù)庫等進(jìn)行分析處理,可以即時(shí)得到教師教學(xué)的評價(jià)結(jié)果,對教學(xué)過程出現(xiàn)的問題進(jìn)行及時(shí)指正。
另外,這種系統(tǒng)還能夠克服教師主觀評價(jià)的不公正、不客觀的弱點(diǎn),減輕教師的工作量。
4.2課堂教學(xué)評價(jià)。
課堂教學(xué)評價(jià)不僅對教學(xué)起著調(diào)節(jié)、控制、指導(dǎo)和推動(dòng)作用,而且有很強(qiáng)的導(dǎo)向性,是學(xué)校教學(xué)管理的重要組成部分,是評價(jià)教學(xué)工作成績的主要手段。實(shí)現(xiàn)對任課教師及教學(xué)組織工作效果做出評價(jià),但是更重要的目的是總結(jié)優(yōu)秀的教學(xué)經(jīng)驗(yàn),為教學(xué)質(zhì)量的穩(wěn)定提高制定科學(xué)的規(guī)范。學(xué)校每學(xué)期都要搞課堂教學(xué)評價(jià)調(diào)查,積累了大量的數(shù)據(jù)。利用數(shù)據(jù)挖掘技術(shù),從教學(xué)評價(jià)數(shù)據(jù)中進(jìn)行數(shù)據(jù)挖掘,將關(guān)聯(lián)規(guī)則應(yīng)用于教師教學(xué)評估系統(tǒng)中,探討教學(xué)效果的好壞與老師的年齡、職稱、學(xué)歷之間的聯(lián)系;確定教師的教學(xué)內(nèi)容的范圍和深度是否合適,選擇的教學(xué)媒體是否適合所選的教學(xué)內(nèi)容和教學(xué)對象;講解的時(shí)間是否恰到好處;教學(xué)策略是否得當(dāng)?shù)取亩梢约皶r(shí)地將挖掘出的規(guī)則信息反饋給教師。管理部門據(jù)此能合理配置班級的上課教師,使學(xué)生能夠較好地保持良好的學(xué)習(xí)態(tài)度,從而為教學(xué)部門提供了決策支持信息,促使教學(xué)工作更好地開展。
結(jié)束語。
數(shù)據(jù)挖掘作為一種工具,其技術(shù)日趨成熟,在許多領(lǐng)域取得了廣泛的應(yīng)用。在教育領(lǐng)域里,隨著數(shù)據(jù)的不斷累積,把數(shù)據(jù)挖掘技術(shù)應(yīng)用到教學(xué)評價(jià)系統(tǒng)中,讓領(lǐng)導(dǎo)者能夠從中發(fā)現(xiàn)教師教學(xué)活動(dòng)中的主要問題,以便及時(shí)改進(jìn),進(jìn)而輔助領(lǐng)導(dǎo)決策做好學(xué)校管理,提高學(xué)校管理能力和水平,同時(shí)通過建立有效的教學(xué)激勵(lì)機(jī)制來達(dá)到提高教學(xué)質(zhì)量的目的。這一研究對發(fā)展中的職業(yè)教育教學(xué)管理提出了很好的建議,為教學(xué)管理工作的計(jì)算機(jī)輔助決策增添了新的內(nèi)容。將數(shù)據(jù)挖掘技術(shù)應(yīng)用于中職教學(xué)評估,設(shè)計(jì)開發(fā)一套行之有效的課堂教學(xué)評價(jià)系統(tǒng),是下一步要做的工作,必將有力推動(dòng)職業(yè)教育的快速發(fā)展。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇九
[1]劉瑩?;跀?shù)據(jù)挖掘的商品銷售預(yù)測分析[j].科技通報(bào)。20xx(07)。
[2]姜曉娟,郭一娜?;诟倪M(jìn)聚類的電信客戶流失預(yù)測分析[j].太原理工大學(xué)學(xué)報(bào)。20xx(04)。
[3]李欣海。隨機(jī)森林模型在分類與回歸分析中的應(yīng)用[j].應(yīng)用昆蟲學(xué)報(bào)。20xx(04)。
[4]朱志勇,徐長梅,劉志兵,胡晨剛?;谪惾~斯網(wǎng)絡(luò)的客戶流失分析研究[j].計(jì)算機(jī)工程與科學(xué)。20xx(03)。
[5]翟健宏,李偉,葛瑞海,楊茹?;诰垲惻c貝葉斯分類器的網(wǎng)絡(luò)節(jié)點(diǎn)分組算法及評價(jià)模型[j].電信科學(xué)。20xx(02)。
[6]王曼,施念,花琳琳,楊永利。成組刪除法和多重填補(bǔ)法對隨機(jī)缺失的二分類變量資料處理效果的比較[j].鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版).20xx(05)。
[7]黃杰晟,曹永鋒。挖掘類改進(jìn)決策樹[j].現(xiàn)代計(jì)算機(jī)(專業(yè)版).20xx(01)。
[8]李凈,張范,張智江。數(shù)據(jù)挖掘技術(shù)與電信客戶分析[j].信息通信技術(shù)。20xx(05)。
[9]武曉巖,李康。基因表達(dá)數(shù)據(jù)判別分析的隨機(jī)森林方法[j].中國衛(wèi)生統(tǒng)計(jì)。20xx(06)。
[10]張璐。論信息與企業(yè)競爭力[j].現(xiàn)代情報(bào)。20xx(01)。
[13]俞馳?;诰W(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)20xx。
[14]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)20xx。
[15]于寶華。基于數(shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)20xx。
[16]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)20xx。
[19]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)20xx。
[22]阮偉玲。面向生鮮農(nóng)產(chǎn)品溯源的基層數(shù)據(jù)庫建設(shè)[d].成都理工大學(xué)20xx。
[23]明慧。復(fù)合材料加工工藝數(shù)據(jù)庫構(gòu)建及數(shù)據(jù)集成[d].大連理工大學(xué)20xx。
[25]岳雪。基于海量數(shù)據(jù)挖掘關(guān)聯(lián)測度工具的設(shè)計(jì)[d].西安財(cái)經(jīng)學(xué)院20xx。
[28]張曉東。全序模塊模式下范式分解問題研究[d].哈爾濱理工大學(xué)20xx。
[30]王化楠。一種新的混合遺傳的基因聚類方法[d].大連理工大學(xué)20xx。
[33]俞馳?;诰W(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)20xx。
[34]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)20xx。
[35]于寶華?;跀?shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)20xx。
[36]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)20xx。
[39]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)20xx。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十
計(jì)算機(jī)技術(shù)的不斷發(fā)展,信息技術(shù)不斷加強(qiáng),在社會(huì)新的發(fā)展趨勢下,以往的傳統(tǒng)管理模式落后于現(xiàn)代化發(fā)展的管理水平。為了創(chuàng)新檔案管理的模式,提高檔案管理的質(zhì)量,在現(xiàn)代檔案信息管理系統(tǒng)中引入數(shù)據(jù)挖掘技術(shù)。
數(shù)據(jù)挖掘技術(shù)是一種基于統(tǒng)計(jì)學(xué)、人工智能等等技術(shù)基礎(chǔ)上,能夠自動(dòng)分析原有數(shù)據(jù),從而做出歸納整理,并對其潛在的模式進(jìn)行挖掘的決策支持過程,簡單來說就是從一系列復(fù)雜的數(shù)據(jù)中提取人們需要的潛在性信息。
二十世紀(jì)末,計(jì)算機(jī)挖掘技術(shù)產(chǎn)生。其一般用到的方法有:
(1)孤立點(diǎn)分析。孤立點(diǎn)分析法主要用于對于特殊信息的挖掘。
(2)聚類分析。聚類分析方法是在指定的對象中,對其價(jià)值聯(lián)系進(jìn)行搜索。
(3)分類分析。分類分析就是找出具有一定特點(diǎn)的數(shù)據(jù),對需要解讀的數(shù)據(jù)進(jìn)行識(shí)別。
(4)關(guān)聯(lián)性分析。關(guān)聯(lián)性分析方法是對指定數(shù)據(jù)中出現(xiàn)頻繁的數(shù)據(jù)進(jìn)行挖掘。
(5)序列分析。與關(guān)聯(lián)性分析法一樣,由數(shù)據(jù)之間內(nèi)在的聯(lián)系得出潛在的關(guān)聯(lián)。
1.3計(jì)算機(jī)挖掘技術(shù)的形式分析。
計(jì)算機(jī)挖掘技術(shù)在使用過程中,收集到的數(shù)據(jù)不同,數(shù)據(jù)收集的方法也就不同。在對數(shù)據(jù)挖掘技術(shù)進(jìn)行形式分析的時(shí)候,主要用到:分類形式、粗糙集形式、相關(guān)規(guī)則形式。
系統(tǒng)中的應(yīng)用計(jì)算機(jī)挖掘技術(shù),能夠?qū)㈦[藏的信息挖掘出來并進(jìn)行總結(jié)和利用,運(yùn)用到檔案管理中來,在充分發(fā)揮挖掘技術(shù)作用的同時(shí),極大的提高了檔案數(shù)據(jù)的利用價(jià)值。數(shù)據(jù)挖掘技術(shù)在檔案管理系統(tǒng)中,一般用到的方法為:
2.1收集法。
該方法在對數(shù)據(jù)庫中的數(shù)據(jù)進(jìn)行分析的基礎(chǔ)上,建立對已知數(shù)據(jù)詳細(xì)描述的概念模型。然后將每個(gè)測試的樣本與此模型進(jìn)行比較,若有一個(gè)模型在測試中被認(rèn)可,就可以以此模型對管理的對象分類。例如,檔案管理員就某事向客戶進(jìn)行問卷調(diào)查并將答案輸入到數(shù)據(jù)庫中。在該數(shù)據(jù)庫中,對客戶的回答進(jìn)行具體屬性描述,當(dāng)有新的回答內(nèi)容輸入的時(shí)候,系統(tǒng)會(huì)自動(dòng)對該客戶需求分類,在減輕管理員工作壓力的同時(shí),提高了檔案管理的效率。
2.2保留法。
該方法是防止老客戶檔案丟失并將客戶留住的過程。對于任何一個(gè)企業(yè)來說,發(fā)展一個(gè)新的客戶的成本要遠(yuǎn)遠(yuǎn)高于留住一個(gè)來客戶的成本。在客戶保留的過程中,對客戶檔案流失原因的分析至關(guān)重要,因此,采用挖掘技術(shù)對其進(jìn)行分析是必要的。
2.3分類法。
通過計(jì)算機(jī)挖掘技術(shù)對檔案進(jìn)行分類,按照不同的性質(zhì)進(jìn)行系統(tǒng)的劃分,將所有相似或相通的檔案進(jìn)行整理,在人們需要的時(shí)候,能夠快速的被提取出來,提高了檢索的效率和分類的專業(yè)性。
計(jì)算機(jī)挖掘技術(shù)的應(yīng)用,對檔案管理方式的不斷完善有著極其重要的意義,其重要性主要體現(xiàn)在:
3.1對檔案的保護(hù)更全面。
一部分具有歷史意義的檔案,隨著保存的時(shí)間不斷增加,其年代感加強(qiáng),意義和價(jià)值增大。相應(yīng)的,利用的頻率會(huì)隨著利用的價(jià)值增加,也更容易被損壞從而導(dǎo)致檔案信息壽命折損,此外,管理不當(dāng)造成泄密,使檔案失去了原本的利用價(jià)值,這種存在于檔案管理和利用之間的矛盾,使得檔案管理面臨著巨大的難題。挖掘技術(shù)的運(yùn)用,緩解了這種矛盾,在檔案管理工作中具有重要的意義。
3.2提升檔案管理的質(zhì)量。
在檔案信息管理系統(tǒng)中引入計(jì)算機(jī)挖掘技術(shù),使得檔案信息管理打破了傳統(tǒng)的模式,通過挖掘技術(shù),對管理的模式有了極大的創(chuàng)新,工作人員以往繁重的工作壓力得到釋放,時(shí)間和精力更加豐富,在對檔案管理的細(xì)節(jié)方面也就更加注意,同時(shí)也加快了對檔案的數(shù)據(jù)信息進(jìn)行處理的速度,提升檔案管理的整體質(zhì)量。
綜上所述,計(jì)算機(jī)數(shù)據(jù)挖掘技術(shù)涉及的內(nèi)容很廣,對挖掘技術(shù)的運(yùn)用,使得各行各業(yè)的發(fā)展水平得到了很大的提高,推動(dòng)社會(huì)經(jīng)濟(jì)的發(fā)展,帶動(dòng)社會(huì)發(fā)展模式的創(chuàng)新。在檔案管理中使用計(jì)算機(jī)挖掘技術(shù),使得檔案信息保存的方法及安全性有了很大的提高。同時(shí),也需要檔案信息管理人員在進(jìn)行檔案信息管理的時(shí)候,能合理利用計(jì)算機(jī)信息挖掘技術(shù),在提高工作效率的同時(shí),促進(jìn)管理模式的不斷創(chuàng)新,以適應(yīng)時(shí)代發(fā)展的要求。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十一
近些年來,已經(jīng)有越來越多的企業(yè)把通信、網(wǎng)絡(luò)技術(shù)和計(jì)算機(jī)應(yīng)用引入企業(yè)的日常管理工作和業(yè)務(wù)開發(fā)處理當(dāng)中,企業(yè)的各類信息化程度也在不斷提高?,F(xiàn)代科技信息技術(shù)的廣泛應(yīng)用已經(jīng)顯著的提高了企業(yè)的工作效率和經(jīng)濟(jì)效益。但是,在使用信息技術(shù)給企業(yè)帶來的方便、快捷的同時(shí),也不斷的出現(xiàn)了新的問題和需求。企業(yè)經(jīng)過多年積累了大量的歷史數(shù)據(jù),這些數(shù)據(jù)對企業(yè)當(dāng)前的日常經(jīng)營活動(dòng)幾乎沒有任何的使用價(jià)值,成了留之無用棄之可惜的累贅。而且儲(chǔ)藏這些歷史數(shù)據(jù)會(huì)對企業(yè)造成很大的困難和費(fèi)用開銷。為此數(shù)據(jù)挖掘技術(shù)應(yīng)用在網(wǎng)絡(luò)營銷中勢在必行,全面細(xì)致的分析數(shù)據(jù)庫資源并從中提取有價(jià)值的信息來對商業(yè)決策進(jìn)行支持,從而來控制運(yùn)營成本、提高經(jīng)濟(jì)效益。本文將從網(wǎng)絡(luò)營銷中數(shù)據(jù)挖掘技術(shù)的幾個(gè)應(yīng)用進(jìn)行探討和分析。
客戶關(guān)系管理在網(wǎng)絡(luò)營銷,商業(yè)競爭是一家以客戶為中心的競技狀態(tài)的客戶,留住客戶,擴(kuò)大客戶基礎(chǔ),建立密切的客戶關(guān)系,客戶需求分析和創(chuàng)造客戶需求等,是非常關(guān)鍵的營銷問題??蛻絷P(guān)系管理,營銷和信息技術(shù)領(lǐng)域是一個(gè)新概念,這在90年代初,軟件產(chǎn)品在上世紀(jì)90年代后期出現(xiàn)的誕生。目前,在國內(nèi)和國外的此類產(chǎn)品的研究和發(fā)展階段。然而,繼續(xù)與數(shù)據(jù)倉庫和數(shù)據(jù)挖掘技術(shù)的進(jìn)步和發(fā)展,客戶關(guān)系管理,也是對實(shí)際應(yīng)用階段。crm的目標(biāo)是管理者與客戶的互動(dòng),提升客戶價(jià)值,提高客戶滿意度,提高客戶的忠誠度,還發(fā)現(xiàn),市場營銷和銷售渠道,然后尋找新客戶,提高客戶的利潤貢獻(xiàn)率的最終目的是為了推動(dòng)社會(huì)和經(jīng)濟(jì)效益??蛻絷P(guān)系管理的目的,應(yīng)用是改善企業(yè)與客戶的關(guān)系,它是企業(yè)和服務(wù)本質(zhì)管理和協(xié)調(diào),以滿足客戶的需求,企業(yè)政策支持這項(xiàng)工作,并聯(lián)系客戶服務(wù)加強(qiáng)管理,提高客戶滿意度和品牌忠誠度。
然而,數(shù)據(jù)挖掘可以應(yīng)用到很多方面的crm和不同階段,包括以下內(nèi)容:
(1)“一對一”營銷的內(nèi)部工作人員認(rèn)識(shí)到,客戶是在這個(gè)領(lǐng)域的企業(yè),而不是貿(mào)易發(fā)展生存的關(guān)鍵。與每一個(gè)客戶接觸的過程,也是了解客戶的進(jìn)程,而且也讓客戶了解業(yè)務(wù)流程。
(2)企業(yè)與客戶之間的銷售應(yīng)該是一種商業(yè)關(guān)系不斷向前發(fā)展??蛻艉蜖I銷公司成立這種方式,而且有許多方法可以使這種與客戶的關(guān)系,往往以改善包括:延長時(shí)間,客戶關(guān)系和維護(hù)客戶關(guān)系,以進(jìn)一步加強(qiáng)相互交往過程中,公司可以在對方取得聯(lián)系更多的利潤。
(3)客戶對客戶盈利能力分析。我們的客戶盈利能力是非常不同的,如果你不明白客戶盈利能力,很難制定有效的營銷策略,以獲取最有價(jià)值的客戶,或進(jìn)一步提高客戶的忠誠度的價(jià)值。數(shù)據(jù)挖掘技術(shù)可以用來預(yù)測客戶在市場條件變化不同的盈利能力。它可以找到所有這些行為和使用模型來預(yù)測客戶行為模式的客戶交易盈利水平或新客戶找到高利潤。
(4)在所有部門維護(hù)客戶關(guān)系的競爭日趨激烈,企業(yè)獲得新客戶的成本上升,因此,保持現(xiàn)有客戶的關(guān)系變得越來越重要。對于企業(yè)客戶可分為三大類:沒有價(jià)值或者低價(jià)值的客戶,不容易失去寶貴的客戶,并不斷尋找更多的優(yōu)惠,更有價(jià)值的服務(wù)給客戶。前兩個(gè)類型的客戶,客戶關(guān)系管理,現(xiàn)代化,然而,最具潛力的市場活動(dòng),是第三個(gè)層次的用戶,而且還特別需求和營銷工具,以保護(hù)客戶,可以減緩企業(yè)經(jīng)營成本,而且還獲得了寶貴的客戶。數(shù)據(jù)挖掘還可以發(fā)現(xiàn),由于客戶流失,該公司能夠滿足這些客戶的需要,采取適當(dāng)措施,保持銷售。
(5)客戶訪問企業(yè)業(yè)務(wù)系統(tǒng)資源,包括能夠獲得新客戶的關(guān)鍵指標(biāo)。為了提供這些新的資源,包括企業(yè)搜索客戶誰不知道該產(chǎn)品的客戶,可能是競爭對手,服務(wù)客戶。這些細(xì)分客戶,潛在客戶可以幫助企業(yè)完成檢查。
通過挖掘客戶的有關(guān)數(shù)據(jù),可以對客戶進(jìn)行分類,找出其相同點(diǎn)和不同點(diǎn),以便為客戶提供個(gè)性化的產(chǎn)品和服務(wù),使企業(yè)和客戶之間能夠通過網(wǎng)絡(luò)進(jìn)行有效的溝通和信息交流。例如,關(guān)聯(lián)分析,客戶在購買某種商品時(shí),有可能會(huì)連帶著購買其他的相關(guān)產(chǎn)品,這樣購買的某種商品和連帶購買的其他相關(guān)產(chǎn)品之間就存在著某種關(guān)聯(lián),企業(yè)可以針對這種關(guān)聯(lián)進(jìn)行分析,分析出規(guī)律,已制定有效的營銷策略來長效的起到吸引客戶連帶消費(fèi),購買其他產(chǎn)品的營銷策略。它能夠智能化地從大量的數(shù)據(jù)中提取出有用的信息和知識(shí),為企業(yè)的管理人員提供決策支持。數(shù)據(jù)挖掘技術(shù)使數(shù)據(jù)庫技術(shù)進(jìn)入了一個(gè)更高級的階段,它不僅能對過去的數(shù)據(jù)進(jìn)行查詢和遍歷,并且能夠找出過去數(shù)據(jù)之間的潛在聯(lián)系,從而促進(jìn)信息的傳遞。
客戶群體的劃分也會(huì)用到數(shù)據(jù)挖掘,沒有基于數(shù)據(jù)挖掘的客戶劃分,就沒有真正的差異化、個(gè)性化營銷,就沒有現(xiàn)代營銷的根本。做為企業(yè)的領(lǐng)導(dǎo)者,不管你的企業(yè)是賣產(chǎn)品的還是賣服務(wù),第一個(gè)應(yīng)該準(zhǔn)確把握的商業(yè)問題就是你的目標(biāo)客戶群體,他們是誰,有什么特點(diǎn)和行為模式,有那些獨(dú)特的喜好可以作為營銷的突破口,有多大的多長久的贏利價(jià)值。這些問題是你整個(gè)商業(yè)運(yùn)做的核心和基礎(chǔ),不了解你的客戶,下面的路就根本別指望能走下去了。數(shù)據(jù)挖掘營銷應(yīng)用中的客戶群體劃分可以科學(xué)有效的解決這個(gè)問題,也能給企業(yè)找到一個(gè)合理的營銷定位。
數(shù)據(jù)挖掘技術(shù)在90年代開始應(yīng)用于信用評估與風(fēng)險(xiǎn)分析中。企業(yè)在進(jìn)行網(wǎng)絡(luò)營銷的過程中會(huì)受到各種各樣的來自買方的信用風(fēng)險(xiǎn)的威脅,隨著市場競爭的加劇,貿(mào)易信用已經(jīng)成為企業(yè)成功開發(fā)客戶和加強(qiáng)客戶關(guān)系的重要條件。客戶信用管理主要是搜集儲(chǔ)存客戶信息,因?yàn)榭蛻艏仁瞧髽I(yè)最大的財(cái)富來源,也是風(fēng)險(xiǎn)的主要來源。為了讓企業(yè)在這方面更少的受到威脅,可以利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)企業(yè)經(jīng)常面臨的詐騙行為或延付貨款行為,進(jìn)而進(jìn)行回避。同時(shí)盡可能把客戶信用風(fēng)險(xiǎn)控制在交易發(fā)生之前是成功信用管理的根本。因此,充分獲取客戶的詳細(xì)資料并做出安全的決策非常重要。
客戶信用風(fēng)險(xiǎn)管理應(yīng)用數(shù)據(jù)挖掘技術(shù)的優(yōu)勢:
(3)數(shù)據(jù)挖掘技術(shù)也可以適應(yīng)各種形式的數(shù)據(jù),數(shù)據(jù)挖掘可以是連續(xù)的數(shù)據(jù),離散數(shù)據(jù),而其他形式的數(shù)據(jù)處理,以便在更大的靈活性,在選擇指標(biāo)時(shí),更加符合客觀實(shí)際的信用風(fēng)險(xiǎn)模型。
為現(xiàn)代信用風(fēng)險(xiǎn)管理方法有兩個(gè):第一是所謂的指數(shù)法,其基礎(chǔ)是信用相關(guān)業(yè)務(wù)的某些特性來企業(yè)信用評估;第二類是所謂的結(jié)構(gòu)化方法,根據(jù)歷史數(shù)據(jù)和市場數(shù)據(jù)模擬在企業(yè)資產(chǎn)價(jià)值變化的動(dòng)態(tài)持續(xù)的過程,然后確定其企業(yè)信用的位置。
網(wǎng)絡(luò)營銷作為適應(yīng)網(wǎng)絡(luò)經(jīng)濟(jì)時(shí)代的網(wǎng)絡(luò)虛擬市場的新營銷理論,是市場營銷理念在新時(shí)期的發(fā)展和應(yīng)用。它能夠智能化地從大量的數(shù)據(jù)中提取出有用的信息和知識(shí),為企業(yè)的管理人員提供決策支持。數(shù)據(jù)挖掘技術(shù)使數(shù)據(jù)庫技術(shù)進(jìn)入了一個(gè)更高級的階段,它不僅能對過去的數(shù)據(jù)進(jìn)行查詢和遍歷,并且能夠找出過去數(shù)據(jù)之間的潛在聯(lián)系,從而促進(jìn)信息的傳遞。
1.維護(hù)原有客戶,挖掘潛在新客戶。
網(wǎng)絡(luò)營銷中銷售商可以通過客戶的訪問記錄來挖掘出客戶的潛在信息,跟據(jù)客戶的興趣與需求向客戶有針對性的做個(gè)性化的推薦,制定出客戶滿意的產(chǎn)品服務(wù)。在做好維護(hù)原有老客戶的基礎(chǔ)上,通過對數(shù)據(jù)的挖掘,利用分類技術(shù),也可以尋找出潛在的客戶,通過對web日志的挖掘,可以對已經(jīng)存在的訪問者進(jìn)行分類,根據(jù)這種精細(xì)的分類,還可以找到潛在的新客戶。
2.制定營銷策略,優(yōu)化促銷活動(dòng)。
對于保留的商品訪問記錄和銷售記錄進(jìn)行挖掘,可以發(fā)現(xiàn)客戶的訪問規(guī)律,了解客戶消費(fèi)的生命周期,起伏規(guī)律,結(jié)合市場形勢的變化,針對不同的商品和客戶群制定不同的營銷策略,保證促銷活動(dòng)針對客戶群有的放矢,收到意想不到的效果。
3.降低運(yùn)營成本,提高競爭力。
網(wǎng)絡(luò)營銷的管理者可以通過數(shù)據(jù)挖掘發(fā)現(xiàn)市場反饋的可靠信息,預(yù)測客戶未來的購買行為,有針對性的進(jìn)行營銷活動(dòng),還可以根據(jù)產(chǎn)品訪問者的瀏覽習(xí)慣來覺定產(chǎn)品廣告的位置,使廣告有針對性的起到宣傳的效果。從而提高廣告的投資回報(bào)率,從而能降低運(yùn)營成本,提高且的核心競爭力。
4.對客戶進(jìn)行個(gè)性化推薦。
根據(jù)客戶采礦活動(dòng)對網(wǎng)絡(luò)規(guī)則,有針對性的網(wǎng)絡(luò)營銷平臺(tái),提供“個(gè)性化”服務(wù)。個(gè)性化服務(wù)是在服務(wù)策略和服務(wù)內(nèi)容的不同客戶的不同,其本質(zhì)是客戶為中心的web服務(wù)的需求。它通過收集和分析客戶資料,以了解客戶的利益和購買行為,然后采取主動(dòng),以達(dá)到建議的服務(wù)。
5.完善網(wǎng)絡(luò)營銷網(wǎng)站的設(shè)計(jì)。
1馮英健著,《網(wǎng)絡(luò)營銷基礎(chǔ)與實(shí)踐》,清華大學(xué)出版社,20xx年1月第1版。
2.,and.sky-shairoh,esinknowledgediscoveryanddatamining.aaai/mitpress,menlopark,ca.1996:。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十二
在電子商務(wù)中運(yùn)用數(shù)據(jù)挖掘技術(shù),對服務(wù)器上的日志數(shù)據(jù)、用戶信息和訪問鏈接信息進(jìn)行數(shù)據(jù)挖掘,有效了解客戶的購買欲望,從而調(diào)整電子商務(wù)平臺(tái),最終實(shí)現(xiàn)利益更大化。本文旨在了解電子商務(wù)中的數(shù)據(jù)源有哪些,發(fā)掘數(shù)據(jù)挖掘在電子商務(wù)中的具體作用,從而為數(shù)據(jù)挖掘的具體設(shè)計(jì)奠定基礎(chǔ)。
一、電子商務(wù)中數(shù)據(jù)挖掘的數(shù)據(jù)源。
1.服務(wù)器日志數(shù)據(jù)客戶在訪問網(wǎng)站時(shí),就會(huì)在服務(wù)器上產(chǎn)生相應(yīng)的服務(wù)器數(shù)據(jù),這些文件主要是日志文件。而日志文件又可分為ser-vicelogs、errorlogs、cookielogs。其中servicelogs文件格式是最常用的標(biāo)準(zhǔn)公用日志文件格式,也是標(biāo)準(zhǔn)組合日志文件格式。標(biāo)準(zhǔn)公用日志文件的格式存儲(chǔ)關(guān)于客戶連接的物理信息。標(biāo)準(zhǔn)組合日志文件格式主要包含關(guān)于日志文件元信息的指令,如版本號(hào),會(huì)話監(jiān)控開始和結(jié)束的日期等。在日志文件中,cookielogs日志文件是很重要的日志文件,是服務(wù)器為了自動(dòng)追蹤網(wǎng)站訪問者,為單個(gè)客戶瀏覽器生成日志[1]。
2.客戶登記信息。
客戶登記信息是指客戶通過web頁輸入的、并提交給服務(wù)器的相關(guān)用戶信息,這些信息通常是關(guān)于用戶的常用特征。
在web的數(shù)據(jù)挖掘中,客戶登記信息需要和訪問日志集成,以提高數(shù)據(jù)挖掘的準(zhǔn)確度,使之能更進(jìn)一步的了解客戶。
頁面的超級鏈接。
輔之以監(jiān)視所有到達(dá)服務(wù)器的數(shù)據(jù),提取其中的http請求信息。此部分?jǐn)?shù)據(jù)主要來自瀏覽者的點(diǎn)擊流,用于考察用戶的行為表現(xiàn)。網(wǎng)絡(luò)底層信息監(jiān)聽過濾指監(jiān)聽整個(gè)網(wǎng)絡(luò)的所有信息流量,并根據(jù)信息源主機(jī)、目標(biāo)主機(jī)、服務(wù)協(xié)議端口等信息過濾掉垃圾數(shù)據(jù),然后進(jìn)行進(jìn)一步的處理,如關(guān)鍵字的搜索等,最終將用戶感興趣的數(shù)據(jù)發(fā)送到給定的數(shù)據(jù)接受程序存儲(chǔ)到數(shù)據(jù)庫中進(jìn)行分析統(tǒng)計(jì)。
二、web數(shù)據(jù)挖掘在電子商務(wù)中的應(yīng)用通過對數(shù)據(jù)源的原始積累、仔細(xì)分析,再利用數(shù)據(jù)發(fā)掘技術(shù),最終達(dá)到為企業(yè)為用戶服務(wù)的目的,而這些服務(wù)主要有以下幾種。
1.改進(jìn)站點(diǎn)設(shè)計(jì),提高客戶訪問的興趣對客戶來說,傳統(tǒng)客戶與銷售商之間的空間距離在電子商務(wù)中已經(jīng)不存在了,在internet上,每一個(gè)銷售商對于客戶來說都是一樣的,那么如何使客戶在自己的銷售站點(diǎn)上駐留更長的時(shí)間,對銷售商來說將是一個(gè)挑戰(zhàn)。為了使客戶在自己的網(wǎng)站上駐留更長的時(shí)間,就應(yīng)該對客戶的訪問信息進(jìn)行挖掘,通過挖掘就能知道客戶的瀏覽行為,從而了解客戶的興趣及需求所在,并根據(jù)需求動(dòng)態(tài)地調(diào)整頁面,向客戶展示一個(gè)特殊的頁面,提供特有的一些商品信息和廣告,以使客戶能繼續(xù)保持對訪問站點(diǎn)的興趣。
2.發(fā)現(xiàn)潛在客戶。
在對web的客戶訪問信息的挖掘中,利用分類技術(shù)可以在internet上找到未來的潛在客戶。獲得這些潛在的客戶通常的市場策略是:先對已經(jīng)存在的訪問者進(jìn)行分類。對于一個(gè)新的訪問者,通過在web上的分類發(fā)現(xiàn),識(shí)別出這個(gè)客戶與已經(jīng)分類的老客戶的一些公共的描述,從而對這個(gè)新客戶進(jìn)行正確的歸類。然后從它所屬類判斷這個(gè)新客戶是否為潛在的購買者,決定是否要把這個(gè)新客戶作為潛在的客戶來對待。
客戶的類型確定后,就可以對客戶動(dòng)態(tài)地展示web頁面,頁面的內(nèi)容取決于客戶與銷售商提供的產(chǎn)品和服務(wù)之間的關(guān)聯(lián)。
對于一個(gè)新的客戶,如果花了一段時(shí)間瀏覽市場站點(diǎn),就可以把此客戶作為潛在的客戶并向這個(gè)客戶展示一些特殊的頁面內(nèi)容。
3.個(gè)性化服務(wù)。
根據(jù)網(wǎng)站用戶的訪問情況,為用戶提供個(gè)性化信息服務(wù),這是許多互聯(lián)網(wǎng)應(yīng)用,尤其是互聯(lián)網(wǎng)信息服務(wù)或電子商務(wù)(網(wǎng)站)所追求的目標(biāo)。根據(jù)用戶的訪問行為和檔案向使用者進(jìn)行動(dòng)態(tài)的推薦,對許多應(yīng)用都有很大的吸引力。web日志挖掘是一個(gè)能夠出色地完成這個(gè)目標(biāo)的方式。通過web數(shù)據(jù)挖掘,可以理解訪問者的動(dòng)態(tài)行為,據(jù)此優(yōu)化電子商務(wù)網(wǎng)站的經(jīng)營模式。通過把所掌握的大量客戶分成不同的類,對不同類的客戶提供個(gè)性化服務(wù)來提高客戶的滿意度,從而保住老客戶;通過對具有相似瀏覽行為的客戶進(jìn)行分組,提取組中客戶的共同特征,從而實(shí)現(xiàn)客戶的聚類,這可以幫助電子商務(wù)企業(yè)更好地了解客戶的興趣、消費(fèi)習(xí)慣和消費(fèi)傾向,預(yù)測他們的需求,有針對性地向他們推薦特定的商品并實(shí)現(xiàn)交叉銷售,可以提高交易成功率和交易量,提高營銷效果。
例如全球最大中文購物網(wǎng)站淘寶網(wǎng)。當(dāng)你購買一件商品后,淘寶網(wǎng)會(huì)自動(dòng)提示你“購買過此商品的人也購買過……”類似的信息,這就是個(gè)性化服務(wù)的代表。
4.交易評價(jià)。
現(xiàn)在幾乎每一個(gè)電子商務(wù)網(wǎng)站都增加了交易評價(jià)功能,交易評價(jià)功能主要就是為了降低交易中的信息不對稱問題。
電子商務(wù)交易平臺(tái)設(shè)計(jì)了在線信譽(yù)評價(jià)系統(tǒng),對買賣雙方的交易歷史及其評價(jià)進(jìn)行記錄。在聲譽(yù)效應(yīng)的影響下,賣家也更加重視買家的交易滿意度,并且也形成了為獲取好評減少差評而提高服務(wù)質(zhì)量的良好風(fēng)氣。交易中的不滿意(或者成為糾紛)是產(chǎn)生非好評(包括中評和差評)的直接原因。那么,交易中一般會(huì)產(chǎn)生哪些交易糾紛,這些交易糾紛的存在會(huì)如何影響交易評價(jià)結(jié)果,這些問題的解決對賣家的經(jīng)營具有重要的指導(dǎo)價(jià)值。
總結(jié)。
數(shù)據(jù)挖掘是當(dāng)今世界研究的熱門領(lǐng)域,其研究具有廣闊的應(yīng)用前景和巨大的現(xiàn)實(shí)意義。借助數(shù)據(jù)挖掘可以改進(jìn)企業(yè)的電子商務(wù)平臺(tái),增加企業(yè)的經(jīng)營業(yè)績,拓寬企業(yè)的經(jīng)營思路,最終提高企業(yè)的競爭力。
參考文獻(xiàn):
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十三
:中醫(yī)臨床理論多是由著名醫(yī)家的經(jīng)驗(yàn)升華形成的,反映了臨床上不同學(xué)術(shù)派系以及不同學(xué)科的優(yōu)勢特征,但這其中不免摻雜了個(gè)人主觀經(jīng)驗(yàn),因此本文就中醫(yī)臨床理論研究中醫(yī)病案為基礎(chǔ),對應(yīng)用病案數(shù)據(jù)挖掘結(jié)果來總結(jié)和重建中醫(yī)臨床理論的方式進(jìn)行了探討,認(rèn)為該方法可為完善中醫(yī)臨床理論提供客觀的數(shù)據(jù)支持,使中醫(yī)臨床理論的來源更具有科學(xué)性。
科研一體化中醫(yī)臨床理論決定著中醫(yī)臨床學(xué)科的發(fā)展水平,是中醫(yī)臨床發(fā)展的動(dòng)力。從古至今,中醫(yī)名醫(yī)名家輩出,他們的臨床經(jīng)驗(yàn)和學(xué)術(shù)思想不斷提煉升華,逐步形成了傳統(tǒng)的中醫(yī)臨床理論。新中國成立以來,中醫(yī)不斷汲取最新的科技成果,進(jìn)行了大量臨床實(shí)踐,而中醫(yī)臨床理論發(fā)展緩慢,己經(jīng)成為制約當(dāng)代中醫(yī)學(xué)術(shù)發(fā)展的瓶頸,對如何開拓中醫(yī)臨床理論的研究,可謂見仁見智,但各種新的臨床理論常常裹挾著“各家學(xué)說”。在當(dāng)今大數(shù)據(jù)和信息技術(shù)發(fā)達(dá)的背景下,運(yùn)用數(shù)據(jù)挖掘技術(shù)對中醫(yī)病案進(jìn)行大數(shù)據(jù)分析,客觀揭示當(dāng)前中醫(yī)臨床理論的本來面目,盡可能減少個(gè)人見解的偏倚,對于推動(dòng)中醫(yī)臨床理論發(fā)展具有重要的現(xiàn)實(shí)意義,本文就基于病案數(shù)據(jù)挖掘的中醫(yī)臨床理論重建進(jìn)行探討如下。
1.1中醫(yī)古典文獻(xiàn)是傳統(tǒng)中醫(yī)臨床理論的基礎(chǔ)。
眾所周知,中醫(yī)之所以能夠屹立千年不倒,很大一部分原因是因?yàn)槠溆歇?dú)特的理論體系,而在這其中,中醫(yī)古典文獻(xiàn)做出的貢獻(xiàn)應(yīng)該是第一位的。因?yàn)檫@些古典文獻(xiàn)的記載和流傳,為后世的醫(yī)家提供了參考和借鑒,使得我們從前人的思維上不斷創(chuàng)新,與臨床進(jìn)行有機(jī)結(jié)合,不斷研究出新的適合于當(dāng)前時(shí)代的臨床理論。例如,中醫(yī)學(xué)無論在理論研究還是在臨床治療方面的豐富,許多根本性的理論都是源自于《內(nèi)經(jīng)》。該書創(chuàng)立了藏象、經(jīng)絡(luò)、診法等各方面的理論[1],勾畫了中醫(yī)理論的雛形,構(gòu)建了中醫(yī)理論體系的基本框架。到后期東漢時(shí)期張仲景的《傷寒論》則是創(chuàng)造了以六經(jīng)辨證和臟腑辨證為主的局面,其所倡導(dǎo)的“觀其脈證,知犯何逆,隨證治之”使得辨證論治登上新的高度。到了金元時(shí)期,就是百家爭鳴的時(shí)代,這期間以金元四大家為主的學(xué)派開始萌生,留下了許多可供后世醫(yī)家參考的古典文獻(xiàn)并創(chuàng)建了不同的臨床理論,而明清時(shí)期以葉天士和吳鞠通為首確立的衛(wèi)氣營血和三焦辨證,使溫病學(xué)的辨證理論逐步趨于完善,至今仍是指導(dǎo)臨床治療溫?zé)岵〉睦碚撘罁?jù)。總之,傳統(tǒng)中醫(yī)臨床理論的構(gòu)建和完善,離不開前人的摸索與貢獻(xiàn),也得益于著名醫(yī)學(xué)家創(chuàng)建的傳統(tǒng)中醫(yī)理論,使得我們現(xiàn)在的中醫(yī)體系不斷的飽滿和充實(shí)。
1.2當(dāng)代著名中醫(yī)的臨床經(jīng)驗(yàn)不斷提升為中醫(yī)臨床理論。
傳統(tǒng)中醫(yī)的臨床理論,在很大程度上展示著著名醫(yī)家的臨床經(jīng)驗(yàn)。在中醫(yī)理論與實(shí)踐發(fā)展的相互促進(jìn)過程中,當(dāng)代醫(yī)家通過讀書、臨證、心悟?qū)?shí)踐經(jīng)驗(yàn)不斷總結(jié)并升華為理論,又在實(shí)踐中不斷完善既有的理論,成為中醫(yī)理論發(fā)展的重要途徑和模式,而當(dāng)代中醫(yī)理論的發(fā)展則需要將傳統(tǒng)理論與現(xiàn)代實(shí)踐相互融合起來。例如上世紀(jì)60年代時(shí),面對中醫(yī)基礎(chǔ)理論中新的思想相對匱乏的這一局面,鄧鐵濤結(jié)合其治療的臨床經(jīng)驗(yàn),首次提出了“五臟相關(guān)學(xué)說”。盡管當(dāng)時(shí)的理論準(zhǔn)備并不完善,但是這一理論的提出,在很大程度上完善并且取代了“五行學(xué)說”中某些模糊性和不確定性,并且隨著時(shí)代的發(fā)展,逐漸驗(yàn)證了鄧?yán)系倪@一經(jīng)驗(yàn)的正確性,也成為指導(dǎo)中醫(yī)臨床理論的一大重要體系[2]。又如,腦出血這一現(xiàn)代疾病在古代名為中風(fēng),多數(shù)是“從風(fēng)而治”,認(rèn)為肝臟與中風(fēng)的關(guān)系最為密切。隨著時(shí)代的推進(jìn),自20世紀(jì)80年代以來,許多學(xué)者根據(jù)微觀辨證和中醫(yī)理論“離經(jīng)之血便是瘀”,提出急性出血中風(fēng)屬中醫(yī)血證,瘀血阻滯是急性期腦出血的最基本病機(jī),是治療的關(guān)鍵所在[3]。故現(xiàn)代中醫(yī)臨床治療上多以活血化瘀法治療腦出血、腦梗塞這一系列疾病。若是仔細(xì)研讀傳統(tǒng)中醫(yī)臨床理論后,我們不難得出其構(gòu)成和完善離不開當(dāng)代著名醫(yī)家的臨床經(jīng)驗(yàn),它是在歷經(jīng)歲月的洗禮下不斷塑造成型的。
1.3傳統(tǒng)中醫(yī)臨床理論不斷將現(xiàn)代醫(yī)學(xué)相關(guān)內(nèi)容中醫(yī)化。
傳統(tǒng)中醫(yī)臨床理論不斷吸收現(xiàn)代醫(yī)學(xué)的理論,將其相關(guān)內(nèi)容不斷中醫(yī)化,將病人的各種證型通過五臟辨證、陰陽五行辨證以及八綱辨證劃分得越來越細(xì)化,以提供病人在中醫(yī)臨床上治療的理論依據(jù)。中醫(yī)吸取了現(xiàn)代醫(yī)學(xué)理論后正在不斷壯大其內(nèi)容,現(xiàn)代醫(yī)學(xué)相關(guān)內(nèi)容中醫(yī)化在許多難治疾病的辨證治療中都起到了良好的指導(dǎo)作用[4]。如艾滋病是古代傳統(tǒng)中醫(yī)辨證論治的空白,通過對艾滋病中醫(yī)病因病機(jī)、證候規(guī)律、治法方藥的系統(tǒng)研究,提出了“艾毒傷元”“脾為樞機(jī)”“氣虛為本”的病因病機(jī)學(xué)說,確立了艾滋病“培元解毒”“益氣健脾”的治療原則,為中醫(yī)藥防治艾滋病奠定了理論基礎(chǔ),為進(jìn)一步提高艾滋病的中醫(yī)藥臨床診療效果提供理論依據(jù)[5]。
2.1中醫(yī)主流理論不突出且與時(shí)俱進(jìn)力度不夠。
不可否認(rèn)的是,當(dāng)代的中醫(yī)臨床理論發(fā)展也是存在諸多不足的,中醫(yī)理論的完善和發(fā)展是中華五千年來集體智慧的結(jié)晶,個(gè)別醫(yī)家提出的臨床理論可能各有千秋,其所立的角度和思維也不盡相同。例如,同是治療輸卵管阻塞這一疾病時(shí),朱南孫教授認(rèn)為多是由于濕蘊(yùn)沖任所致,其用自擬的清熱利濕方來進(jìn)行治療;而李廣文教授則認(rèn)為這一疾病多是由于瘀血阻絡(luò)為主,治療上以活血祛瘀為法,擬通任種子湯進(jìn)行治療[6]。又如對于“和解法”這一治療方法的理解,當(dāng)代名醫(yī)蒲輔周老先生認(rèn)為“寒熱并用,補(bǔ)瀉合劑,表里雙解,苦辛分消,調(diào)和氣血,皆謂和解”。而方和謙教授則認(rèn)為“在治法上扶正祛邪,表里兼顧,此法就為和解法”。不同的醫(yī)家在面對不同的疾病,甚至是不同的理法方藥時(shí),所持的看法常常是“各家學(xué)說”,這就導(dǎo)致了當(dāng)前中醫(yī)臨床理論發(fā)展比較混亂,不能全面地體現(xiàn)中國五千年來發(fā)展過程中的中醫(yī)主流理論。目前中醫(yī)基礎(chǔ)理論還存在一個(gè)缺陷就是它的與時(shí)俱進(jìn)力度還不夠,很多古代經(jīng)典方藥的主治病癥,在當(dāng)今時(shí)代已經(jīng)不再多見了。比如蛔蟲導(dǎo)致的蛔厥這一致病因素在現(xiàn)代已經(jīng)不再常見,對應(yīng)的烏梅丸的主要適應(yīng)病癥也不再是蛔厥;在針對沒有明顯臨床表現(xiàn)的疾病如乙肝時(shí),按傳統(tǒng)中醫(yī)往往體現(xiàn)出“無證可治”的狀態(tài);傳統(tǒng)的診斷與現(xiàn)代檢查相結(jié)合的力度也不夠,中醫(yī)臨床基礎(chǔ)理論在某些程度上忽略了其與生化、b超、x光、ct等現(xiàn)代檢查結(jié)果的結(jié)合,并沒有用中醫(yī)理論對其做一合理的陳述;且現(xiàn)在臨床上很多中藥的藥理作用、性味歸經(jīng)的研究作用還不夠深入、細(xì)致,其作用不能在微觀上得以解釋。這些都導(dǎo)致了臨床上很多情況沒有從中醫(yī)理論來認(rèn)識(shí)中醫(yī),不是“以中解中”,而是“以西解中”,形成了臨床拋棄中醫(yī)理論的狀態(tài)[7]。由于中醫(yī)學(xué)是一門實(shí)踐性很強(qiáng)的學(xué)科,它是在哲學(xué)辨證的思想指導(dǎo)下,與臨床經(jīng)驗(yàn)不斷結(jié)合,這與西醫(yī)知識(shí)體系相比較,難免存在一定的滯后性,這都會(huì)使得中醫(yī)臨床理論發(fā)展相對的落后。
2.2部分中醫(yī)理論帶有權(quán)威專家的“個(gè)人學(xué)說”偏見。
傳統(tǒng)中醫(yī)強(qiáng)調(diào)個(gè)人經(jīng)驗(yàn)和學(xué)說,以中醫(yī)內(nèi)科學(xué)為例,第八版中的腦系疾病在第九版中已經(jīng)刪除,其涉及到的各種腦系疾病大多數(shù)歸屬于心系疾病與肝系疾病。根據(jù)其版本的不同,我們可以明顯看出其凸顯的中心內(nèi)容及其思想不同,其多是體現(xiàn)編著者的理論思想,在一定程度上并沒有客觀地揭示疾病的本質(zhì),治療理論也不夠完善,一部分內(nèi)容與最新研究得出的論文理論不符,這使得當(dāng)代中醫(yī)臨床理論在某些程度上,帶有權(quán)威專家的“個(gè)人學(xué)說”色彩。由于現(xiàn)代西方先進(jìn)的科技文化流入,使得中醫(yī)在一定程度上備受質(zhì)疑,而正是因?yàn)槿藗儗τ谥嗅t(yī)理論的一些偏見,才使得中醫(yī)長期讓人詬病。
3.1臨床理論應(yīng)具有真實(shí)性與系統(tǒng)性。
中醫(yī)臨床理論的發(fā)展方形應(yīng)當(dāng)是建立在客觀并且真實(shí)的臨床實(shí)踐基礎(chǔ)上,從一次次臨床實(shí)踐中得出。由于歷史時(shí)代的原因以及假設(shè)推理、模式建設(shè)的廣泛使用,當(dāng)代中醫(yī)臨床理論中理論與假說并存的現(xiàn)象較為普遍,如中醫(yī)的五運(yùn)六氣學(xué)說對現(xiàn)代疫病預(yù)測和人體各經(jīng)絡(luò)臟腑在時(shí)間上對于人體治病效果的不同等,就需要我們在扎實(shí)的文獻(xiàn)與臨床實(shí)踐基礎(chǔ)上,對醫(yī)案進(jìn)行認(rèn)真總結(jié),利用科學(xué)的方法深入挖掘,開展中醫(yī)理論的去偽存真研究,以促進(jìn)中醫(yī)理論的科學(xué)與健康發(fā)展。另外,傳統(tǒng)的中醫(yī)臨床治療上所用的理法方藥,多是根據(jù)個(gè)人經(jīng)驗(yàn)所進(jìn)行的。隨著科技的不斷發(fā)展與時(shí)代的不斷進(jìn)步,當(dāng)代的中醫(yī)臨床理論應(yīng)該在成功的中醫(yī)醫(yī)案上進(jìn)行系統(tǒng)的總結(jié),不斷挖掘和研究其微觀的結(jié)構(gòu),并隨著年月的更迭不斷更新,不斷完善,使其具有科學(xué)性和理論依據(jù)。同時(shí),對近年來興起的傳染性非典型肺炎、艾滋病、禽流感等古人所沒有經(jīng)歷過的疾病的診治,中醫(yī)就其病因病機(jī)的認(rèn)識(shí)以及探究相應(yīng)的診療方法,無疑也是一種理論上的創(chuàng)新[8]。通過對其進(jìn)行深一層次的研究和發(fā)現(xiàn),歸納出合適的治則治法,找到針對這一疾病的理法方藥,使其更具有系統(tǒng)性,使得臨床上中醫(yī)治病可以循序漸進(jìn),注重整體,也是當(dāng)代臨床理論的一大發(fā)展方向。
3.2臨床理論具有信息化的特點(diǎn)并可持續(xù)拓展。
隨著時(shí)代的進(jìn)步,當(dāng)代的中醫(yī)臨床理論可以通過網(wǎng)絡(luò)等方式進(jìn)行共享,在大數(shù)據(jù)的這一時(shí)代背景下,隨著病案的不斷報(bào)道與積累,可以將各類成功的中醫(yī)醫(yī)案進(jìn)行統(tǒng)計(jì)和挖掘,其結(jié)果也會(huì)不斷進(jìn)行更新和發(fā)展。不同的醫(yī)家對于某一疾病的認(rèn)識(shí)角度可能不同,其表現(xiàn)在病位、病性、病勢和證候的判斷標(biāo)準(zhǔn)也不一樣,因此方藥規(guī)律也不一樣。而通過統(tǒng)計(jì)某一中醫(yī)或西醫(yī)疾病的較大樣本病例,并對其進(jìn)行數(shù)據(jù)挖掘,可以得出整個(gè)中醫(yī)群體對于這一疾病診治的證候分布、治則治法、處方用藥等的規(guī)律,甚至可以根據(jù)統(tǒng)計(jì)的結(jié)果探索出新的方藥,分析他們的共同點(diǎn)和所在差異。將中醫(yī)臨床理論具有信息化的這一特點(diǎn)不斷地拓展下去,通過計(jì)算機(jī)等客觀科學(xué)的手段進(jìn)行分析,與主觀的名老中醫(yī)傳承模式相比,更具客觀性,更容易被臨床醫(yī)生接受,對各種疾病的中醫(yī)臨床用藥也更具有指導(dǎo)價(jià)值。
4.1病案研究是中醫(yī)理論發(fā)展的重要基礎(chǔ)。
在當(dāng)今大數(shù)據(jù)的時(shí)代背景下,中醫(yī)固有的傳統(tǒng)整體論科學(xué)特征有了越來越多的可供改變的空間。這種變化既為其按照自身特有的規(guī)律發(fā)展特點(diǎn)帶來了機(jī)遇,也給未來中醫(yī)理論的發(fā)展提出了挑戰(zhàn)。同時(shí),學(xué)習(xí)醫(yī)案研究也是中醫(yī)學(xué)相關(guān)大學(xué)生們應(yīng)該學(xué)習(xí)的一項(xiàng)內(nèi)容。閱讀醫(yī)案是必要的訓(xùn)練,也是中醫(yī)入門的方法之一。醫(yī)案的故事性引人入勝,在自然而然中接受中醫(yī)思維方法和傳統(tǒng)文化知識(shí),同時(shí)醫(yī)案中所呈現(xiàn)的名醫(yī)風(fēng)范,醫(yī)德對學(xué)生起到潛移默化的影響,并培養(yǎng)對專業(yè)的熱愛[9]。病案客觀、真實(shí)地直接記錄疾病診斷和治療過程,醫(yī)案研究作為中醫(yī)理論發(fā)展過程中至關(guān)重要的一環(huán),是中醫(yī)理論發(fā)展的重要基礎(chǔ),以研究病案為基礎(chǔ),對于中醫(yī)理論的形成和臨床上中醫(yī)積累經(jīng)驗(yàn),都起到了一定的輔助提升作用。
4.2數(shù)據(jù)挖掘方法是中醫(yī)理論發(fā)展的現(xiàn)代技術(shù)手段。
利用多種數(shù)據(jù)挖掘技術(shù)對中醫(yī)病案中的有關(guān)信息行進(jìn)行歸納、整理,是近年來傳承中醫(yī)臨床經(jīng)驗(yàn)的重要方法之一[10]。通過對同一種疾病的病案進(jìn)行數(shù)據(jù)挖掘以分析醫(yī)者的思路和探索其用藥的。方法,對中醫(yī)臨床病案進(jìn)行規(guī)范化的整理,能夠深入總結(jié)其臨床經(jīng)驗(yàn),挖掘隱藏在大量病案背后的診治規(guī)律,甚至探索出新的方藥配伍,為中醫(yī)理論的發(fā)展提供一定的科學(xué)依據(jù)的同時(shí),使得中醫(yī)理論的發(fā)展越來越現(xiàn)代化,不僅僅只是停留在以前的靠讀書和個(gè)人經(jīng)驗(yàn)的結(jié)合,也為廣大的中醫(yī)在日后的臨床治療上提供了新的思路和方向。
4.3臨床實(shí)踐推動(dòng)理論發(fā)展,賦予轉(zhuǎn)化醫(yī)學(xué)新的內(nèi)涵。
目前,我們通過并按數(shù)據(jù)挖掘來總結(jié)一些中醫(yī)對于治療同一種疾病所采取的診斷和用藥,可以獲得新的思路,并且為完善我們現(xiàn)有的中醫(yī)理論基礎(chǔ)可以提供可靠的理論支持。采用數(shù)據(jù)挖掘技術(shù)對中醫(yī)學(xué)術(shù)思想和臨證經(jīng)驗(yàn)進(jìn)行研究,可以全面解析其中的規(guī)律,分析中醫(yī)個(gè)體化診療信息特征,提煉出臨證經(jīng)驗(yàn)中蘊(yùn)藏的新理論、新力法,可以實(shí)現(xiàn)經(jīng)驗(yàn)的有效總結(jié)與傳承[11]。與此同時(shí),要求我們用發(fā)展的眼光將現(xiàn)代的科技手段整合加入到傳統(tǒng)的中醫(yī)學(xué)理論中去,推陳出新,通過臨床實(shí)踐與基礎(chǔ)理論的不斷結(jié)合,不斷完善,推動(dòng)祖國醫(yī)學(xué)現(xiàn)代化,譜寫有關(guān)于中醫(yī)學(xué)在轉(zhuǎn)化醫(yī)學(xué)上新的篇章。
[2]邱仕君,吳玉生。在基礎(chǔ)理論與臨床醫(yī)學(xué)之間———對鄧鐵濤教授五臟相關(guān)學(xué)說的理論思考[j].湖北民族學(xué)院學(xué)報(bào)(醫(yī)學(xué)版),2005,22(2):36-39.
[3]顧寧,周仲英。通下法治療急性腦出血研究進(jìn)展[j].中國中醫(yī)急診,2000,9(5):227.
[4]靳士英。鄧鐵濤教授學(xué)術(shù)成就管[j].現(xiàn)代醫(yī)院,2004(9):1-6.
[7]孟靜巖,應(yīng)森林。試論中醫(yī)基礎(chǔ)理論指導(dǎo)臨床研究的思考與途徑[j].上海中醫(yī)藥大學(xué)學(xué)報(bào),2009(3):3-5.
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十四
:數(shù)據(jù)挖掘是一種特殊的數(shù)據(jù)分析過程,其不僅在功能上具有多樣性,同時(shí)還具有著自動(dòng)化、智能化處理以及抽象化分析判斷的特點(diǎn),對于計(jì)算機(jī)犯罪案件中的信息取證有著非常大的幫助。本文結(jié)合數(shù)據(jù)挖掘技術(shù)的概念與功能,對其在計(jì)算機(jī)犯罪取證中的應(yīng)用進(jìn)行了分析。
:數(shù)據(jù)挖掘技術(shù);計(jì)算機(jī);犯罪取證。
隨著信息技術(shù)與互聯(lián)網(wǎng)的不斷普及,計(jì)算機(jī)犯罪案件變得越來越多,同時(shí)由于計(jì)算機(jī)犯罪的隱蔽性、復(fù)雜性特點(diǎn),案件偵破工作也具有著相當(dāng)?shù)碾y度,而數(shù)據(jù)挖掘技術(shù)不僅能夠?qū)τ?jì)算機(jī)犯罪案件中的原始數(shù)據(jù)進(jìn)行分析并提取出有效信息,同時(shí)還能夠?qū)崿F(xiàn)與其他案件的對比,而這些對于計(jì)算機(jī)犯罪案件的偵破都是十分有利的。
數(shù)據(jù)挖掘技術(shù)是針對當(dāng)前信息時(shí)代下海量的網(wǎng)絡(luò)數(shù)據(jù)信息而言的,簡單來說,就是從大量的、不完全的、有噪聲的、模糊的隨機(jī)數(shù)據(jù)中對潛在的有效知識(shí)進(jìn)行自動(dòng)提取,從而為判斷決策提供有利的信息支持。同時(shí),從數(shù)據(jù)挖掘所能夠的得到的知識(shí)來看,主要可以分為廣義型知識(shí)、分類型知識(shí)、關(guān)聯(lián)性知識(shí)、預(yù)測性知識(shí)以及離型知識(shí)幾種。
根據(jù)數(shù)據(jù)挖掘技術(shù)所能夠提取的不同類型知識(shí),數(shù)據(jù)挖掘技術(shù)也可以在此基礎(chǔ)上進(jìn)行功能分類,如關(guān)聯(lián)分析、聚類分析、孤立點(diǎn)分析、時(shí)間序列分析以及分類預(yù)測等都是數(shù)據(jù)挖掘技術(shù)的重要功能之一,而其中又以關(guān)聯(lián)分析與分類預(yù)測最為主要。大量的數(shù)據(jù)中存在著多個(gè)項(xiàng)集,各個(gè)項(xiàng)集之間的取值往往存在著一定的規(guī)律性,而關(guān)聯(lián)分析則正是利用這一點(diǎn),對各項(xiàng)集之間的關(guān)聯(lián)關(guān)系進(jìn)行挖掘,找到數(shù)據(jù)間隱藏的關(guān)聯(lián)網(wǎng),主要算法有fp-growth算法、apriori算法等。在計(jì)算機(jī)犯罪取證中,可以先對犯罪案件中的特征與行為進(jìn)行深度的挖掘,從而明確其中所存在的聯(lián)系,同時(shí),在獲得審計(jì)數(shù)據(jù)后,就可以對其中的審計(jì)信息進(jìn)行整理并中存入到數(shù)據(jù)庫中進(jìn)行再次分析,從而達(dá)到案件樹立的效果,這樣,就能夠清晰的判斷出案件中的行為是否具有犯罪特征[1]。而分類分析則是對現(xiàn)有數(shù)據(jù)進(jìn)行分類整理,以明確所獲得數(shù)據(jù)中的相關(guān)性的一種數(shù)據(jù)挖掘功能。在分類分析的過程中,已知數(shù)據(jù)會(huì)被分為不同的數(shù)據(jù)組,并按照具體的數(shù)據(jù)屬性進(jìn)行明確分類,之后再通過對分組中數(shù)據(jù)屬性的具體分析,最終就可以得到數(shù)據(jù)屬性模型。在計(jì)算機(jī)犯罪案件中,可以將按照這種數(shù)據(jù)分類、分析的方法得到案件的數(shù)據(jù)屬性模型,之后將這一數(shù)據(jù)屬性模型與其他案件的數(shù)據(jù)屬性模型進(jìn)行對比,這樣就能夠判斷嫌疑人是否在作案動(dòng)機(jī)、發(fā)生規(guī)律以及具體特征等方面與其他案件模型相符,也就是說,一旦這一案件的數(shù)據(jù)模型屬性與其他案件的數(shù)據(jù)模型屬性大多相符,那么這些數(shù)據(jù)就可以被確定為犯罪證據(jù)。此外,在不同案件間的共性與差異的基礎(chǔ)上,分類分析還可以實(shí)現(xiàn)對于未知數(shù)據(jù)信息或類似數(shù)據(jù)信息的有效預(yù)測,這對于計(jì)算機(jī)犯罪案件的處理也是很有幫助的。此外,數(shù)據(jù)挖掘分類預(yù)測功能的實(shí)現(xiàn)主要依賴決策樹、支持向量機(jī)、vsm、logisitic回歸、樸素貝葉斯等幾種,這些算法各有優(yōu)劣,在實(shí)際應(yīng)用中需要根據(jù)案件的實(shí)際情況進(jìn)行選擇,例如支持向量機(jī)具有很高的分類正確率,因此適合用于特征為線性不可分的案件,而決策樹更容易理解與解釋。
對于數(shù)據(jù)挖掘技術(shù),目前的計(jì)算機(jī)犯罪取證工作并未形成一個(gè)明確而統(tǒng)一的應(yīng)用步驟,因此,我們可以根據(jù)數(shù)據(jù)挖掘技術(shù)的特征與具體功能,對數(shù)據(jù)挖掘技術(shù)在計(jì)算機(jī)犯罪取證中的應(yīng)用提供一個(gè)較為可行的具體思路[2]。首先,當(dāng)案件發(fā)生后,一般能夠獲取到海量的原始數(shù)據(jù),面對這些數(shù)據(jù),可以利用fp-growth算法、apriori算法等算法進(jìn)行關(guān)聯(lián)分析,找到案件相關(guān)的潛在有用信息,如犯罪嫌疑人的犯罪動(dòng)機(jī)、案發(fā)時(shí)間、作案嫌疑人的基本信息等等。在獲取這些基本信息后,雖然能夠?qū)Π讣幕咎卣饔幸欢ǖ牧私猓缸锵右扇藚s難以通過這些簡單的信息進(jìn)行確定,因此還需利用決策樹、支持向量機(jī)等算法進(jìn)行分類預(yù)測分析,通過對原始信息的準(zhǔn)確分類,可以得到案件的犯罪行為模式(數(shù)據(jù)屬性模型),而通過與其他案件犯罪行為模式的對比,就能夠?qū)Ψ缸锵右扇说木唧w特征進(jìn)行進(jìn)一步的預(yù)測,如經(jīng)常活動(dòng)的場所、行為習(xí)慣、分布區(qū)域等,從而縮小犯罪嫌疑人的鎖定范圍,為案件偵破工作帶來巨大幫助。此外,在計(jì)算機(jī)犯罪案件處理完畢后,所建立的嫌疑人犯罪行為模式以及通過關(guān)聯(lián)分析、分類預(yù)測分析得到的案件信息仍具有著很高的利用價(jià)值,因此不僅需要將這些信息存入到專門的數(shù)據(jù)庫中,同時(shí)還要根據(jù)案件的結(jié)果對數(shù)據(jù)進(jìn)行再次分析與修正,并做好犯罪行為模式的分類與標(biāo)記工作,為之后的案件偵破工作提供更加豐富、詳細(xì)的數(shù)據(jù)參考。
總而言之,數(shù)據(jù)挖掘技術(shù)自計(jì)算機(jī)犯罪取證中的應(yīng)用是借助以各種算法為基礎(chǔ)的關(guān)聯(lián)、分類預(yù)測功能來實(shí)現(xiàn)的,而隨著技術(shù)的不斷提升以及數(shù)據(jù)庫中的犯罪行為模式會(huì)不斷得到完善,在未來數(shù)據(jù)挖掘技術(shù)所能夠起到的作用也必將越來越大。
作者:周永杰單位:河南警察學(xué)院信息安全系。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十五
數(shù)據(jù)挖掘技術(shù)在各行業(yè)都有廣泛運(yùn)用,是一種新興信息技術(shù)。而在線考試系統(tǒng)中存在著很多的數(shù)據(jù)信息,數(shù)據(jù)挖掘技在在線考試系統(tǒng)有著重要的意義,和良好的應(yīng)用前景,從而在眾多技術(shù)中脫穎而出。本文從對數(shù)據(jù)挖掘技術(shù)的初步了解,簡述數(shù)據(jù)挖掘技術(shù)在在線考試系統(tǒng)中成績分析,以及配合成績分析,完善教學(xué)。
隨著計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)的快速發(fā)展,計(jì)算機(jī)輔助教育的不斷普及,在線考試是一種利用網(wǎng)絡(luò)技術(shù)的重要輔助教育手段,其改革有著重要的意義。數(shù)據(jù)挖掘技術(shù)作為一種新興的信息技術(shù),其包括了人工智能、數(shù)據(jù)庫、統(tǒng)計(jì)學(xué)等學(xué)科的內(nèi)容,是一門綜合性的技術(shù)。這種技術(shù)的主要特點(diǎn)是對數(shù)據(jù)庫中大量的數(shù)據(jù)進(jìn)行抽取、轉(zhuǎn)換和分析,從中提取出能夠?qū)處熡凶饔玫年P(guān)鍵性數(shù)據(jù)。將其運(yùn)用于在線考試系統(tǒng)中,能夠很好的處理在線考試中涉及到的數(shù)據(jù),讓在線考試的實(shí)用性和高效性得到進(jìn)一步的增強(qiáng),幫助教師更加快速、完整的統(tǒng)計(jì)考試信息,完善教學(xué)。
數(shù)據(jù)挖掘技術(shù)是從大量數(shù)據(jù)中"挖掘"出對使用者有用的知識(shí),即從大量的、隨機(jī)的、有噪聲的、模糊的、不完全的實(shí)際應(yīng)用數(shù)據(jù)中,"挖掘"出隱含在其中但人們事先卻不知道的,而又是對人們潛在有用的信息與知識(shí)的整個(gè)過程。
目前主要的商業(yè)數(shù)據(jù)挖掘系統(tǒng)有sas公司的enterpriseminer,spss公司的clementine,sybas公司的warehousestudio,minersgi公司的mineset,rulequestresearch公司的see5,ibm公司的intelligent,還有coverstory,knowledgediscovery,quest,explora,dbminer,workbench等。
2.1數(shù)據(jù)分類。
數(shù)據(jù)挖掘技術(shù)通過對數(shù)據(jù)庫中的數(shù)據(jù)進(jìn)行分析,把數(shù)據(jù)按照相似性歸納成若干類別,然后做出分類,并能夠?yàn)槊恳粋€(gè)類別都做出一個(gè)準(zhǔn)確的描述,挖掘出分類的規(guī)則或建立一個(gè)分類模型。
2.2數(shù)據(jù)關(guān)聯(lián)分析。
數(shù)據(jù)庫中的數(shù)據(jù)關(guān)聯(lián)是一項(xiàng)非常重要,并可以發(fā)現(xiàn)的知識(shí)。數(shù)據(jù)關(guān)聯(lián)就是兩組或兩組以上的數(shù)據(jù)之間有著某種規(guī)律性的聯(lián)系。數(shù)據(jù)關(guān)聯(lián)分析的作用就是找出數(shù)據(jù)庫中隱藏的聯(lián)系,從中得到一些對學(xué)校教學(xué)工作管理者有用的信息。就像是在購物中,就可以通過顧客的購買物品的聯(lián)系,從中得到顧客的購買習(xí)慣。
2.3預(yù)測。
預(yù)測是根據(jù)已經(jīng)得到的數(shù)據(jù),從而對未來的情況做出一個(gè)可能性的分析。數(shù)據(jù)挖掘技術(shù)能自動(dòng)在大型的數(shù)據(jù)庫中做出一個(gè)較為準(zhǔn)確的分析。就像是在市場投資中,可以通過各種商品促銷的數(shù)據(jù)來做出一個(gè)未來商品的促銷走勢。從而在投資中得到最大的回報(bào)。
數(shù)據(jù)挖掘技術(shù)融合了多個(gè)學(xué)科、多個(gè)領(lǐng)域的知識(shí)與技術(shù),因此數(shù)據(jù)挖掘的方法也呈現(xiàn)出很多種類的形式。就目前的統(tǒng)計(jì)分析類的數(shù)據(jù)挖掘技術(shù)的角度來講,光統(tǒng)計(jì)分析技術(shù)中所用到的數(shù)據(jù)挖掘模型就回歸分析、邏輯回歸分析、有線性分析、非線性分析、單變量分析、多變量分析、最近鄰算法、最近序列分析、聚類分析和時(shí)間序列分析等多種方法。數(shù)據(jù)挖掘技術(shù)利用這些方法對那些異常形式的數(shù)據(jù)進(jìn)行檢查,然后通過各種數(shù)據(jù)模型和統(tǒng)計(jì)模型對這些數(shù)據(jù)來進(jìn)行解釋,并從這些數(shù)據(jù)中找出隱藏在其中的商業(yè)機(jī)會(huì)和市場規(guī)律。另外還有知識(shí)發(fā)現(xiàn)類數(shù)據(jù)挖掘技術(shù),這種和統(tǒng)計(jì)分析類的數(shù)據(jù)挖掘技術(shù)完全不同,其中包括了支持向量機(jī)、人工神經(jīng)元網(wǎng)絡(luò)、遺傳算法、決策樹、粗糙集、關(guān)聯(lián)順序和規(guī)則發(fā)現(xiàn)等多種方法。
4.1運(yùn)用關(guān)聯(lián)規(guī)則分析教師的年齡對學(xué)生考試成績的影響。
數(shù)據(jù)挖掘技術(shù)中的關(guān)聯(lián)分析在教學(xué)分析中,是一種使用頻繁,行之有效的方法,它能挖掘出大量數(shù)據(jù)中項(xiàng)集之間之間有意義的關(guān)聯(lián)聯(lián)系,幫助知道教師的教學(xué)過程。例如在如今的一些高職院校中,就往往會(huì)把學(xué)生的英語四六級過級率,計(jì)算機(jī)等級等,以這些為依據(jù)來評價(jià)教師的教學(xué)效果。將數(shù)據(jù)挖掘技術(shù)中的關(guān)聯(lián)規(guī)則運(yùn)用于考試的成績分析當(dāng)中,就能夠挖掘出一些對學(xué)生過級率產(chǎn)生影響的因素,對教師的教學(xué)過程進(jìn)行重要的指導(dǎo),讓教師的教學(xué)效率更高,作用更強(qiáng)。
還可以通過關(guān)聯(lián)規(guī)則算法,先設(shè)定一個(gè)最小可信度和支持度,得到初步的關(guān)聯(lián)規(guī)則,根據(jù)相關(guān)規(guī)則,分析出教師的組成結(jié)構(gòu)和過級率的影響,從來進(jìn)行教師隊(duì)伍的結(jié)構(gòu)調(diào)整,讓教師隊(duì)伍更加合理。
4.2采用分類算法探討對考試成績有影響的因素。
數(shù)據(jù)挖掘技術(shù)中的分類算法就是對一組對象或一個(gè)事件進(jìn)行歸類,然后通過這些數(shù)據(jù),可以進(jìn)行分類模型的建立和未來的預(yù)測。分類算法可以進(jìn)行考試中得到的數(shù)據(jù)進(jìn)行分類,然后通過學(xué)生的一些基本情況進(jìn)行探討一些對考試成績有影響的因素。分類算法可以用一下步驟實(shí)施:
4.2.1數(shù)據(jù)采集。
這種方法首先要進(jìn)行數(shù)據(jù)采集,需要這幾方面的數(shù)據(jù),學(xué)生基本信息(姓名、性別、學(xué)號(hào)、籍貫、所屬院系、專業(yè)、班級等)、學(xué)生調(diào)查信息(比如學(xué)習(xí)前的知識(shí)掌握情況、學(xué)習(xí)興趣、課堂學(xué)習(xí)效果、課后復(fù)習(xí)時(shí)間量等)、成績(學(xué)生平常學(xué)習(xí)成績,平常考試成績,各種大型考試成績等)、學(xué)生多次考試中出現(xiàn)的易錯(cuò)點(diǎn)(本次考試中出現(xiàn)的易錯(cuò)點(diǎn),以往考試中出現(xiàn)的易錯(cuò)點(diǎn))。
4.2.2數(shù)據(jù)預(yù)處理。
(1)數(shù)據(jù)集成。把數(shù)據(jù)采集過程中得到的多種信息,利用數(shù)據(jù)挖掘技術(shù)中的數(shù)據(jù)庫技術(shù)生產(chǎn)相應(yīng)的學(xué)生考試成績分析基本數(shù)據(jù)庫。(2)數(shù)據(jù)清理。在學(xué)生成績分析數(shù)據(jù)庫中,肯定會(huì)出現(xiàn)一些情況缺失,對于這些空缺處,就需要使用數(shù)據(jù)清理技術(shù)來進(jìn)行這些數(shù)據(jù)庫中數(shù)據(jù)的填補(bǔ)遺漏。例如,可以采用忽略元組的方法來刪除那些沒有參加考試的學(xué)生考試數(shù)據(jù)已經(jīng)在學(xué)生填寫的調(diào)查數(shù)據(jù)中村中的空缺項(xiàng)。(3)數(shù)據(jù)轉(zhuǎn)換。數(shù)據(jù)轉(zhuǎn)換主要功能是進(jìn)行進(jìn)行數(shù)據(jù)的離散化操作。在這個(gè)過程中可以根據(jù)實(shí)際需要進(jìn)行分類,比如把考試成績從0~59的分到較差的一類,將60到80分為中等類,81到100分為優(yōu)秀等。(4)數(shù)據(jù)消減。數(shù)據(jù)消減的功能就是把所需挖掘的數(shù)據(jù)庫,在消減的過程又不能影響到最終的數(shù)據(jù)挖掘結(jié)果。比如在分析學(xué)生的基本學(xué)習(xí)情況的影響因素情況中,學(xué)生信息表中中出現(xiàn)的字段很多,可以選擇性的刪除班別、籍貫等引述,形成一份新的學(xué)生基本成績分析數(shù)據(jù)表。
4.2.3利用數(shù)據(jù)挖掘技術(shù),得出結(jié)論。
通過數(shù)據(jù)挖掘技術(shù)在在線考試中的應(yīng)用,得出這些學(xué)生數(shù)據(jù)的相關(guān)分析,比如說學(xué)生考試中的易錯(cuò)點(diǎn)在什么地方,學(xué)生考試成績的自身原因,學(xué)生考試成績的環(huán)境原因,教師隊(duì)伍的搭配情況等等,從中得出如何調(diào)整學(xué)校教學(xué)資源,教師的教學(xué)方案調(diào)整等等,從而完善學(xué)校對學(xué)生的教學(xué)。
數(shù)據(jù)挖掘技術(shù)在社會(huì)各行各業(yè)中都有一定程度的使用,基于其在數(shù)據(jù)組織、分析能力、知識(shí)發(fā)現(xiàn)和信息深層次挖掘的能力,在使用中取得了顯著的成效,但數(shù)據(jù)挖掘技術(shù)中還存在著一些問題,例如數(shù)據(jù)的挖掘算法、預(yù)處理、可視化問題、模式識(shí)別和解釋等等。對于這些問題,學(xué)校教學(xué)管理工作者要清醒的認(rèn)識(shí),在在線考試系統(tǒng)中對數(shù)據(jù)挖掘信息做出合理的使用,讓數(shù)字挖掘技術(shù)在在線考試系統(tǒng)中能夠更加有效的發(fā)揮其長處,避免其在在線考試系統(tǒng)中的的缺陷。
[1]胡玉榮?;诖植诩碚摰臄?shù)據(jù)挖掘技術(shù)在高校學(xué)生成績分析中的作用[j]。荊門職業(yè)技術(shù)學(xué)院學(xué)報(bào),20xx,12(22):12.
[2][加]韓家煒,堪博(kamberm.)。數(shù)據(jù)挖掘:概念與技術(shù)(第2版)[m]范明,譯。北京:機(jī)械工業(yè)出版社,20xx.
[3]王潔?!对诰€考試系統(tǒng)的設(shè)計(jì)與開發(fā)》[j]。山西師范大學(xué)學(xué)報(bào),20xx(2)。
[4]王長娥。數(shù)據(jù)挖掘技術(shù)在教育中的應(yīng)用[j]。計(jì)算機(jī)與信息技術(shù),20xx(11)。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十六
摘要:隨著科學(xué)技術(shù)的快速發(fā)展,各種新鮮的事物和理念得到了廣泛的應(yīng)用。其中機(jī)器學(xué)習(xí)算法就是一則典型案例——作為一種新型的算法,其廣泛應(yīng)用于各行各業(yè)之中。本篇論文旨在探討機(jī)器學(xué)習(xí)算法在數(shù)據(jù)挖掘中的具體應(yīng)用,我們利用龐大的移動(dòng)終端數(shù)據(jù)網(wǎng)絡(luò),加強(qiáng)了基于gsm網(wǎng)絡(luò)的戶外終端定位,從而提出了3個(gè)階段的定位算法,有效提高了定位的精準(zhǔn)度和速度。
關(guān)鍵詞:學(xué)習(xí)算法;gsm網(wǎng)絡(luò);定位;數(shù)據(jù);。
移動(dòng)終端定位技術(shù)由來已久,其主要是利用各種科學(xué)技術(shù)手段定位移動(dòng)物體的精準(zhǔn)位置以及高度。目前,移動(dòng)終端定位技術(shù)主要應(yīng)用于軍事定位、緊急救援、網(wǎng)絡(luò)優(yōu)化、地圖導(dǎo)航等多個(gè)現(xiàn)代化的領(lǐng)域,由于移動(dòng)終端定位技術(shù)能夠帶給精準(zhǔn)的位置服務(wù)信息,所以其在市場上還是有較大的需求的,這也為移動(dòng)終端定位技術(shù)的優(yōu)化和發(fā)展,帶給了推動(dòng)力。隨著通信網(wǎng)絡(luò)普及,移動(dòng)終端定位技術(shù)的發(fā)展也得到了一些幫忙,使得其定位的精準(zhǔn)度和速度都得到了全面的優(yōu)化和提升。同時(shí),傳統(tǒng)的定位方法結(jié)合先進(jìn)的算法來進(jìn)行精準(zhǔn)定位,目前依舊還是有較大的進(jìn)步空間。在工作中我選取機(jī)器學(xué)習(xí)算法結(jié)合數(shù)據(jù)挖掘技術(shù)對傳統(tǒng)定位技術(shù)加以改善,取得了不錯(cuò)的效果,但也遇到了許多問題,例如:使用機(jī)器學(xué)習(xí)算法來進(jìn)行精準(zhǔn)定位暫時(shí)無法滿足更大的區(qū)域要求,還有想要利用較低的設(shè)備成本,實(shí)現(xiàn)得到更多的精準(zhǔn)定位的要求比較困難。所以本文對機(jī)器學(xué)習(xí)算法進(jìn)行了深入的研究,期望能夠幫忙其更快速的定位、更精準(zhǔn)的定位,滿足市場的需要。
數(shù)據(jù)挖掘又名數(shù)據(jù)探勘、信息挖掘。它是數(shù)據(jù)庫知識(shí)篩選中十分重要的一步。數(shù)據(jù)挖掘其實(shí)指的就是在超多的數(shù)據(jù)中透過算法找到有用信息的行為。一般狀況下,數(shù)據(jù)挖掘都會(huì)和計(jì)算機(jī)科學(xué)緊密聯(lián)系在一齊,透過統(tǒng)計(jì)集合、在線剖析、檢索篩選、機(jī)器學(xué)習(xí)、參數(shù)識(shí)別等多種方法來實(shí)現(xiàn)最初的目標(biāo)。統(tǒng)計(jì)算法和機(jī)器學(xué)習(xí)算法是數(shù)據(jù)挖掘算法里面應(yīng)用得比較廣泛的兩類。統(tǒng)計(jì)算法依靠于概率分析,然后進(jìn)行相關(guān)性決定,由此來執(zhí)行運(yùn)算。
而機(jī)器學(xué)習(xí)算法主要依靠人工智能科技,透過超多的樣本收集、學(xué)習(xí)和訓(xùn)練,能夠自動(dòng)匹配運(yùn)算所需的相關(guān)參數(shù)及模式。它綜合了數(shù)學(xué)、物理學(xué)、自動(dòng)化和計(jì)算機(jī)科學(xué)等多種學(xué)習(xí)理論,雖然能夠應(yīng)用的領(lǐng)域和目標(biāo)各不相同,但是這些算法都能夠被獨(dú)立使用運(yùn)算,當(dāng)然也能夠相互幫忙,綜合應(yīng)用,能夠說是一種能夠“因時(shí)而變”、“因事而變”的算法。在機(jī)器學(xué)習(xí)算法的領(lǐng)域,人工神經(jīng)網(wǎng)絡(luò)是比較重要和常見的一種。因?yàn)樗膬?yōu)秀的數(shù)據(jù)處理和演練、學(xué)習(xí)的潛力較強(qiáng)。
而且對于問題數(shù)據(jù)還能夠進(jìn)行精準(zhǔn)的識(shí)別與處理分析,所以應(yīng)用的頻次更多。人工神經(jīng)網(wǎng)絡(luò)依靠于多種多樣的建模模型來進(jìn)行工作,由此來滿足不同的數(shù)據(jù)需求。綜合來看,人工神經(jīng)網(wǎng)絡(luò)的建模,它的精準(zhǔn)度比較高,綜合表述潛力優(yōu)秀,而且在應(yīng)用的過程中,不需要依靠專家的輔助力量,雖然仍有缺陷,比如在訓(xùn)練數(shù)據(jù)的時(shí)候耗時(shí)較多,知識(shí)的理解潛力還沒有到達(dá)智能化的標(biāo)準(zhǔn),但是,相對于其他方式而言,人工神經(jīng)網(wǎng)絡(luò)的優(yōu)勢依舊是比較突出的。
2以機(jī)器學(xué)習(xí)算法為基礎(chǔ)的gsm網(wǎng)絡(luò)定位。
2.1定位問題的建模。
建模的過程主要是以支持向量機(jī)定位方式作為基礎(chǔ),把定位的位置柵格化,面積較小的柵格位置就是獨(dú)立的一種類別,在定位的位置內(nèi),我們收集數(shù)目龐大的終端測量數(shù)據(jù),然后利用計(jì)算機(jī)對測量報(bào)告進(jìn)行分析處理,測量柵格的距離度量和精準(zhǔn)度,然后對移動(dòng)終端柵格進(jìn)行預(yù)估決定,最終利用機(jī)器學(xué)習(xí)進(jìn)行分析求解。
2.2采集數(shù)據(jù)和預(yù)處理。
本次研究,我們采用的模型對象是我國某一個(gè)周邊長達(dá)10千米的二線城市。在該城市區(qū)域內(nèi),我們測量了四個(gè)不同時(shí)間段內(nèi)的數(shù)據(jù),為了保證機(jī)器學(xué)習(xí)算法定位的精準(zhǔn)性和有效性,我們把其中的三批數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),最后一組數(shù)據(jù)作為定位數(shù)據(jù),然后把定位數(shù)據(jù)周邊十米內(nèi)的前三組訓(xùn)練數(shù)據(jù)的相關(guān)信息進(jìn)行清除。一旦確定某一待定位數(shù)據(jù),就要在不同的時(shí)間內(nèi)進(jìn)行測量,按照測量出的數(shù)據(jù)信息的經(jīng)緯度和平均值,再進(jìn)行換算,最終,得到真實(shí)的數(shù)據(jù)量,提升定位的速度以及有效程度。
2.3以基站的經(jīng)緯度為基礎(chǔ)的初步定位。
用機(jī)器學(xué)習(xí)算法來進(jìn)行移動(dòng)終端定位,其復(fù)雜性也是比較大的,一旦區(qū)域面積增加,那么模型和分類也相應(yīng)增加,而且更加復(fù)雜,所以,利用機(jī)器學(xué)習(xí)算法來進(jìn)行移動(dòng)終端定位的過程,會(huì)隨著定位區(qū)域面積的增大,而耗費(fèi)更多的時(shí)間。利用基站的經(jīng)緯度作為基礎(chǔ)來進(jìn)行早期的定位,則需要以下幾個(gè)步驟:要將邊長為十千米的正方形分割成一千米的小柵格,如果想要定位數(shù)據(jù)集內(nèi)的相關(guān)信息,就要選取對邊長是一千米的小柵格進(jìn)行計(jì)算,而如果是想要獲得邊長一千米的大柵格,就要對邊長是一千米的柵格精心計(jì)算。
2.4以向量機(jī)為基礎(chǔ)的二次定位。
在完成初步定位工作后,要確定一個(gè)邊長為兩千米的正方形,由于第一級支持向量機(jī)定位的區(qū)域是四百米,定位輸出的是以一百米柵格作為中心點(diǎn)的經(jīng)緯度數(shù)據(jù)信息,相對于一級向量機(jī)的定位而言,二級向量機(jī)在定位計(jì)算的時(shí)候難度是較低的,更加簡便。后期的預(yù)算主要依靠決策函數(shù)計(jì)算和樣本向量機(jī)計(jì)算。隨著柵格的變小,定位的精準(zhǔn)度將越來越高,而由于增加分類的問題數(shù)量是上升的,所以,定位的復(fù)雜度也是相對增加的。
2.5以k-近鄰法為基礎(chǔ)的三次定位。
第一步要做的就是選定需要定位的區(qū)域面積,在二次輸出之后,確定其經(jīng)緯度,然后依靠經(jīng)緯度來確定邊長面積,這些都是進(jìn)行區(qū)域定位的基礎(chǔ)性工作,緊之后就是定位模型的訓(xùn)練。以k-近鄰法為基礎(chǔ)的三次定位需要的是綜合訓(xùn)練信息數(shù)據(jù),對于這些信息數(shù)據(jù),要以大小為選取依據(jù)進(jìn)行篩選和合并,這樣就能夠減少計(jì)算的重復(fù)性。當(dāng)然了,選取的區(qū)域面積越大,其定位的速度和精準(zhǔn)性也就越低。
3結(jié)語。
近年來,隨著我國科學(xué)技術(shù)的不斷發(fā)展和進(jìn)步,數(shù)據(jù)挖掘技術(shù)愈加重要。根據(jù)上面的研究,我們證明了,在數(shù)據(jù)挖掘的過程中,應(yīng)用機(jī)器學(xué)習(xí)算法具有舉足輕重的作用。作為一門多領(lǐng)域互相交叉的知識(shí)學(xué)科,它能夠幫忙我們提升定位的精準(zhǔn)度以及定位速度,能夠被廣泛的應(yīng)用于各行各業(yè)。所以,對于機(jī)器學(xué)習(xí)算法,相關(guān)人員要加以重視,不斷的進(jìn)行改良以及改善,切實(shí)的發(fā)揮其有利的方面,將其廣泛應(yīng)用于智能定位的各個(gè)領(lǐng)域,幫忙我們解決關(guān)于戶外移動(dòng)終端的定位的問題。
參考文獻(xiàn)。
[2]李運(yùn).機(jī)器學(xué)習(xí)算法在數(shù)據(jù)挖掘中的應(yīng)用[d].北京郵電大學(xué),2014.
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十七
隨著會(huì)計(jì)現(xiàn)代化的發(fā)展,會(huì)計(jì)越來越多的運(yùn)用計(jì)算機(jī)技術(shù)的拓展。
數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢和模式的過程,它融合了現(xiàn)代統(tǒng)計(jì)學(xué)、知識(shí)信息系統(tǒng)、機(jī)器學(xué)習(xí)、決策理論和數(shù)據(jù)庫管理等多學(xué)科的知識(shí)。它能有效地從大量的、不完全的、模糊的實(shí)際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛在有用的信息和知識(shí),揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢和模式的過程,它融合了現(xiàn)代統(tǒng)計(jì)學(xué)、知識(shí)信息系統(tǒng)、機(jī)器學(xué)習(xí)、決策理論和數(shù)據(jù)庫管理等多學(xué)科的知識(shí)。它能有效地從大量的、不完全的、模糊的實(shí)際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛存有用的信息和知識(shí),揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。
常用的數(shù)據(jù)挖掘方法主要有決策樹(decisiontree)、遺傳算法(geneticalgorithms)、關(guān)聯(lián)分析(associationanalysis).聚類分析(c~smranalysis)、序列模式分析(sequentialpattern)以及神經(jīng)網(wǎng)絡(luò)(neuralnetworks)等。
由于數(shù)據(jù)挖掘市場還處于起步的階段,但是發(fā)展很快。在國外有一些著名的大公司對數(shù)據(jù)挖掘系統(tǒng)進(jìn)行了開發(fā)。
igentminer這是ibm公司的數(shù)據(jù)挖掘產(chǎn)品,它提供了很多數(shù)據(jù)挖掘算法,包括關(guān)聯(lián)、分類、回歸、預(yù)測模型、偏離檢測、序列模式分析和聚類。有2個(gè)特點(diǎn):一是它的數(shù)據(jù)挖掘算法的可伸縮性;二是它與ibm/db/2關(guān)系數(shù)據(jù)庫系統(tǒng)緊密地結(jié)合在一起。
t是由sgi公司開發(fā)的,它也提供了多種數(shù)據(jù)挖掘方法,包括關(guān)聯(lián)分析和分類以及高級統(tǒng)計(jì)和可視化工具。特色是它具有的強(qiáng)大的圖形工具,包括規(guī)則可視化工具、樹可視化工具、地圖可視化工具和多維數(shù)據(jù)分散可視化工具,它們用于實(shí)現(xiàn)數(shù)據(jù)和數(shù)據(jù)挖掘結(jié)果的可視化。
tine是由isl公司開發(fā)的,它為終端用戶和開發(fā)者提供提供了一個(gè)集成的數(shù)據(jù)挖掘開發(fā)環(huán)境。
面對日益激烈的競爭環(huán)境,企業(yè)管理者對決策信息的需求也越來越高。管理會(huì)計(jì)作為企業(yè)決策支持系統(tǒng)的重要組成部分,提供更多、更有效的有用信息責(zé)無旁貸。因此,從海量數(shù)據(jù)中挖掘和尋求知識(shí)和信息,為決策提供有力支持成為管理會(huì)計(jì)師使用數(shù)據(jù)挖掘的強(qiáng)大動(dòng)力。例如,數(shù)據(jù)挖掘可以幫助企業(yè)加強(qiáng)成本管理,改進(jìn)產(chǎn)品和服務(wù)質(zhì)量,提高貨品銷量比率,設(shè)計(jì)更好的貨品運(yùn)輸與分銷策略,減少商業(yè)成本。
實(shí)踐證明數(shù)據(jù)挖掘不僅能明顯改善企業(yè)內(nèi)部流程,而且能夠從戰(zhàn)略的高度對企業(yè)的競爭環(huán)境、市場、顧客和供應(yīng)商進(jìn)行分析,以獲得有價(jià)值的商業(yè)情報(bào),保持和提高企業(yè)持續(xù)競爭優(yōu)勢。如,對顧客價(jià)值分析能夠?qū)槠髽I(yè)創(chuàng)造80%價(jià)值的20%的顧客區(qū)分出來,對其提供更優(yōu)質(zhì)的服務(wù),以保持這部分顧客。
險(xiǎn)
利用數(shù)據(jù)挖掘技術(shù)可以建立企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)預(yù)警模型。企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)的發(fā)生并非一蹴而就,而是一個(gè)積累的、漸進(jìn)的過程,通過建立財(cái)務(wù)風(fēng)險(xiǎn)預(yù)警模型,可以隨時(shí)監(jiān)控企業(yè)財(cái)務(wù)狀況,防范財(cái)務(wù)危機(jī)的發(fā)生。另外,也可以利用數(shù)據(jù)挖掘技術(shù),對企業(yè)籌資和投資過程中的行為進(jìn)行監(jiān)控,防止惡意的商業(yè)欺詐行為,維護(hù)企業(yè)利益。尤其是在金融企業(yè),通過數(shù)據(jù)挖掘,可以解決銀行業(yè)面臨的如信用卡的惡意透支及可疑的信用卡交易等欺詐行為。根據(jù)sec的報(bào)告,美國銀行、美國第一銀行、聯(lián)邦住房貸款抵押公司等數(shù)家銀行已采用了數(shù)據(jù)挖掘技術(shù)。
作業(yè)成本法以其對成本的精確計(jì)算和對資源的充分利用引起了人們的極大興趣,但其復(fù)雜的操作使得很多管理者望而卻步。利用數(shù)據(jù)挖掘中的回歸分析、分類分析等方法能幫助管理會(huì)計(jì)師確定成本動(dòng)因,更加準(zhǔn)確計(jì)算成本。同時(shí),也可以通過分析作業(yè)與價(jià)值之間的關(guān)系,確定增值作業(yè)和非增值作業(yè),持續(xù)改進(jìn)和優(yōu)化企業(yè)價(jià)值鏈。在thomasg,johnj和il-woonkim的調(diào)查中,數(shù)據(jù)挖掘被用在作業(yè)成本管理中僅占3%。
管理會(huì)計(jì)師在很多情況下需要對未來進(jìn)行預(yù)測,而預(yù)測是建立在大量的歷史數(shù)據(jù)和適當(dāng)?shù)哪P突A(chǔ)上的。數(shù)據(jù)挖掘自動(dòng)在大型數(shù)據(jù)庫中尋找預(yù)測性信息,利用趨勢分析、時(shí)間序列分析等方法,建立對如銷售、成本、資金等的預(yù)測模型,科學(xué)準(zhǔn)確的預(yù)測企業(yè)各項(xiàng)指標(biāo),作為決策的依據(jù)。例如對市場調(diào)查數(shù)據(jù)的分析可以幫助預(yù)測銷售;根據(jù)歷史資料建立銷售預(yù)測模型等。
投資決策分析本身就是一個(gè)非常復(fù)雜的過程,往往要借助一些工具和模型。數(shù)據(jù)挖掘技術(shù)提供了有效的工具。從公司的財(cái)務(wù)報(bào)告、宏觀的經(jīng)濟(jì)環(huán)境以及行業(yè)基本狀況等大量的數(shù)據(jù)資料中挖掘出與決策相關(guān)的實(shí)質(zhì)性的信息,保證投資決策的正確性和有效性。如利用時(shí)間序列分析模型預(yù)測股票價(jià)格進(jìn)行投資;用聯(lián)機(jī)分析處理技術(shù)分析公司的信用等級,以預(yù)防投資風(fēng)險(xiǎn)等。
品種優(yōu)化是選擇適當(dāng)?shù)漠a(chǎn)品組合以實(shí)現(xiàn)最大的利益的過程,這些利益可以是短期利潤,也可以是長期市場占有率,還可以是構(gòu)建長期客戶群及其綜合體。為了達(dá)到這些目標(biāo),管理會(huì)計(jì)師不僅僅需要價(jià)格和成本數(shù)據(jù)有時(shí)還需要知道替代品的情況,以及在某一市場段位上它們與原產(chǎn)品競爭的狀況。另外企業(yè)也需要了解一個(gè)產(chǎn)品是如何刺激另一些產(chǎn)品的銷量的等等。例如,非盈利性產(chǎn)品本身是沒有利潤可言的,但是,如果它帶來了可觀的客戶流量,并刺激了高利潤產(chǎn)品的銷售,那么,這種產(chǎn)品就非常有利可圖,就應(yīng)該包括在產(chǎn)品清單中。這些信息可根據(jù)實(shí)際數(shù)據(jù),通過關(guān)聯(lián)分析等技術(shù)來得到。
管理會(huì)計(jì)師可以利用數(shù)據(jù)挖掘工具來評價(jià)企業(yè)的財(cái)務(wù)風(fēng)險(xiǎn),建立企業(yè)財(cái)務(wù)危機(jī)預(yù)警模型,進(jìn)行破產(chǎn)預(yù)測。破產(chǎn)預(yù)測或稱財(cái)務(wù)危機(jī)預(yù)警模型能夠幫助管理者及時(shí)了解企業(yè)的財(cái)務(wù)風(fēng)險(xiǎn),提前采取風(fēng)險(xiǎn)防范措施,避免破產(chǎn)。另外,破產(chǎn)預(yù)測模型還能幫助分析破產(chǎn)原因,對企業(yè)管理者意義重大。,數(shù)據(jù)挖掘技術(shù)包括多維判別式分析、邏輯回歸分析、遺傳算法、神經(jīng)網(wǎng)絡(luò)以及決策樹等方法在管理會(huì)計(jì)中得到了廣泛的應(yīng)用。
數(shù)據(jù)挖掘是個(gè)嶄新的領(lǐng)域,對于數(shù)字和信息的處理是非??茖W(xué)和方便的,也是非常高效率和合理分析的非常好的工具,對于會(huì)計(jì)管理領(lǐng)域的應(yīng)用在國際上只是剛剛開始,相信隨著會(huì)計(jì)的國際化的接軌和計(jì)算機(jī)科學(xué)的進(jìn)步,在我國的會(huì)計(jì)領(lǐng)域中的數(shù)據(jù)挖掘理論會(huì)得到不斷的提升,在管理會(huì)計(jì)實(shí)際應(yīng)用中的數(shù)據(jù)挖掘也越來越多樣化和普及化。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇一
摘要:在計(jì)算機(jī)網(wǎng)絡(luò)越來越普及的社會(huì)中造就信息傳播的便利性提高,也讓社交網(wǎng)絡(luò)漸漸發(fā)展成為虛擬社群形態(tài),從早期的電子布告欄(bbs)到現(xiàn)在的社交網(wǎng)站(socialnetworksites),都可以讓人們密切討論與互動(dòng)。本文將主要探討基于數(shù)據(jù)挖掘模型的社交網(wǎng)絡(luò)關(guān)聯(lián)預(yù)測分析,并對相關(guān)技術(shù)進(jìn)行闡述。
在社交網(wǎng)絡(luò)上,依據(jù)先前國外學(xué)者viswanath,mislove,chaandgummadi和nguyenandtran都是針對theneworleans地區(qū)社群使用者發(fā)布數(shù)據(jù)來研究使用者發(fā)布的關(guān)系,而臺(tái)灣地區(qū)針對使用者社群發(fā)布的分析多以問卷方法居多,故本研究欲使用直接抓取頁面數(shù)據(jù)與卷標(biāo)的方法,觀察使用者社群網(wǎng)站上發(fā)布行為,利用先前用學(xué)者所提數(shù)據(jù)呈現(xiàn)方式,結(jié)合關(guān)鍵詞標(biāo)記方式來了解使用者在社群網(wǎng)絡(luò)上的發(fā)布關(guān)系。而其中社群人數(shù)拓展最快速就是微信平臺(tái),利用了社交網(wǎng)絡(luò)的特性讓使用者能更有效率的在網(wǎng)絡(luò)上找到有關(guān)系的親朋好友,將這世界的每個(gè)人、每個(gè)群體透過各種關(guān)系快速的串連起來[1]。
當(dāng)要對hdfs讀寫數(shù)據(jù)時(shí),檔案將被切割成小的64mbblock,namenode將告知每個(gè)datanode,切割后的block是存放在哪,datanode將負(fù)責(zé)做本地端檔案的block數(shù)據(jù)對應(yīng),并且同時(shí)datanode將對其他datanode進(jìn)行數(shù)據(jù)復(fù)制備份的動(dòng)作。hadoop系統(tǒng)的容錯(cuò)率和可擴(kuò)充性來自于datanode,當(dāng)datanode出錯(cuò)意外關(guān)機(jī),其它節(jié)點(diǎn)上的數(shù)據(jù)將依然存在,且當(dāng)需動(dòng)態(tài)增刪系統(tǒng)的運(yùn)算量,只需增加datanode節(jié)點(diǎn)或停止datanode運(yùn)作。在進(jìn)行社群資料收集與前處理之前,要先了解一下信息擷取與信息過濾的不同之處。在社群網(wǎng)站上隨機(jī)尋找開放目錄上的使用者,而后進(jìn)行下載該使用者發(fā)布數(shù)據(jù)的動(dòng)作是謂信息擷?。欢鴮⑹褂谜咄盔f墻上大筆數(shù)據(jù)寫進(jìn)本地端的hdfs系統(tǒng)后,并通過預(yù)先設(shè)定的一些篩選條件式和過濾方法,剔除雜亂的數(shù)據(jù),變成對本研究有用的信息,以利后續(xù)卷標(biāo)計(jì)算與關(guān)鍵詞計(jì)算,這個(gè)過程就叫信息過濾[2]。
關(guān)鍵詞分析部份則是針對個(gè)人涂鴉墻頁面和使用者自訂信息頁面進(jìn)行關(guān)鍵詞標(biāo)記,其關(guān)鍵詞來源是使用者自訂信息頁面上含的運(yùn)動(dòng)、音樂、書籍、電影、電視、游戲、宗教、政治八組關(guān)鍵詞。相關(guān)度計(jì)算是利用本研究所提相關(guān)度公式來進(jìn)行個(gè)人涂鴉墻頁面、使用者自訂信息頁面和模擬頁面間的關(guān)聯(lián)運(yùn)算,利用頁面間所含的關(guān)鍵詞,計(jì)算出仿真頁面與使用頁面間的相關(guān)度。并在相關(guān)度計(jì)算階段把社群發(fā)布分析與關(guān)鍵詞分析的結(jié)果做個(gè)交叉分析。之后對此分析結(jié)果進(jìn)行研究評估。使用者自訂信息頁面有讓使用者自己標(biāo)記自己興趣的分類項(xiàng)目,分為大四大類自訂選項(xiàng),其自訂選項(xiàng)下,包含子項(xiàng)目讓使用者自訂標(biāo)記自己的興趣,而該表的使用者自訂分類項(xiàng)目就是本研究挑選關(guān)鍵詞的依據(jù),本研究挑選運(yùn)動(dòng)、音樂、書籍、電影、電視、游戲、宗教、政治這八個(gè)字作為關(guān)鍵詞標(biāo)記投擲的項(xiàng)目,在此就不考慮同義不同字、字面背后意涵等問題,只考慮第一層的字義[3]。
3社交網(wǎng)絡(luò)關(guān)聯(lián)預(yù)測的相關(guān)技術(shù)與應(yīng)用。
社交網(wǎng)絡(luò)分析一直以來都是個(gè)熱門的話題,所有團(tuán)體成員彼此之間社交關(guān)系的集合就是這個(gè)團(tuán)體的社交網(wǎng)絡(luò),而透過社交網(wǎng)絡(luò)分析可以了解團(tuán)體成員之間的互動(dòng),這分析可應(yīng)用在各種與人有關(guān)的領(lǐng)域上。在學(xué)校里,學(xué)生之間小團(tuán)體的組成及班級中領(lǐng)導(dǎo)人物與被孤立者的存在,一直都是教育者相當(dāng)關(guān)心的部份。在團(tuán)體精神治療中,成員之間的交流情況是分析治療成果的指標(biāo)之一。在網(wǎng)絡(luò)社群中,了解使用者群體之間的互動(dòng)可以幫助廠商開發(fā)更人性化的網(wǎng)絡(luò)產(chǎn)品。人格特質(zhì)分析也是個(gè)熱門的話題,每個(gè)人的行為都有一套固定的行為模式,而分析這行為模式就是所謂的人格特質(zhì)分析,這分析也可應(yīng)用在各種與人有關(guān)的領(lǐng)域上。在學(xué)校里,不同類型的學(xué)生需要不同方式的教育。在公司面試上,公司透過分析應(yīng)征者的.人格模式來錄取所需要的人才[4]。然而,一般心理學(xué)使用的社交網(wǎng)絡(luò)分析與人格特質(zhì)分析都是透過紙筆測驗(yàn),使用大量的人力去取得人際互動(dòng)的信息,考慮團(tuán)體成員間友好的互動(dòng)關(guān)系,并使用方向性的連結(jié)來表達(dá)人們之間的互動(dòng)關(guān)系。目前使用計(jì)算機(jī)視覺技術(shù)的社交網(wǎng)絡(luò)分析系統(tǒng),僅考慮人們同時(shí)出現(xiàn)頻率當(dāng)作親密程度的指針,而且使用無方向性的連結(jié)來表示人們之間的互動(dòng)關(guān)系。因此,我們使用擁有計(jì)算機(jī)視覺技術(shù)的多攝影機(jī)系統(tǒng),透過分析人們之間的互動(dòng)行為,互動(dòng)行為包含互動(dòng)的對象、所表達(dá)的肢體語言與情緒信息,根據(jù)分析所有的互動(dòng)得到團(tuán)體內(nèi)所有成員之間的社交態(tài)度,而這就是這團(tuán)體的社交網(wǎng)絡(luò)。除了友好的互動(dòng)關(guān)系之外,我們還考慮了厭惡的互動(dòng)關(guān)系,并且使用方向性的連結(jié)來表達(dá)人們之間的互動(dòng),這讓我們的社交網(wǎng)絡(luò)分析能更貼切現(xiàn)實(shí)的互動(dòng)情況。通過分析一個(gè)人所有的社交互動(dòng)行為,可以得知此人的行為擁有何種傾向,而這行為模式就是這個(gè)人的人格特質(zhì)。
總之,我們可以根據(jù)觀察分析人們的互動(dòng)行為,得到與人們觀察得到的結(jié)果大同小異的社交網(wǎng)絡(luò)分析,證明我們能透過計(jì)算機(jī)視覺技術(shù)取得貼近現(xiàn)實(shí)的社交網(wǎng)絡(luò)分析,并且比起一般心理學(xué)的社交網(wǎng)絡(luò)分析省下許多不必要的人力。
參考文獻(xiàn):
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇二
摘要:在本科高年級學(xué)生中開設(shè)符合學(xué)術(shù)研究和工業(yè)應(yīng)用熱點(diǎn)的進(jìn)階課程是十分必要的。以數(shù)據(jù)挖掘課程為例,本科高年級學(xué)生了解并掌握數(shù)據(jù)挖掘的相關(guān)技術(shù),對于其今后的工作、學(xué)習(xí)不無裨益。著重闡述數(shù)據(jù)挖掘等進(jìn)階課程在本科高年級學(xué)生中的教學(xué)方法,基于本科高年級學(xué)生的實(shí)際情況,以及進(jìn)階課程的知識(shí)體系特點(diǎn),提出有針對性的教學(xué)方法參考,從而提高進(jìn)階課程的教學(xué)效果。
關(guān)鍵詞:數(shù)據(jù)挖掘;進(jìn)階課程;教學(xué)方法研究;本科高年級。
學(xué)生在本科高年級學(xué)生中開設(shè)數(shù)據(jù)挖掘等進(jìn)階課程是十分必要的,以大數(shù)據(jù)、數(shù)據(jù)挖掘?yàn)槔湎嚓P(guān)技術(shù)不僅是當(dāng)前學(xué)術(shù)界的研究熱點(diǎn),也是各家企事業(yè)單位招聘中重要崗位的要求之一。對于即將攻讀碩士或博士學(xué)位的學(xué)生,對于即將走上工作崗位的學(xué)生,了解并掌握一些大數(shù)據(jù)相關(guān)技術(shù),尤其是數(shù)據(jù)挖掘技術(shù),都是不無裨益的。在目前本科教學(xué)中,對于數(shù)據(jù)挖掘等課程的教學(xué),由于前序課程的要求,往往是放在本科四年級進(jìn)行。如何激發(fā)本科四年級學(xué)生在考研,找工作等繁雜事務(wù)中的學(xué)習(xí)興趣,從而更好地掌握數(shù)據(jù)挖掘的相關(guān)技術(shù)是本課程面臨的主要挑戰(zhàn),也是所有本科進(jìn)階課程所面臨的難題之一。
1數(shù)據(jù)挖掘等進(jìn)階課程所面臨的問題。
1.1進(jìn)階課程知識(shí)體系的綜合性。
進(jìn)階課程由于其理論與技術(shù)的先進(jìn)性,往往是學(xué)術(shù)研究的前沿,工業(yè)應(yīng)用的熱點(diǎn),是綜合多方面知識(shí)的課程。以數(shù)據(jù)挖掘課程為例,其中包括數(shù)據(jù)庫、機(jī)器學(xué)習(xí)、模式識(shí)別、統(tǒng)計(jì)、可視化、高性能技術(shù),算法等多方面的知識(shí)內(nèi)容。雖然學(xué)生在前期的本科學(xué)習(xí)中已經(jīng)掌握了部分相關(guān)內(nèi)容,如數(shù)據(jù)庫、統(tǒng)計(jì)、算法等,但對于其他內(nèi)容如機(jī)器學(xué)習(xí)、人工智能、模式識(shí)別、可視化等,有的是與數(shù)據(jù)挖掘課程同時(shí)開設(shè)的進(jìn)階課程,有的已經(jīng)是研究生的教學(xué)內(nèi)容。對于進(jìn)階課程繁雜的知識(shí)體系,應(yīng)該如何把握廣度和深度的關(guān)系尤為重要。
1.2進(jìn)階課程的教學(xué)的目的要求。
進(jìn)階課程的知識(shí)體系的綜合性體現(xiàn)在知識(shí)點(diǎn)過多、技術(shù)特征復(fù)雜。從教學(xué)效益的角度出發(fā),進(jìn)階課程的教學(xué)目的是在有限的課時(shí)內(nèi)最大化學(xué)生的知識(shí)收獲。從教學(xué)結(jié)果的可測度出發(fā),進(jìn)階課程的教學(xué)需要能夠有效驗(yàn)證學(xué)生掌握重點(diǎn)知識(shí)的.學(xué)習(xí)成果。1.3本科高年級學(xué)生的實(shí)際情況本科高年級學(xué)生需要處理考研復(fù)習(xí),找工作等繁雜事務(wù),往往對于剩余本科階段的學(xué)習(xí)不重視,存在得過且過的心態(tài)。進(jìn)階課程往往是專業(yè)選修課程,部分學(xué)分已經(jīng)修滿的學(xué)生往往放棄這部分課程的學(xué)習(xí),一來沒有時(shí)間,二來怕拖累學(xué)分。
2數(shù)據(jù)挖掘等進(jìn)階課程的具體教學(xué)方法。
進(jìn)階課程的教學(xué)理念是在有限的課時(shí)內(nèi),盡可能地提高課程的廣度,增加介紹性內(nèi)容,在授課中著重講解1~2個(gè)關(guān)鍵技術(shù),如在數(shù)據(jù)挖掘課程中,著重講解分類中的決策樹算法,聚類中的k-means算法等復(fù)雜度一般,應(yīng)用廣泛的重要知識(shí)點(diǎn),并利用實(shí)踐來檢驗(yàn)學(xué)習(xí)成果。
2.1進(jìn)階課程的課堂教學(xué)。
數(shù)據(jù)挖掘等進(jìn)階課程所涉及的知識(shí)點(diǎn)眾多,在課堂上則采用演示和講授相結(jié)合的方法,對大部分知識(shí)點(diǎn)做廣度介紹,而對需要重點(diǎn)掌握知識(shí)點(diǎn)具體講授,結(jié)合實(shí)踐案例及板書。在介紹工業(yè)實(shí)踐案例的過程中,對于具體數(shù)據(jù)挖掘任務(wù)的來龍去脈解釋清楚,尤其是對于問題的歸納,數(shù)據(jù)的處理,算法的選擇等步驟,并在不同的知識(shí)點(diǎn)的教學(xué)中重復(fù)介紹和總結(jié)數(shù)據(jù)挖掘的一般性流程,可以加深學(xué)生對于數(shù)據(jù)挖掘的深入理解。對于一些需要記憶的知識(shí)點(diǎn),在課堂上采用隨機(jī)問答的方式,必要的時(shí)候可以在每堂課的開始重復(fù)提問,提高學(xué)習(xí)的效果。
2.2進(jìn)階課程的課后教學(xué)。
對于由于時(shí)間限制無法在課上深入討論的知識(shí)點(diǎn),只能依靠學(xué)生在課后自學(xué)掌握。本科高年級學(xué)生的課后自學(xué)的動(dòng)力不像低年級學(xué)生那么充足,可以布置需要?jiǎng)邮謱?shí)踐并涵蓋相關(guān)知識(shí)點(diǎn)的課后實(shí)踐,但盡量降低作業(yè)的工程量。鼓勵(lì)學(xué)生利用開源軟件和框架,基于提供的數(shù)據(jù)集,實(shí)際解決一些簡單的數(shù)據(jù)挖掘任務(wù),讓學(xué)生掌握相關(guān)算法技術(shù)的使用,并對算法有一定的了解。利用學(xué)院與大數(shù)據(jù)相關(guān)企業(yè)建立的合作關(guān)系,在課后通過參觀,了解大數(shù)據(jù)技術(shù)在當(dāng)前企業(yè)實(shí)踐中是如何應(yīng)用的,激發(fā)學(xué)生的學(xué)習(xí)興趣。
2.3進(jìn)階課程的教學(xué)效果考察進(jìn)階課程的考察不宜采取考試的形式,可以采用大作業(yè)的形式。從具體的數(shù)據(jù)挖掘?qū)嵺`中檢驗(yàn)教學(xué)的成果,力求是學(xué)生在上完本課程后可以解決一些簡單的數(shù)據(jù)挖掘任務(wù),將較復(fù)雜的數(shù)據(jù)挖掘技術(shù)的學(xué)習(xí)留給學(xué)生自己。
3結(jié)語。
數(shù)據(jù)挖掘是來源于實(shí)踐的科學(xué),學(xué)習(xí)完本課程的學(xué)生需要真正理解,掌握相關(guān)的數(shù)據(jù)挖掘技術(shù),并能夠在實(shí)際數(shù)據(jù)挖掘任務(wù)中應(yīng)用相關(guān)算法解決問題。這也對教師的教學(xué)水平提出了挑戰(zhàn),并直接與教師的科研水平相關(guān)。在具體的教學(xué)過程中,發(fā)現(xiàn)往往是在講授實(shí)際科研中遇到的問題時(shí),學(xué)生的興趣較大,對于書本上的例子則反映一般。進(jìn)階課程在注重教學(xué)方法的基礎(chǔ)上,對于教師的科研水平提出了新的要求,這也是對于教師科研的反哺,使教學(xué)過程變成了教學(xué)相長的過程。
參考文獻(xiàn):
[1]孫宇,梁俊斌,鐘淑瑛.面向工程的《數(shù)據(jù)挖掘》課程教學(xué)方法探討[j].現(xiàn)代計(jì)算機(jī),2014(13).
[2]蔣盛益,李霞,鄭琪.研究性學(xué)習(xí)和研究性教學(xué)的實(shí)證研究———以數(shù)據(jù)挖掘課程為例[j].計(jì)算機(jī)教育,2014(24).
[3]張曉芳,王芬,黃曉.國內(nèi)外大數(shù)據(jù)課程體系與專業(yè)建設(shè)調(diào)查研究[c].2ndinternationalconferenceoneducation,managementandsocialscience(icemss2014),2014.
[4]郝潔.《無線傳感器網(wǎng)絡(luò)》課程特點(diǎn)、挑戰(zhàn)和解決方案[j].現(xiàn)代計(jì)算機(jī),2016(35).
[5]王永紅.計(jì)算機(jī)類專業(yè)剖析中課程分析探討[j].現(xiàn)代計(jì)算機(jī),2011(04).
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇三
根據(jù)20xx年4月國家教育部等五部關(guān)于印發(fā)《職業(yè)學(xué)校學(xué)生實(shí)習(xí)管理規(guī)定》的通知(教職成[20xx]3號(hào))精神,針對旅游管理專業(yè)頂崗實(shí)習(xí)企業(yè)的實(shí)際情況以及頂崗實(shí)習(xí)現(xiàn)狀,多角度分析新《職業(yè)學(xué)校學(xué)生頂崗實(shí)習(xí)管理規(guī)定》(以下簡稱新《規(guī)定》)對旅游管理專業(yè)頂崗實(shí)習(xí)的新要求,探索可操作的改進(jìn)辦法,為旅游管理專業(yè)實(shí)施頂崗實(shí)習(xí)教學(xué)課程提供借鑒和幫助。
(1)實(shí)習(xí)企業(yè)較多,大部分企業(yè)需求人數(shù)少,實(shí)習(xí)生分布零散,跟蹤管理難度大。
(2)由學(xué)校安排實(shí)習(xí)的,大多是由學(xué)校和實(shí)習(xí)企業(yè)簽訂雙方協(xié)議,實(shí)習(xí)生簽閱《實(shí)習(xí)生管理守則》。
(3)中職學(xué)校旅游管理專業(yè)頂崗實(shí)習(xí)學(xué)生大多未滿18周歲。
(4)實(shí)習(xí)評價(jià)體系不完善,對實(shí)習(xí)生的考核主觀成分多,量化標(biāo)準(zhǔn)少。
(5)實(shí)習(xí)期仍以學(xué)生平安險(xiǎn)作為學(xué)生意外傷害保險(xiǎn),尚未為學(xué)生購買專門的實(shí)習(xí)責(zé)任險(xiǎn)。
2.新《規(guī)定》對頂崗實(shí)習(xí)的影響及改進(jìn)方法。
(1)新《規(guī)定》再次強(qiáng)調(diào)對實(shí)習(xí)過程的全程指導(dǎo),并明確提出,對自行安排實(shí)習(xí)的學(xué)生也要進(jìn)行跟蹤管理(新《規(guī)定》第七條、第八條)。而旅游管理專業(yè)實(shí)習(xí)企業(yè)特別是旅行社,企業(yè)多,規(guī)模小,需求人數(shù)少,實(shí)習(xí)生分布零散,甚至一個(gè)企業(yè)只有一個(gè)實(shí)習(xí)生,管理和指導(dǎo)難度大。調(diào)查資料顯示,旅游專業(yè)實(shí)習(xí)企業(yè)中90%是旅行社,而實(shí)習(xí)生中只有50%在旅行社實(shí)習(xí)。這種情況實(shí)習(xí)指導(dǎo)教師如果要實(shí)現(xiàn)對每個(gè)實(shí)習(xí)生的指導(dǎo)管理,那么大部分時(shí)間都在外跑實(shí)習(xí)點(diǎn),學(xué)校對專業(yè)教師的教學(xué)任務(wù)、科研任務(wù)及其他工作都很難完成。針對這一現(xiàn)狀,結(jié)合新《規(guī)定》要求,可從以下方面著手改進(jìn):
1)建立校企生聯(lián)動(dòng)實(shí)習(xí)管理制度。在學(xué)校數(shù)字化平臺(tái)增加實(shí)習(xí)管理模塊,將實(shí)習(xí)操作流程、標(biāo)準(zhǔn)分單元錄入模塊內(nèi),實(shí)習(xí)生定期在平臺(tái)上提交單元作業(yè),企業(yè)指導(dǎo)教師和學(xué)校指導(dǎo)教師定期在平臺(tái)上提交實(shí)習(xí)生單元成績,最后的實(shí)習(xí)總成績由單元成績按比例匯總而成。這樣既可參與和掌控實(shí)習(xí)過程,又能優(yōu)化實(shí)習(xí)考核體系,增加量化標(biāo)準(zhǔn)。如數(shù)字平臺(tái)無法立即實(shí)施,可先采用電子文檔或紙質(zhì)文檔方式。
2)實(shí)習(xí)面試結(jié)束后,組織召開實(shí)習(xí)指導(dǎo)教師動(dòng)員會(huì),由學(xué)校安排的指導(dǎo)教師和各企業(yè)安排的指導(dǎo)教師參加,共同學(xué)習(xí)和調(diào)整實(shí)習(xí)計(jì)劃、操作標(biāo)準(zhǔn)、達(dá)標(biāo)考核、指導(dǎo)流程等。
3)實(shí)習(xí)收尾階段,組織召開實(shí)習(xí)總結(jié)會(huì),對實(shí)習(xí)工作進(jìn)行交流分享,對實(shí)際工作中遇到的問題提出改進(jìn)建議,為即將開展的新一輪實(shí)習(xí)工作做好鋪墊。
(2)新《規(guī)定》第十二條、第十三條要求,頂崗實(shí)習(xí)前學(xué)校、企業(yè)、學(xué)生須簽訂三方協(xié)議,這對制約企業(yè)、約束學(xué)生有了明確依據(jù)。旅游企業(yè)淡旺季明顯,一些企業(yè)到了淡季就將學(xué)生解聘;學(xué)生實(shí)習(xí)中無法適應(yīng)而中途離職的也時(shí)有發(fā)生,所以協(xié)議內(nèi)容除新《規(guī)定》列示內(nèi)容外,還應(yīng)增加實(shí)習(xí)生到崗后應(yīng)遵守的相關(guān)管理制度、學(xué)生違反規(guī)定的處理辦法等內(nèi)容。
(3)新《規(guī)定》第十四條要求,未滿18周歲的學(xué)生參加頂崗實(shí)習(xí),須由監(jiān)護(hù)人簽閱知情同意書。大部分中職學(xué)校學(xué)生在實(shí)習(xí)時(shí)都未達(dá)到該年齡標(biāo)準(zhǔn),因此中職學(xué)校在實(shí)習(xí)前應(yīng)按戶口登記年齡進(jìn)行一次篩選,將“頂崗實(shí)習(xí)學(xué)生監(jiān)護(hù)人知情同意書”以統(tǒng)一格式發(fā)放給未滿18周歲學(xué)生,并告知監(jiān)護(hù)人,請監(jiān)護(hù)人簽閱?!爸橥鈺苯粚W(xué)校后方可參加實(shí)習(xí)面試。
(4)新《規(guī)定》第三十五條要求,職業(yè)學(xué)?;?qū)嵙?xí)單位應(yīng)為實(shí)習(xí)學(xué)生投保實(shí)習(xí)責(zé)任保險(xiǎn)。實(shí)習(xí)責(zé)任險(xiǎn)是指學(xué)生在實(shí)習(xí)期間,因?qū)W校的管理疏忽對學(xué)生造成的身體、心理傷害應(yīng)由學(xué)校承擔(dān)責(zé)任的保險(xiǎn)。據(jù)調(diào)查,保險(xiǎn)公司目前尚未推出專門的實(shí)習(xí)責(zé)任險(xiǎn),但可先為實(shí)習(xí)生購買一年期限的意外險(xiǎn)。但意外險(xiǎn)與實(shí)習(xí)責(zé)任險(xiǎn)在投保范圍、價(jià)格等方面還有差異,所以,職業(yè)學(xué)校也應(yīng)同時(shí)與保險(xiǎn)行業(yè)接觸,積極推進(jìn)實(shí)習(xí)責(zé)任險(xiǎn)的設(shè)計(jì)出臺(tái)。
總之,旅游管理專業(yè)頂崗實(shí)習(xí)在實(shí)施過程中還存在一些問題和困難,如企業(yè)與學(xué)校的需求差異、旅游行業(yè)淡旺季與實(shí)習(xí)期的時(shí)間矛盾、實(shí)習(xí)生生活管理和心理疏導(dǎo)問題等,有待在《新規(guī)定》的要求和指導(dǎo)下,與企業(yè)深度合作,探索出一套有效的、可操作的頂崗實(shí)習(xí)實(shí)施標(biāo)準(zhǔn)。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇四
摘要:大數(shù)據(jù)和智游都是當(dāng)下的熱點(diǎn),沒有大數(shù)據(jù)的智游無從談“智慧”,數(shù)據(jù)挖掘是大數(shù)據(jù)應(yīng)用于智游的核心,文章探究了在智游應(yīng)用中,目前大數(shù)據(jù)挖掘存在的幾個(gè)問題。
隨著人民生活水平的進(jìn)一步提高,旅游消費(fèi)的需求進(jìn)一步上升,在云計(jì)算、互聯(lián)網(wǎng)、物聯(lián)網(wǎng)以及移動(dòng)智能終端等信息通訊技術(shù)的飛速發(fā)展下,智游應(yīng)運(yùn)而生。大數(shù)據(jù)作為當(dāng)下的熱點(diǎn)已經(jīng)成了智游發(fā)展的有力支撐,沒有大數(shù)據(jù)提供的有利信息,智游無法變得“智慧”。
旅游業(yè)是信息密、綜合性強(qiáng)、信息依存度高的產(chǎn)業(yè)[1],這讓其與大數(shù)據(jù)自然產(chǎn)生了交匯。2010年,江蘇省鎮(zhèn)江市首先提出“智游”的概念,雖然至今國內(nèi)外對于智游還沒有一個(gè)統(tǒng)一的學(xué)術(shù)定義,但在與大數(shù)據(jù)相關(guān)的描述中,有學(xué)者從大數(shù)據(jù)挖掘在智游中的作用出發(fā),把智游描述為:通過充分收集和管理所有類型和來源的旅游數(shù)據(jù),并深入挖掘這些數(shù)據(jù)的潛在重要價(jià)值信息,然后利用這些信息為相關(guān)部門或?qū)ο筇峁┓?wù)[2]。這一定義充分肯定了在發(fā)展智游中,大數(shù)據(jù)挖掘所起的至關(guān)重要的作用,指出了在智游的過程中,數(shù)據(jù)的收集、儲(chǔ)存、管理都是為數(shù)據(jù)挖掘服務(wù),智游最終所需要的是利用挖掘所得的有用信息。
2011年,我國提出用十年時(shí)間基本實(shí)現(xiàn)智游的目標(biāo)[3],過去幾年,國家旅游局的相關(guān)動(dòng)作均為了實(shí)現(xiàn)這一目標(biāo)。但是,在借助大數(shù)據(jù)推動(dòng)智游的可持續(xù)性發(fā)展中,大數(shù)據(jù)所產(chǎn)生的價(jià)值卻亟待提高,原因之一就是在收集、儲(chǔ)存了大量數(shù)據(jù)后,對它們深入挖掘不夠,沒有發(fā)掘出數(shù)據(jù)更多的價(jià)值。
智游的發(fā)展離不開移動(dòng)網(wǎng)絡(luò)、物聯(lián)網(wǎng)、云平臺(tái)。隨著大數(shù)據(jù)的不斷發(fā)展,國內(nèi)許多景區(qū)已經(jīng)實(shí)現(xiàn)wi-fi覆蓋,部分景區(qū)也已實(shí)現(xiàn)人與人、人與物、人與景點(diǎn)之間的實(shí)時(shí)互動(dòng),多省市已建有旅游產(chǎn)業(yè)監(jiān)測平臺(tái)或旅游大數(shù)據(jù)中心以及數(shù)據(jù)可視化平臺(tái),從中進(jìn)行數(shù)據(jù)統(tǒng)計(jì)、行為分析、監(jiān)控預(yù)警、服務(wù)質(zhì)量監(jiān)督等。通過這些平臺(tái),已基本能掌握跟游客和景點(diǎn)相關(guān)的數(shù)據(jù),可以實(shí)現(xiàn)更好旅游監(jiān)控、產(chǎn)業(yè)宏觀監(jiān)控,對該地的旅游管理和推廣都能發(fā)揮重要作用。
但從智慧化的發(fā)展來看,我國的信息化建設(shè)還需加強(qiáng)。雖然通訊網(wǎng)絡(luò)已基本能保證,但是大部分景區(qū)還無法實(shí)現(xiàn)對景區(qū)全面、透徹、及時(shí)的感知,更為困難的是對平臺(tái)的建設(shè)。在數(shù)據(jù)共享平臺(tái)的建設(shè)上,除了必備的硬件設(shè)施,大數(shù)據(jù)實(shí)驗(yàn)平臺(tái)還涉及大量部門,如政府管理部門、氣象部門、交通、電子商務(wù)、旅行社、旅游網(wǎng)站等。如此多的部門相關(guān)聯(lián),要想建立一個(gè)完整全面的大數(shù)據(jù)實(shí)驗(yàn)平臺(tái),難度可想而知。
大數(shù)據(jù)時(shí)代缺的不是數(shù)據(jù),而是方法。大數(shù)據(jù)在旅游行業(yè)的應(yīng)用前景非常廣闊,但是面對大量的數(shù)據(jù),不懂如何收集有用的數(shù)據(jù)、不懂如何對數(shù)據(jù)進(jìn)行挖掘和利用,那么“大數(shù)據(jù)”猶如礦山之中的廢石。旅游行業(yè)所涉及的結(jié)構(gòu)化與非結(jié)構(gòu)化數(shù)據(jù),通過云計(jì)算技術(shù),對數(shù)據(jù)的收集、存儲(chǔ)都較為容易,但對數(shù)據(jù)的挖掘分析則還在不斷探索中。大數(shù)據(jù)的挖掘常用的方法有關(guān)聯(lián)分析,相似度分析,距離分析,聚類分析等等,這些方法從不同的角度對數(shù)據(jù)進(jìn)行挖掘。其中,相關(guān)性分析方法通過關(guān)聯(lián)多個(gè)數(shù)據(jù)來源,挖掘數(shù)據(jù)價(jià)值。但針對旅游數(shù)據(jù),采用這些方法挖掘數(shù)據(jù)的價(jià)值信息,難度也很大,因?yàn)槁糜螖?shù)據(jù)中冗余數(shù)據(jù)很多,數(shù)據(jù)存在形式很復(fù)雜。在旅游非結(jié)構(gòu)化數(shù)據(jù)中,一張圖片、一個(gè)天氣變化、一次輿情評價(jià)等都將會(huì)對游客的旅行計(jì)劃帶來影響。對這些數(shù)據(jù)完全挖掘分析,對游客“行前、行中、行后”大數(shù)據(jù)的實(shí)時(shí)性挖掘都是很大的挑戰(zhàn)。
2017年,數(shù)據(jù)安全事件屢見不鮮,伴著大數(shù)據(jù)而來的數(shù)據(jù)安全問題日益凸顯出來。在大數(shù)據(jù)時(shí)代,無處不在的數(shù)據(jù)收集技術(shù)使我們的個(gè)人信息在所關(guān)聯(lián)的數(shù)據(jù)中心留下痕跡,如何保證這些信息被合法合理使用,讓數(shù)據(jù)“可用不可見”[4],這是亟待解決的問題。同時(shí),在大數(shù)據(jù)資源的開放性和共享性下,個(gè)人隱私和公民權(quán)益受到嚴(yán)重威脅。這一矛盾的存在使數(shù)據(jù)共享程度與數(shù)據(jù)挖掘程度成反比。此外,經(jīng)過大數(shù)據(jù)技術(shù)的分析、挖掘,個(gè)人隱私更易被發(fā)現(xiàn)和暴露,從而可能引發(fā)一系列社會(huì)問題。
大數(shù)據(jù)背景下的旅游數(shù)據(jù)當(dāng)然也避免不了數(shù)據(jù)的安全問題。如果游客“吃、住、行、游、娛、購”的數(shù)據(jù)被放入數(shù)據(jù)庫,被完全共享、挖掘、分析,那游客的人身財(cái)產(chǎn)安全將會(huì)受到嚴(yán)重影響,最終降低旅游體驗(yàn)。所以,數(shù)據(jù)的安全管理是進(jìn)行大數(shù)據(jù)挖掘的前提。
大數(shù)據(jù)背景下的智游離不開人才的創(chuàng)新活動(dòng)及技術(shù)支持,然而與專業(yè)相銜接的大數(shù)據(jù)人才培養(yǎng)未能及時(shí)跟上行業(yè)需求,加之創(chuàng)新型人才的外流,以及數(shù)據(jù)統(tǒng)計(jì)未來3~5年大數(shù)據(jù)行業(yè)將面臨全球性的人才荒,國內(nèi)智游的構(gòu)建還缺乏大量人才。
在信息化建設(shè)上,加大政府投入,加強(qiáng)基礎(chǔ)設(shè)施建設(shè),整合結(jié)構(gòu)化數(shù)據(jù),抓取非結(jié)構(gòu)化數(shù)據(jù),打通各數(shù)據(jù)壁壘,建設(shè)旅游大數(shù)據(jù)實(shí)驗(yàn)平臺(tái);在挖掘方法上,對旅游大數(shù)據(jù)實(shí)時(shí)性數(shù)據(jù)的挖掘應(yīng)該被放在重要位置;在數(shù)據(jù)安全上,從加強(qiáng)大數(shù)據(jù)安全立法、監(jiān)管執(zhí)法及強(qiáng)化技術(shù)手段建設(shè)等幾個(gè)方面著手,提升大數(shù)據(jù)環(huán)境下數(shù)據(jù)安全保護(hù)水平。加強(qiáng)人才的培養(yǎng)與引進(jìn),加強(qiáng)產(chǎn)學(xué)研合作,培養(yǎng)智游大數(shù)據(jù)人才。
參考文獻(xiàn)。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇五
隨著我國的旅游業(yè)的迅猛發(fā)展,旅游產(chǎn)業(yè)正邁向國際化的軌道,傳統(tǒng)旅游業(yè)積累的海量數(shù)據(jù),沒有被有效利用,資源被極大浪費(fèi)。將數(shù)據(jù)挖掘引入到旅游產(chǎn)業(yè)是大勢所趨。當(dāng)前數(shù)據(jù)挖掘在旅游信息化建設(shè)中的應(yīng)用與研究情況主要集中在高校理論界的研究,大多數(shù)研究僅僅是學(xué)術(shù)研究,真正運(yùn)用到旅游行業(yè)的文章多是從某個(gè)具體的方面出發(fā),針對個(gè)別應(yīng)用進(jìn)行數(shù)據(jù)挖掘的融合。筆者主要研究決策樹方法在旅游信息化建設(shè)中的應(yīng)用。目前,決策樹算法有cls算法、id3算法、c4.5算法、cart算法、sliq算法、z統(tǒng)計(jì)算法、并行決策樹算法和sprint算法等。不同算法在執(zhí)行效率、輸出結(jié)果、可擴(kuò)容性、可理解性、預(yù)測的準(zhǔn)確性等方面各不相同。總的來說,這么多決策樹算法各有優(yōu)缺點(diǎn),真正將數(shù)據(jù)挖掘運(yùn)用到整個(gè)旅游信息化建設(shè)中還有很多問題需要解決。
數(shù)據(jù)挖掘中常用的基本分類算法有決策樹、貝葉斯、基于規(guī)則的算法等等。其中,決策樹是目前主流的分類技術(shù),己經(jīng)成功的應(yīng)用于更多行業(yè)的數(shù)據(jù)分析。在關(guān)聯(lián)規(guī)則挖掘研究中,最重要的是apriori算法,這個(gè)算法后來成為絕大多數(shù)關(guān)聯(lián)規(guī)則分類的基礎(chǔ)。聚類算法也是數(shù)據(jù)挖掘技術(shù)中極為重要的組成部分。與分類技術(shù)不同的是,聚類不要求對數(shù)據(jù)進(jìn)行事先標(biāo)定,就數(shù)據(jù)挖掘功能而言,聚類能夠可以針對數(shù)據(jù)的相異度來分析評估數(shù)據(jù),可以作為其他對發(fā)現(xiàn)的簇運(yùn)行的數(shù)據(jù)挖掘算法的預(yù)處理步驟。各種算法分類模型建立有所不同,但原理是大致相同的。筆者考慮決策樹算法結(jié)構(gòu)簡單,便于理解,且很擅長處理非數(shù)值型數(shù)據(jù),建模效率高,分類速度快,特別適合大規(guī)模的數(shù)據(jù)處理的優(yōu)點(diǎn),結(jié)合旅游產(chǎn)業(yè)數(shù)據(jù)特點(diǎn),故作重點(diǎn)分析。
旅游業(yè)數(shù)據(jù)挖掘系統(tǒng)的基本特點(diǎn)如下:統(tǒng)計(jì)旅游興趣;購物消費(fèi)趨向;推薦其感興趣的旅游景點(diǎn);在后臺(tái)管理中,通過決策樹算法對游客數(shù)量、平均年齡、景點(diǎn)收費(fèi)、游客來自地區(qū)等進(jìn)行分析總結(jié),為旅游消費(fèi)者和旅游管理者提供服務(wù):為消費(fèi)者提供吃住行購?qiáng)蕵诽鞖飧鞣矫嫘畔⒉樵?、機(jī)票、車船票、酒店、景區(qū)門票、餐飲等方面的預(yù)定與現(xiàn)金支付、第三方支付、消費(fèi)者評價(jià)、在線咨詢等方面的便利、快捷服務(wù)。為管理者提供推薦、游客管理、線路管理、景點(diǎn)管理、特色服務(wù)管理、機(jī)票管理、在線咨詢管理、旅游客戶關(guān)系管理等服務(wù),提高整體服務(wù)效率和水平。
旅游業(yè)信息管理系統(tǒng)包括游客信息管理與游客信息分析兩個(gè)子模塊。根據(jù)系統(tǒng)日常運(yùn)行出現(xiàn)的問題及時(shí)對系統(tǒng)進(jìn)行維護(hù),如添加或者刪除某個(gè)模塊功能,系統(tǒng)整體運(yùn)行速度的更近等。系統(tǒng)運(yùn)用數(shù)據(jù)庫層、持久化層、業(yè)務(wù)邏輯層、表示層四層體系結(jié)構(gòu),主要利用id3算法達(dá)到旅游數(shù)據(jù)信息的快速、準(zhǔn)確分類。考慮了游客與酒店之間的關(guān)系、游客與旅游路線之間的關(guān)系、游客與旅游景點(diǎn)之間的關(guān)系、游客與機(jī)票、車票之間的關(guān)系、管理員與游客之間的關(guān)系、邏輯結(jié)構(gòu)設(shè)計(jì)。程序之間的獨(dú)立性增加,易于擴(kuò)展,規(guī)范化得到保證的同時(shí)提高了系統(tǒng)的安全性。詳細(xì)功能設(shè)計(jì)包括:用戶登錄、用戶查詢、預(yù)定及支付、后臺(tái)管理、旅游客戶管理和數(shù)據(jù)分析等方面。本系統(tǒng)中主要運(yùn)用java語言就行邏輯上的處理。系統(tǒng)主要使用struts2和hibernate這兩個(gè)框架來進(jìn)行整個(gè)系統(tǒng)的搭建。其中struts2主要處理業(yè)務(wù)邏輯,而hibernate主要是處理數(shù)據(jù)存儲(chǔ)、查詢等操作。系統(tǒng)采用tomcat服務(wù)器。系統(tǒng)模塊需要實(shí)現(xiàn)酒店推薦實(shí)現(xiàn)、景點(diǎn)推薦實(shí)現(xiàn)、天氣預(yù)報(bào)實(shí)現(xiàn)、旅游線路實(shí)現(xiàn)、特產(chǎn)推薦、數(shù)據(jù)分析展現(xiàn)功能、報(bào)表數(shù)據(jù)獲取、景區(qū)客流量變化分析實(shí)現(xiàn)等。需要進(jìn)行后臺(tái)信息管理等功能測試以及時(shí)間測試、數(shù)據(jù)測試等性能測試。
在對數(shù)據(jù)挖掘的基本方法與技術(shù)進(jìn)行總結(jié)的基礎(chǔ)上,結(jié)合當(dāng)今數(shù)據(jù)挖掘的發(fā)展方向和研究熱點(diǎn),可以發(fā)現(xiàn)旅游業(yè)數(shù)據(jù)挖掘算法系統(tǒng)有待進(jìn)一步完善之處:訂票系統(tǒng)尚待完善。界面美化需要進(jìn)一步改進(jìn)。數(shù)據(jù)表之間的結(jié)構(gòu)關(guān)系需要優(yōu)化,以提高數(shù)據(jù)處理能力和效率。數(shù)據(jù)挖掘工具及算法有待精細(xì)化改進(jìn)。
作者:朱暉單位:河南職業(yè)技術(shù)學(xué)院。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇六
[1]劉瑩?;跀?shù)據(jù)挖掘的商品銷售預(yù)測分析[j].科技通報(bào)。2014(07)。
[2]姜曉娟,郭一娜?;诟倪M(jìn)聚類的電信客戶流失預(yù)測分析[j].太原理工大學(xué)學(xué)報(bào)。2014(04)。
[3]李欣海。隨機(jī)森林模型在分類與回歸分析中的應(yīng)用[j].應(yīng)用昆蟲學(xué)報(bào)。2013(04)。
[4]朱志勇,徐長梅,劉志兵,胡晨剛。基于貝葉斯網(wǎng)絡(luò)的客戶流失分析研究[j].計(jì)算機(jī)工程與科學(xué)。2013(03)。
[5]翟健宏,李偉,葛瑞海,楊茹?;诰垲惻c貝葉斯分類器的網(wǎng)絡(luò)節(jié)點(diǎn)分組算法及評價(jià)模型[j].電信科學(xué)。2013(02)。
[6]王曼,施念,花琳琳,楊永利。成組刪除法和多重填補(bǔ)法對隨機(jī)缺失的二分類變量資料處理效果的比較[j].鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版).2012(05)。
[7]黃杰晟,曹永鋒。挖掘類改進(jìn)決策樹[j].現(xiàn)代計(jì)算機(jī)(專業(yè)版).2010(01)。
[8]李凈,張范,張智江。數(shù)據(jù)挖掘技術(shù)與電信客戶分析[j].信息通信技術(shù)。2009(05)。
[9]武曉巖,李康?;虮磉_(dá)數(shù)據(jù)判別分析的隨機(jī)森林方法[j].中國衛(wèi)生統(tǒng)計(jì)。2006(06)。
[10]張璐。論信息與企業(yè)競爭力[j].現(xiàn)代情報(bào)。2003(01)。
[13]俞馳?;诰W(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)2009。
[14]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)2009。
[15]于寶華?;跀?shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)2009。
[16]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)2010。
[19]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)2005。
[22]阮偉玲。面向生鮮農(nóng)產(chǎn)品溯源的基層數(shù)據(jù)庫建設(shè)[d].成都理工大學(xué)2015。
[23]明慧。復(fù)合材料加工工藝數(shù)據(jù)庫構(gòu)建及數(shù)據(jù)集成[d].大連理工大學(xué)2014。
[25]岳雪?;诤A繑?shù)據(jù)挖掘關(guān)聯(lián)測度工具的設(shè)計(jì)[d].西安財(cái)經(jīng)學(xué)院2014。
[28]張曉東。全序模塊模式下范式分解問題研究[d].哈爾濱理工大學(xué)2015。
[30]王化楠。一種新的混合遺傳的基因聚類方法[d].大連理工大學(xué)2014。
“大數(shù)據(jù)”到底有多大?根據(jù)研究機(jī)構(gòu)統(tǒng)計(jì),僅在2011年,全球數(shù)據(jù)增量就達(dá)到了1.8zb(即1.8萬億gb),相當(dāng)于全世界每個(gè)人產(chǎn)生200gb以上的數(shù)據(jù)。這種增長趨勢仍在加速,據(jù)保守預(yù)計(jì),接下來幾年中,數(shù)據(jù)將始終保持每年50%的增長速度。
縱觀人類歷史,每一次劃時(shí)代的變革都是以新工具的出現(xiàn)和應(yīng)用為標(biāo)志的。蒸汽機(jī)把人們從農(nóng)業(yè)時(shí)代帶入了工業(yè)時(shí)代,計(jì)算機(jī)和互聯(lián)網(wǎng)把人們從工業(yè)時(shí)代帶入了信息時(shí)代,而如今大數(shù)據(jù)時(shí)代已經(jīng)到來,它源自信息時(shí)代,又是信息時(shí)代全方位的深化應(yīng)用與延伸。大數(shù)據(jù)時(shí)代的生產(chǎn)原材料是數(shù)據(jù),生產(chǎn)工具則是大數(shù)據(jù)技術(shù),是對信息時(shí)代所產(chǎn)生的海量數(shù)據(jù)的挖掘和分析,從而快速地獲取有價(jià)值信息的技術(shù)和應(yīng)用。
概括來講,大數(shù)據(jù)有三個(gè)特征,可總結(jié)歸納為“3v”,即量(volume)、類(variety)、時(shí)(velocity)。量,數(shù)據(jù)容量大,現(xiàn)在數(shù)據(jù)單位已經(jīng)躍升至zb級別。類,數(shù)據(jù)種類多,主要來自業(yè)務(wù)系統(tǒng),例如社交網(wǎng)絡(luò)、電子商務(wù)和物聯(lián)網(wǎng)應(yīng)用。時(shí),處理速度快,時(shí)效性要求高,從傳統(tǒng)的事務(wù)性數(shù)據(jù)到實(shí)時(shí)或準(zhǔn)實(shí)時(shí)數(shù)據(jù)。
數(shù)據(jù)挖掘,又稱為知識(shí)發(fā)現(xiàn)(knowledgediscovery),是通過分析每個(gè)數(shù)據(jù),從大量數(shù)據(jù)中尋找其規(guī)律的技術(shù)。知識(shí)發(fā)現(xiàn)過程通常由數(shù)據(jù)準(zhǔn)備、規(guī)律尋找和規(guī)律表示3個(gè)階段組成。數(shù)據(jù)準(zhǔn)備是從數(shù)據(jù)中心存儲(chǔ)的數(shù)據(jù)中選取所需數(shù)據(jù)并整合成用于數(shù)據(jù)挖掘的數(shù)據(jù)集;規(guī)律尋找是用某種方法將數(shù)據(jù)集所含規(guī)律找出來;規(guī)律表示則是盡可能以用戶可理解的方式(如可視化)將找出的規(guī)律表示出來。
“數(shù)據(jù)海量、信息缺乏”是相當(dāng)多企業(yè)在數(shù)據(jù)大集中之后面臨的尷尬問題。目前,大多數(shù)事物型數(shù)據(jù)庫僅實(shí)現(xiàn)了數(shù)據(jù)錄入、查詢和統(tǒng)計(jì)等較低層次的功能,無法發(fā)現(xiàn)數(shù)據(jù)中存在的有用信息,更無法進(jìn)一步通過數(shù)據(jù)分析發(fā)現(xiàn)更高的價(jià)值。如果能夠?qū)@些數(shù)據(jù)進(jìn)行分析,探尋其數(shù)據(jù)模式及特征,進(jìn)而發(fā)現(xiàn)某個(gè)客戶、群體或組織的興趣和行為規(guī)律,專業(yè)人員就可以預(yù)測到未來可能發(fā)生的變化趨勢。這樣的數(shù)據(jù)挖掘過程,將極大拓展企業(yè)核心競爭力。例如,在網(wǎng)上購物時(shí)遇到的提示“瀏覽了該商品的人還瀏覽了如下商品”,就是在對大量的購買者“行為軌跡”數(shù)據(jù)進(jìn)行記錄和挖掘分析的基礎(chǔ)上,捕捉總結(jié)購買者共性習(xí)慣行為,并針對性地利用每一次購買機(jī)會(huì)而推出的銷售策略。
隨著社會(huì)的進(jìn)步和信息通信技術(shù)的發(fā)展,信息系統(tǒng)在各行業(yè)、各領(lǐng)域快速拓展。這些系統(tǒng)采集、處理、積累的數(shù)據(jù)越來越多,數(shù)據(jù)量增速越來越快,以至用“海量、爆炸性增長”等詞匯已無法形容數(shù)據(jù)的增長速度。
2011年5月,全球知名咨詢公司麥肯錫全球研究院發(fā)布了一份題為《大數(shù)據(jù):創(chuàng)新、競爭和生產(chǎn)力的。下一個(gè)新領(lǐng)域》的報(bào)告。報(bào)告中指出,數(shù)據(jù)已經(jīng)滲透到每一個(gè)行業(yè)和業(yè)務(wù)職能領(lǐng)域,逐漸成為重要的生產(chǎn)因素;而人們對于大數(shù)據(jù)的運(yùn)用預(yù)示著新一波生產(chǎn)率增長和消費(fèi)者盈余浪潮的到來。2012年3月29日,美國政府在白宮網(wǎng)站上發(fā)布了《大數(shù)據(jù)研究和發(fā)展倡議》,表示將投資2億美元啟動(dòng)“大數(shù)據(jù)研究和發(fā)展計(jì)劃”,增強(qiáng)從大數(shù)據(jù)中分析萃取信息的能力。
在電力行業(yè),堅(jiān)強(qiáng)智能電網(wǎng)的迅速發(fā)展使信息通信技術(shù)正以前所未有的廣度、深度與電網(wǎng)生產(chǎn)、企業(yè)管理快速融合,信息通信系統(tǒng)已經(jīng)成為智能電網(wǎng)的“中樞神經(jīng)”,支撐新一代電網(wǎng)生產(chǎn)和管理發(fā)展。目前,國家電網(wǎng)公司已初步建成了國內(nèi)領(lǐng)先、國際一流的信息集成平臺(tái)。隨著三地集中式數(shù)據(jù)中心的陸續(xù)投運(yùn),一級部署業(yè)務(wù)應(yīng)用范圍的拓展,結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)中心的上線運(yùn)行,電網(wǎng)業(yè)務(wù)數(shù)據(jù)從總量和種類上都已初具規(guī)模。隨著后續(xù)智能電表的逐步普及,電網(wǎng)業(yè)務(wù)數(shù)據(jù)將從時(shí)效性層面進(jìn)一步豐富和拓展。大數(shù)據(jù)的“量類時(shí)”特性,已在海量、實(shí)時(shí)的電網(wǎng)業(yè)務(wù)數(shù)據(jù)中進(jìn)一步凸顯,電力大數(shù)據(jù)分析迫在眉睫。
當(dāng)前,電網(wǎng)業(yè)務(wù)數(shù)據(jù)大致分為三類:一是電力企業(yè)生產(chǎn)數(shù)據(jù),如發(fā)電量、電壓穩(wěn)定性等方面的數(shù)據(jù);二是電力企業(yè)運(yùn)營數(shù)據(jù),如交易電價(jià)、售電量、用電客戶等方面的數(shù)據(jù);三是電力企業(yè)管理數(shù)據(jù),如erp、一體化平臺(tái)、協(xié)同辦公等方面的數(shù)據(jù)。如能充分利用這些基于電網(wǎng)實(shí)際的數(shù)據(jù),對其進(jìn)行深入分析,便可以提供大量的高附加值服務(wù)。這些增值服務(wù)將有利于電網(wǎng)安全檢測與控制(包括大災(zāi)難預(yù)警與處理、供電與電力調(diào)度決策支持和更準(zhǔn)確的用電量預(yù)測),客戶用電行為分析與客戶細(xì)分,電力企業(yè)精細(xì)化運(yùn)營管理等等,實(shí)現(xiàn)更科學(xué)的需求側(cè)管理。
例如,在電力營銷環(huán)節(jié),針對“大營銷”體系建設(shè),以客戶和市場為導(dǎo)向,省級集中的95598客戶服務(wù)、計(jì)量檢定配送業(yè)務(wù)屬地化管理的營銷管理體系和24小時(shí)面向客戶的營銷服務(wù)系統(tǒng),可通過數(shù)據(jù)分析改善服務(wù)模式,提高營銷能力和服務(wù)質(zhì)量;以分析型數(shù)據(jù)為基礎(chǔ),優(yōu)化現(xiàn)有營銷組織模式,科學(xué)配置計(jì)量、收費(fèi)和服務(wù)資源,構(gòu)建營銷稽查數(shù)據(jù)監(jiān)控分析模型;建立各種針對營銷的系統(tǒng)性算法模型庫,發(fā)現(xiàn)數(shù)據(jù)中存在的隱藏關(guān)系,為各級決策者提供多維的、直觀的、全面的、深入的分析預(yù)測性數(shù)據(jù),進(jìn)而主動(dòng)把握市場動(dòng)態(tài),采取適當(dāng)?shù)臓I銷策略,獲得更大的企業(yè)效益,更好地服務(wù)于社會(huì)和經(jīng)濟(jì)發(fā)展。此外,還可以考慮在電力生產(chǎn)環(huán)節(jié),利用數(shù)據(jù)挖掘技術(shù),在線計(jì)算輸送功率極限,并考慮電壓等因素對功率極限的影響,從而合理設(shè)置系統(tǒng)輸出功率,有效平衡系統(tǒng)的安全性和經(jīng)濟(jì)性。
公司具備非常好的從數(shù)據(jù)運(yùn)維角度實(shí)現(xiàn)更大程度信息、知識(shí)發(fā)現(xiàn)的條件和基礎(chǔ),完全可以立足數(shù)據(jù)運(yùn)維服務(wù),創(chuàng)造數(shù)據(jù)增值價(jià)值,提供并衍生多種服務(wù)。以數(shù)據(jù)中心為紐帶,新型數(shù)據(jù)運(yùn)維的成果將有可能作為一種新的消費(fèi)形態(tài)與交付方式,給客戶帶來全新的使用體驗(yàn),打破傳統(tǒng)業(yè)務(wù)系統(tǒng)間各自為陣的局面,進(jìn)一步推動(dòng)電網(wǎng)生產(chǎn)和企業(yè)管理,從數(shù)據(jù)運(yùn)維角度對企業(yè)生產(chǎn)經(jīng)營、管理以及堅(jiān)強(qiáng)智能電網(wǎng)建設(shè)提供更有力、更長遠(yuǎn)、更深入的支撐。
這個(gè)問題太籠統(tǒng),基本上算法和應(yīng)用是兩個(gè)人來做的,可能是數(shù)據(jù)挖掘職位。做算法的比較少,也比較高級。
其實(shí)所謂做算法大多數(shù)時(shí)候都不是設(shè)計(jì)新的算法(這個(gè)可以寫論文了),更多的是技術(shù)選型,特征工程抽取,最多是實(shí)現(xiàn)一些已經(jīng)有論文但是還沒有開源模塊的算法等,還是要求扎實(shí)的算法和數(shù)據(jù)結(jié)構(gòu)功底,以及豐富的分布式計(jì)算的知識(shí)的,以及不錯(cuò)的英文閱讀和寫作能力。但即使是這樣也是百里挑一的,很難找到。
絕大讀書數(shù)據(jù)挖掘崗位都是做應(yīng)用,數(shù)據(jù)清洗,用現(xiàn)成的庫建模,如果你自己不往算法或者架構(gòu)方面繼續(xù)提升,和其他的開發(fā)崗位的性質(zhì)基本沒什么不同,只要會(huì)編程都是很容易入門的。
實(shí)際情況不太清楚,由于數(shù)據(jù)挖掘和大數(shù)據(jù)這個(gè)概念太火了,肯定到處都有人招聘響應(yīng)的崗位,但是二線城市可能僅僅是停留在概念上,很多實(shí)際的工作并沒有接觸到足夠大的數(shù)據(jù),都是生搬硬套框架(從我面試的人的工作經(jīng)驗(yàn)上看即使是在北上廣深這種情況也比較多見)。
只是在北上廣深,可能接觸到大數(shù)據(jù)的機(jī)會(huì)多一些。而且做數(shù)據(jù)挖掘現(xiàn)在熱點(diǎn)的技術(shù)比如python,spark,scala,r這些技術(shù)除了在一線城市之外基本上沒有足夠的市場(因?yàn)闀?huì)的人太少了,二線城市的公司找不到掌握這些技術(shù)的人,不招也沒人學(xué))。
所以我推測二線城市最多的還是用java+hadoop,或者用java寫一些spark程序。北上廣深和二線城市程序員比待遇是欺負(fù)人,就不討論了。
和傳統(tǒng)的前后端程序員相比,最主要的去別就是對編程水平的要求。從我招聘的情況來看,做數(shù)據(jù)挖掘的人編程水平要求可以降低一個(gè)檔次,甚至都不用掌握面向?qū)ο蟆?BR> 但是要求技術(shù)全面,編程、sql,linux,正則表達(dá)式,hadoop,spark,爬蟲,機(jī)器學(xué)習(xí)模型等技術(shù)都要掌握一些。前后端可能是要求精深,數(shù)據(jù)挖掘更強(qiáng)調(diào)廣博,有架構(gòu)能力更好。
打基礎(chǔ)是最重要的,學(xué)習(xí)一門數(shù)據(jù)挖掘常用的語言,比如python,scala,r;學(xué)習(xí)足夠的linux經(jīng)驗(yàn),能夠通過awk,grep等linux命令快速的處理文本文件。掌握sql,mysql或者postgresql都是比較常用的關(guān)系型數(shù)據(jù)庫,搞數(shù)據(jù)的別跟我說不會(huì)用數(shù)據(jù)庫。
補(bǔ)充的一些技能,比如nosql的使用,elasticsearch的使用,分詞(jieba等模塊的使用),算法的數(shù)據(jù)結(jié)構(gòu)的知識(shí)。
我覺得應(yīng)當(dāng)學(xué)習(xí),首先hadoop和hive很簡單(如果你用aws的話你可以開一臺(tái)emr,上面直接就有hadoop和hive,可以直接從使用學(xué)起)。
我覺得如果不折騰安裝和部署,還有l(wèi)inux和mysql的經(jīng)驗(yàn),只要半天到一天就能熟悉hadoop和hive的使用(當(dāng)然你得有l(wèi)inux和mysql的基礎(chǔ),如果沒有就先老老實(shí)實(shí)的學(xué)linux和mysql,這兩個(gè)都可以在自己的pc上安裝,自己折騰)。
spark對很多人來說才是需要學(xué)習(xí)的,如果你有java經(jīng)驗(yàn)大可以從java入門。如果沒有那么還是建議從scala入門,但是實(shí)際上如果沒有java經(jīng)驗(yàn),scala入門也會(huì)有一定難度,但是可以慢慢補(bǔ)。
所以總的來說spark才足夠難,以至于需要學(xué)習(xí)。
如果上面任何一個(gè)問題的答案是no,我都不建議直接轉(zhuǎn)行或者申請高級的數(shù)據(jù)挖掘職位(因?yàn)槟愫茈y找到一個(gè)正經(jīng)的數(shù)據(jù)挖掘崗位,頂多是一些打擦邊球的崗位,無論是實(shí)際干的工作還是未來的成長可能對你的幫助都不大)。
無論你現(xiàn)在是學(xué)生還是已經(jīng)再做一些前段后端、運(yùn)維之類的工作你都有足夠的時(shí)間補(bǔ)齊這些基礎(chǔ)知識(shí)。
補(bǔ)齊了這些知識(shí)之后,第一件事就是了解大數(shù)據(jù)生態(tài),hadoop生態(tài)圈,spark生態(tài)圈,機(jī)器學(xué)習(xí),深度學(xué)習(xí)(后兩者需要高等數(shù)學(xué)和線性代數(shù)基礎(chǔ),如果你的大學(xué)專業(yè)學(xué)這些不要混)。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇七
我國中央經(jīng)濟(jì)會(huì)議明確指出解決“三農(nóng)”問題是現(xiàn)階段工作中的重點(diǎn)內(nèi)容,這進(jìn)一步體現(xiàn)出我國對農(nóng)村旅游發(fā)展的重視?;跁r(shí)代背景給予農(nóng)村旅游發(fā)展的支持,進(jìn)一步促進(jìn)了農(nóng)村產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整與農(nóng)村經(jīng)濟(jì)的良好發(fā)展。在時(shí)代的背景下,農(nóng)業(yè)旅游這種新興的旅游模式順應(yīng)市場的需求得以產(chǎn)生和發(fā)展。不僅能夠切實(shí)的促進(jìn)農(nóng)民的收入取得相應(yīng)的提高,還能夠進(jìn)一步促進(jìn)農(nóng)村地區(qū)的全面發(fā)展。農(nóng)業(yè)資源作為農(nóng)業(yè)旅游發(fā)展的主要資源,農(nóng)村旅游的開發(fā)能夠有效的保障農(nóng)村土地的經(jīng)濟(jì)性質(zhì),進(jìn)而對耕地?cái)?shù)量的保護(hù)起著強(qiáng)有力的保障作用。
一、探討農(nóng)業(yè)旅游開發(fā)管理的模式。
1、農(nóng)戶分散經(jīng)營模式。
目前,在我國農(nóng)業(yè)旅游發(fā)展的基礎(chǔ)階段是由農(nóng)戶作為農(nóng)業(yè)旅游開發(fā)的主體,農(nóng)業(yè)旅游的經(jīng)營模式主要是以分散式經(jīng)營模式為主。以農(nóng)戶為主體進(jìn)行經(jīng)營直接具有一定的弊端,一是開發(fā)的規(guī)模相對較小并且分散,而一些農(nóng)戶為了追求短期的利益沒有對農(nóng)業(yè)旅游資源進(jìn)行合理的開發(fā),而相應(yīng)附屬農(nóng)產(chǎn)品的開發(fā)也因?yàn)槿狈茖W(xué)理論支持出現(xiàn)單一缺乏吸引力的情況。二是農(nóng)戶缺乏雄厚的經(jīng)濟(jì)實(shí)力,在農(nóng)業(yè)旅游開發(fā)中沒有足夠的資金投入。這直接影響著產(chǎn)品的開發(fā)和宣傳。除此之外,經(jīng)營者缺乏統(tǒng)一的規(guī)劃,對原有的田園風(fēng)光進(jìn)行過度的修建,從而導(dǎo)致環(huán)境污染更加嚴(yán)重[1]。
2、企業(yè)主導(dǎo)經(jīng)營模式。
分散的農(nóng)戶經(jīng)營模式為農(nóng)業(yè)旅游開發(fā)和經(jīng)營帶來嚴(yán)重的外部問題。而通過引進(jìn)有經(jīng)濟(jì)實(shí)力和市場經(jīng)營能力的企業(yè)進(jìn)行農(nóng)業(yè)旅游的開發(fā),能夠在一定程度上解決這些外部問題。但引進(jìn)的企業(yè)作為外來者很難考慮到鄉(xiāng)村公共資源對后代具有的重要作用,因此仍然可能導(dǎo)致對農(nóng)業(yè)資源進(jìn)行過度的開發(fā)利用和破壞[2]。
3、村民自主開發(fā)模式。
以村民自主開發(fā)模式作為農(nóng)業(yè)旅游經(jīng)營模式中的主體,主要基于具有一定規(guī)模的社區(qū)內(nèi),村民自發(fā)聯(lián)合形成的農(nóng)業(yè)旅游開發(fā)組組織。一般情況下,會(huì)成立相應(yīng)的管理委員會(huì)對農(nóng)業(yè)旅游資源的占用、供應(yīng)等活動(dòng)進(jìn)行組織和監(jiān)督。并結(jié)合相應(yīng)的規(guī)章制度對農(nóng)業(yè)旅游資源和鄉(xiāng)村整體文化環(huán)境進(jìn)行合理的使用和維護(hù)。這一經(jīng)營模式是目前比較符合我國農(nóng)業(yè)旅游開發(fā)的模式[3]。
二、分析農(nóng)業(yè)旅游開發(fā)管理現(xiàn)存問題及形成原因。
1、農(nóng)業(yè)旅游開發(fā)管理現(xiàn)存的問題。
我國農(nóng)業(yè)旅游發(fā)展相對較晚,大部分地區(qū)都處在基礎(chǔ)發(fā)展階段。對于現(xiàn)階段農(nóng)業(yè)旅游開發(fā)中普遍存在的問題主要有三種,一是農(nóng)民的收入提高效果不明顯。二是農(nóng)村的鄉(xiāng)土民俗和自然資源環(huán)境遭到嚴(yán)重的破壞,三是對于農(nóng)業(yè)旅游資源很難實(shí)現(xiàn)可持續(xù)發(fā)展。
通過對現(xiàn)階段我國農(nóng)業(yè)旅游開發(fā)管理中存在問題的分析可以總結(jié)出,形成這些問題的原因主要有四個(gè)方面。一是經(jīng)營者的思想觀念沒有跟隨時(shí)代的發(fā)展進(jìn)行及時(shí)的更新,這直接導(dǎo)致產(chǎn)品類型較少。二是對農(nóng)業(yè)旅游開發(fā)和管理沒有進(jìn)行長期的規(guī)劃,缺乏相應(yīng)的品牌產(chǎn)品和足夠的營銷力度。三是人才和資金的短缺導(dǎo)致旅游市場淡季和旺季差距較大。四是相關(guān)的基礎(chǔ)設(shè)施和配套設(shè)施不完善,并且缺乏相應(yīng)的體制,導(dǎo)致市場形成嚴(yán)重的無序競爭。
三、探究農(nóng)業(yè)旅游開發(fā)管理相關(guān)對策。
1、正確認(rèn)識(shí)農(nóng)業(yè)旅游。
農(nóng)業(yè)旅游的開發(fā)和管理要以正確的思想觀念作為前提指導(dǎo),因此要想確保農(nóng)業(yè)旅游能夠保持正確的發(fā)展方向就要對其具有正確的認(rèn)識(shí)。農(nóng)業(yè)旅游的開發(fā)和管理一定要樹立正確的旅游資源觀念,打破傳統(tǒng)觀念的限制,對農(nóng)業(yè)旅游資源存在的本質(zhì)內(nèi)涵和具有的重要價(jià)值進(jìn)行充分的認(rèn)識(shí),改進(jìn)和創(chuàng)新農(nóng)業(yè)旅游開發(fā)和管理意識(shí)。相關(guān)部門和所涉及人員應(yīng)該投入更多的精力對于農(nóng)業(yè)旅游進(jìn)行合理的開發(fā)和科學(xué)的管理,從而為農(nóng)業(yè)旅游發(fā)展質(zhì)量提供強(qiáng)有力的基礎(chǔ)保障。
2、農(nóng)業(yè)旅游規(guī)劃開發(fā)。
農(nóng)業(yè)旅游主要是向游客展示出農(nóng)村生產(chǎn)生活的整體,讓游客能夠感受到傳統(tǒng)的鄉(xiāng)土民俗文化和農(nóng)業(yè)資源。這也要求我們要通過有效的開發(fā)和管理形成一個(gè)綜合的資源系統(tǒng),必須要從整體上對農(nóng)業(yè)旅游進(jìn)行合理的規(guī)劃和科學(xué)的開發(fā)。對于農(nóng)業(yè)旅游的規(guī)劃和開發(fā)不僅要保護(hù)地區(qū)生物多樣性好農(nóng)村生態(tài)系統(tǒng),還要重視農(nóng)業(yè)科學(xué)配置,保證農(nóng)業(yè)旅游資源的完整性和合理性。
3、加強(qiáng)相應(yīng)制度規(guī)范。
現(xiàn)階段,我國農(nóng)業(yè)旅游開發(fā)管理十分需要建立相關(guān)的制度規(guī)范。這不僅有利于農(nóng)業(yè)旅游開發(fā)主體在使用公共資源時(shí)能夠主動(dòng)考慮社會(huì)成本,進(jìn)而對公共資源的消費(fèi)數(shù)量進(jìn)行合理的限制。還能夠在一定程度上保證農(nóng)業(yè)旅游經(jīng)營組織在進(jìn)行科學(xué)健康的可持續(xù)發(fā)展。
4、加強(qiáng)旅游人才培養(yǎng)。
加強(qiáng)對農(nóng)村旅游人才的培養(yǎng)可以從三個(gè)方面入手,一是組織相應(yīng)的旅游知識(shí)培訓(xùn)。二是要與相應(yīng)的旅游企業(yè)和高等院校建立緊密的合作,為農(nóng)村旅游人才提供更多的培訓(xùn)機(jī)會(huì)。三是要充分結(jié)合現(xiàn)代化信息技術(shù)手段,一方面要利用現(xiàn)代化網(wǎng)絡(luò)信息技術(shù)拓寬農(nóng)村旅游人才的知識(shí)面,另一方面還要利用網(wǎng)絡(luò)信息技術(shù)倡導(dǎo)農(nóng)民不斷加強(qiáng)自身的學(xué)習(xí),從而使農(nóng)民的整體素質(zhì)取得提高。
四、結(jié)語。
農(nóng)業(yè)旅游作為新農(nóng)村建設(shè)和發(fā)展的重要內(nèi)容,推動(dòng)著人民生活水平的提高和國家經(jīng)濟(jì)的發(fā)展,要想更好的進(jìn)行農(nóng)業(yè)旅游的開發(fā)和管理,我們要明確目前我國農(nóng)業(yè)旅游發(fā)展管理模式存在的不足,正確的認(rèn)識(shí)農(nóng)業(yè)旅游的重要性。要加強(qiáng)對其規(guī)劃開發(fā),并建立相應(yīng)的制度規(guī)范對旅游人才的培養(yǎng),從而促進(jìn)農(nóng)業(yè)旅游的可持續(xù)發(fā)展。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇八
摘要:主要通過對數(shù)據(jù)挖掘技術(shù)的探討,對職教多年累積的教學(xué)數(shù)據(jù)運(yùn)用分類、決策樹、關(guān)聯(lián)規(guī)則等技術(shù)進(jìn)行分析,從分析的結(jié)果中發(fā)現(xiàn)有價(jià)值的數(shù)據(jù)模式,科學(xué)合理地實(shí)現(xiàn)教學(xué)評估,讓教學(xué)管理者能夠從中發(fā)現(xiàn)教學(xué)活動(dòng)中存在的主要問題以便及時(shí)改進(jìn),進(jìn)而輔助管理者決策做好教學(xué)管理。
關(guān)鍵詞:教學(xué)評估;數(shù)據(jù)挖掘;教學(xué)評估體系;層次分析法。
1概述。
近年來國家對中等職業(yè)教育的發(fā)展高度重視,在政策扶持與職教工作者的努力下,職業(yè)教育獲得了蓬勃的發(fā)展。如何提高教學(xué)質(zhì)量、培養(yǎng)合格的高技術(shù)人才成為職教工作者研究的課題。各種調(diào)查研究結(jié)果表明:加強(qiáng)師資隊(duì)伍的建設(shè),強(qiáng)化教師教學(xué)評估對教學(xué)質(zhì)量的提高尤為重要。
所謂教學(xué)評估,就是運(yùn)用系統(tǒng)科學(xué)的方法對教學(xué)活動(dòng)或教育行為的價(jià)值、效果作出科學(xué)的判斷過程。教學(xué)評估方式要靈活多樣,要多途徑、多方位、多形式的發(fā)揮評估的導(dǎo)學(xué)作用,以鼓勵(lì)評估為主,充分發(fā)揮評估的激勵(lì)功能,促進(jìn)教學(xué)的健康發(fā)展。
在中等職業(yè)學(xué)校多年的教育教學(xué)工作中積累了大量的教務(wù)管理數(shù)據(jù)、教師檔案數(shù)據(jù)等,怎樣從龐雜大量的數(shù)據(jù)中挖掘出有效提高教學(xué)質(zhì)量的關(guān)鍵因素是個(gè)難題。數(shù)據(jù)挖掘技術(shù)卻可以從人工智能的角度很好地解決這一課題。通過數(shù)據(jù)挖掘技術(shù),得到隱藏在教學(xué)數(shù)據(jù)背后的有用信息,在一定程度上為教學(xué)部門提供決策支持信息促使更好地開展教學(xué)工作,提高教學(xué)質(zhì)量和教學(xué)管理水平,使之能在功能上更加清晰地認(rèn)識(shí)教師教與學(xué)生學(xué)的關(guān)系及促進(jìn)教育教學(xué)改革。
數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機(jī)的數(shù)據(jù)中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識(shí)的過程。數(shù)據(jù)挖掘應(yīng)該更正確地命名為“從數(shù)據(jù)中挖掘知識(shí)”。即數(shù)據(jù)挖掘是對巨大的數(shù)據(jù)集進(jìn)行尋找和分析的計(jì)算機(jī)輔助處理過程,在這一過程中顯現(xiàn)先前未曾發(fā)現(xiàn)的模式,然后從這些數(shù)據(jù)中發(fā)掘某些內(nèi)涵信息,包括描述過去和預(yù)測未來趨勢的信息。人工智能領(lǐng)域習(xí)慣稱知識(shí)發(fā)現(xiàn),而數(shù)據(jù)庫領(lǐng)域習(xí)慣將其稱為數(shù)據(jù)挖掘。
數(shù)據(jù)挖掘過程包括對問題的理解和提出、數(shù)據(jù)收集、數(shù)據(jù)處理、數(shù)據(jù)變換、數(shù)據(jù)挖掘、模式評估、知識(shí)表示等過程,以上的過程不是一次完成的,其中某些步驟或者全過程可能要反復(fù)進(jìn)行。對問題的理解和提出在開始數(shù)據(jù)挖掘之前,最基礎(chǔ)的工作就是理解數(shù)據(jù)和實(shí)際的業(yè)務(wù)問題,在這個(gè)基礎(chǔ)之上提出問題,對目標(biāo)作出明確的定義。
2.3.1分類分析方法:是通過分析訓(xùn)練集中的數(shù)據(jù),為每個(gè)類別做出準(zhǔn)確的描述或建立分析模型或挖掘出分類規(guī)則,以便以后利用這個(gè)分類規(guī)則對其它數(shù)據(jù)庫中的記錄進(jìn)行分類的方法。2.3.2決策樹算法:是一種常用于分類、預(yù)測模型的算法,它通過將大量數(shù)據(jù)有目的的分類,從而找到一些有價(jià)值的、潛在的信息。它的主要優(yōu)點(diǎn)是描述簡單,分類速度快,特別適合大規(guī)模的數(shù)據(jù)處理。2.3.3聚類算法:聚類分析處理的數(shù)據(jù)對象的類是未知的。聚類分析就是將對象集合分組為由類似的對象組成的多個(gè)簇的過程。在同一個(gè)簇內(nèi)的對象之間具有較高的相似度,而不同簇內(nèi)的對象差別較大。2.3.4關(guān)聯(lián)規(guī)則算法:側(cè)重于確定數(shù)據(jù)中不同領(lǐng)域之間的關(guān)系,即尋找給定數(shù)據(jù)集中的有趣聯(lián)系。提取描述數(shù)據(jù)庫中數(shù)據(jù)項(xiàng)之間所存在的潛在關(guān)系的規(guī)則,找出滿足給定支持度和置信度閾值的多個(gè)域之間的依賴關(guān)系。
在以上各種算法的研究中,比較有影響的是關(guān)聯(lián)規(guī)則算法。
3教學(xué)評估體系。
評價(jià)指標(biāo)體系是教學(xué)評估的基礎(chǔ)和依據(jù),對評估起著導(dǎo)向作用,因此制定一個(gè)科學(xué)全面的評價(jià)指標(biāo)體系就成為改革、完善評價(jià)的首要目標(biāo)。評價(jià)指標(biāo)應(yīng)以指導(dǎo)教學(xué)實(shí)踐為目的,通過評價(jià)使教師明確教學(xué)過程中應(yīng)該肯定的和需要改進(jìn)的地方;以及給出設(shè)計(jì)評價(jià)指標(biāo)的導(dǎo)向問題。
3.1教學(xué)評估體系的構(gòu)建方法。
層次分析法(簡稱ahp法)是美國運(yùn)籌學(xué)家t·l·saaty教授在20世紀(jì)70年代初期提出的一種簡便、靈活而又實(shí)用的多準(zhǔn)則決策的系統(tǒng)分析方法,其原理是把一個(gè)復(fù)雜問題分解、轉(zhuǎn)化為定量分析的方法。它需要建立關(guān)于系統(tǒng)屬性的各因素多級遞階結(jié)構(gòu),然后對每一層次上的因素逐一進(jìn)行比較,得到判斷矩陣,通過計(jì)算判斷矩陣的特征值和特征向量,得到其關(guān)于上一層因素的相對權(quán)重,并可自上而下地用上一層次因素的相對權(quán)重加權(quán)求和,求出各層次因素關(guān)于系統(tǒng)整體屬性(總目標(biāo)層)的綜合重要度。
3.2構(gòu)建教學(xué)評估指標(biāo)體系的作用。
3.2.1構(gòu)建的教學(xué)評估指標(biāo),作為挖掘庫選擇教學(xué)信息屬性的依據(jù)。
3.2.2通過ahp方法,能篩選出用來評價(jià)教學(xué)質(zhì)量的相關(guān)重要屬性,從而入選為挖掘庫字段,這樣就減去了挖掘庫中對于挖掘目標(biāo)來說影響較小的屬性,進(jìn)而大大減少了挖掘的工作量,提高挖掘效率。3.2.3通過構(gòu)建教學(xué)評估指標(biāo),減少了挖掘?qū)ο蟮淖侄?,從而避免因挖掘字段過多,導(dǎo)致建立的決策樹過大,出現(xiàn)過度擬合挖掘?qū)ο?,進(jìn)而造成挖掘規(guī)則不具有很好的評價(jià)效果的現(xiàn)象。3.2.4提高教學(xué)質(zhì)量評估實(shí)施工作的效率。
4.1學(xué)習(xí)效果評價(jià)學(xué)習(xí)評價(jià)是教育工作者的重要職責(zé)之一。評價(jià)學(xué)生的學(xué)習(xí)情況,既對學(xué)生起到信息反饋和激發(fā)學(xué)習(xí)動(dòng)機(jī)的作用,又是檢查課程計(jì)劃、教學(xué)程序以至教學(xué)目的的手段,也是考查學(xué)生個(gè)別差異、便于因材施教的途徑。評價(jià)要遵循“評價(jià)內(nèi)容要全面、評價(jià)方式要多元化、評價(jià)次數(shù)要多次化,注重自評與互評的有機(jī)結(jié)合”的原則。利用數(shù)據(jù)挖掘工具,對教師業(yè)務(wù)檔案數(shù)據(jù)庫、行為記錄數(shù)據(jù)庫、獎(jiǎng)勵(lì)處罰數(shù)據(jù)庫等進(jìn)行分析處理,可以即時(shí)得到教師教學(xué)的評價(jià)結(jié)果,對教學(xué)過程出現(xiàn)的問題進(jìn)行及時(shí)指正。
另外,這種系統(tǒng)還能夠克服教師主觀評價(jià)的不公正、不客觀的弱點(diǎn),減輕教師的工作量。
4.2課堂教學(xué)評價(jià)。
課堂教學(xué)評價(jià)不僅對教學(xué)起著調(diào)節(jié)、控制、指導(dǎo)和推動(dòng)作用,而且有很強(qiáng)的導(dǎo)向性,是學(xué)校教學(xué)管理的重要組成部分,是評價(jià)教學(xué)工作成績的主要手段。實(shí)現(xiàn)對任課教師及教學(xué)組織工作效果做出評價(jià),但是更重要的目的是總結(jié)優(yōu)秀的教學(xué)經(jīng)驗(yàn),為教學(xué)質(zhì)量的穩(wěn)定提高制定科學(xué)的規(guī)范。學(xué)校每學(xué)期都要搞課堂教學(xué)評價(jià)調(diào)查,積累了大量的數(shù)據(jù)。利用數(shù)據(jù)挖掘技術(shù),從教學(xué)評價(jià)數(shù)據(jù)中進(jìn)行數(shù)據(jù)挖掘,將關(guān)聯(lián)規(guī)則應(yīng)用于教師教學(xué)評估系統(tǒng)中,探討教學(xué)效果的好壞與老師的年齡、職稱、學(xué)歷之間的聯(lián)系;確定教師的教學(xué)內(nèi)容的范圍和深度是否合適,選擇的教學(xué)媒體是否適合所選的教學(xué)內(nèi)容和教學(xué)對象;講解的時(shí)間是否恰到好處;教學(xué)策略是否得當(dāng)?shù)取亩梢约皶r(shí)地將挖掘出的規(guī)則信息反饋給教師。管理部門據(jù)此能合理配置班級的上課教師,使學(xué)生能夠較好地保持良好的學(xué)習(xí)態(tài)度,從而為教學(xué)部門提供了決策支持信息,促使教學(xué)工作更好地開展。
結(jié)束語。
數(shù)據(jù)挖掘作為一種工具,其技術(shù)日趨成熟,在許多領(lǐng)域取得了廣泛的應(yīng)用。在教育領(lǐng)域里,隨著數(shù)據(jù)的不斷累積,把數(shù)據(jù)挖掘技術(shù)應(yīng)用到教學(xué)評價(jià)系統(tǒng)中,讓領(lǐng)導(dǎo)者能夠從中發(fā)現(xiàn)教師教學(xué)活動(dòng)中的主要問題,以便及時(shí)改進(jìn),進(jìn)而輔助領(lǐng)導(dǎo)決策做好學(xué)校管理,提高學(xué)校管理能力和水平,同時(shí)通過建立有效的教學(xué)激勵(lì)機(jī)制來達(dá)到提高教學(xué)質(zhì)量的目的。這一研究對發(fā)展中的職業(yè)教育教學(xué)管理提出了很好的建議,為教學(xué)管理工作的計(jì)算機(jī)輔助決策增添了新的內(nèi)容。將數(shù)據(jù)挖掘技術(shù)應(yīng)用于中職教學(xué)評估,設(shè)計(jì)開發(fā)一套行之有效的課堂教學(xué)評價(jià)系統(tǒng),是下一步要做的工作,必將有力推動(dòng)職業(yè)教育的快速發(fā)展。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇九
[1]劉瑩?;跀?shù)據(jù)挖掘的商品銷售預(yù)測分析[j].科技通報(bào)。20xx(07)。
[2]姜曉娟,郭一娜?;诟倪M(jìn)聚類的電信客戶流失預(yù)測分析[j].太原理工大學(xué)學(xué)報(bào)。20xx(04)。
[3]李欣海。隨機(jī)森林模型在分類與回歸分析中的應(yīng)用[j].應(yīng)用昆蟲學(xué)報(bào)。20xx(04)。
[4]朱志勇,徐長梅,劉志兵,胡晨剛?;谪惾~斯網(wǎng)絡(luò)的客戶流失分析研究[j].計(jì)算機(jī)工程與科學(xué)。20xx(03)。
[5]翟健宏,李偉,葛瑞海,楊茹?;诰垲惻c貝葉斯分類器的網(wǎng)絡(luò)節(jié)點(diǎn)分組算法及評價(jià)模型[j].電信科學(xué)。20xx(02)。
[6]王曼,施念,花琳琳,楊永利。成組刪除法和多重填補(bǔ)法對隨機(jī)缺失的二分類變量資料處理效果的比較[j].鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版).20xx(05)。
[7]黃杰晟,曹永鋒。挖掘類改進(jìn)決策樹[j].現(xiàn)代計(jì)算機(jī)(專業(yè)版).20xx(01)。
[8]李凈,張范,張智江。數(shù)據(jù)挖掘技術(shù)與電信客戶分析[j].信息通信技術(shù)。20xx(05)。
[9]武曉巖,李康。基因表達(dá)數(shù)據(jù)判別分析的隨機(jī)森林方法[j].中國衛(wèi)生統(tǒng)計(jì)。20xx(06)。
[10]張璐。論信息與企業(yè)競爭力[j].現(xiàn)代情報(bào)。20xx(01)。
[13]俞馳?;诰W(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)20xx。
[14]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)20xx。
[15]于寶華。基于數(shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)20xx。
[16]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)20xx。
[19]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)20xx。
[22]阮偉玲。面向生鮮農(nóng)產(chǎn)品溯源的基層數(shù)據(jù)庫建設(shè)[d].成都理工大學(xué)20xx。
[23]明慧。復(fù)合材料加工工藝數(shù)據(jù)庫構(gòu)建及數(shù)據(jù)集成[d].大連理工大學(xué)20xx。
[25]岳雪。基于海量數(shù)據(jù)挖掘關(guān)聯(lián)測度工具的設(shè)計(jì)[d].西安財(cái)經(jīng)學(xué)院20xx。
[28]張曉東。全序模塊模式下范式分解問題研究[d].哈爾濱理工大學(xué)20xx。
[30]王化楠。一種新的混合遺傳的基因聚類方法[d].大連理工大學(xué)20xx。
[33]俞馳?;诰W(wǎng)絡(luò)數(shù)據(jù)挖掘的客戶獲取系統(tǒng)研究[d].西安電子科技大學(xué)20xx。
[34]馮軍。數(shù)據(jù)挖掘在自動(dòng)外呼系統(tǒng)中的應(yīng)用[d].北京郵電大學(xué)20xx。
[35]于寶華?;跀?shù)據(jù)挖掘的高考數(shù)據(jù)分析[d].天津大學(xué)20xx。
[36]王仁彥。數(shù)據(jù)挖掘與網(wǎng)站運(yùn)營管理[d].華東師范大學(xué)20xx。
[39]賈治國。數(shù)據(jù)挖掘在高考填報(bào)志愿上的應(yīng)用[d].內(nèi)蒙古大學(xué)20xx。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十
計(jì)算機(jī)技術(shù)的不斷發(fā)展,信息技術(shù)不斷加強(qiáng),在社會(huì)新的發(fā)展趨勢下,以往的傳統(tǒng)管理模式落后于現(xiàn)代化發(fā)展的管理水平。為了創(chuàng)新檔案管理的模式,提高檔案管理的質(zhì)量,在現(xiàn)代檔案信息管理系統(tǒng)中引入數(shù)據(jù)挖掘技術(shù)。
數(shù)據(jù)挖掘技術(shù)是一種基于統(tǒng)計(jì)學(xué)、人工智能等等技術(shù)基礎(chǔ)上,能夠自動(dòng)分析原有數(shù)據(jù),從而做出歸納整理,并對其潛在的模式進(jìn)行挖掘的決策支持過程,簡單來說就是從一系列復(fù)雜的數(shù)據(jù)中提取人們需要的潛在性信息。
二十世紀(jì)末,計(jì)算機(jī)挖掘技術(shù)產(chǎn)生。其一般用到的方法有:
(1)孤立點(diǎn)分析。孤立點(diǎn)分析法主要用于對于特殊信息的挖掘。
(2)聚類分析。聚類分析方法是在指定的對象中,對其價(jià)值聯(lián)系進(jìn)行搜索。
(3)分類分析。分類分析就是找出具有一定特點(diǎn)的數(shù)據(jù),對需要解讀的數(shù)據(jù)進(jìn)行識(shí)別。
(4)關(guān)聯(lián)性分析。關(guān)聯(lián)性分析方法是對指定數(shù)據(jù)中出現(xiàn)頻繁的數(shù)據(jù)進(jìn)行挖掘。
(5)序列分析。與關(guān)聯(lián)性分析法一樣,由數(shù)據(jù)之間內(nèi)在的聯(lián)系得出潛在的關(guān)聯(lián)。
1.3計(jì)算機(jī)挖掘技術(shù)的形式分析。
計(jì)算機(jī)挖掘技術(shù)在使用過程中,收集到的數(shù)據(jù)不同,數(shù)據(jù)收集的方法也就不同。在對數(shù)據(jù)挖掘技術(shù)進(jìn)行形式分析的時(shí)候,主要用到:分類形式、粗糙集形式、相關(guān)規(guī)則形式。
系統(tǒng)中的應(yīng)用計(jì)算機(jī)挖掘技術(shù),能夠?qū)㈦[藏的信息挖掘出來并進(jìn)行總結(jié)和利用,運(yùn)用到檔案管理中來,在充分發(fā)揮挖掘技術(shù)作用的同時(shí),極大的提高了檔案數(shù)據(jù)的利用價(jià)值。數(shù)據(jù)挖掘技術(shù)在檔案管理系統(tǒng)中,一般用到的方法為:
2.1收集法。
該方法在對數(shù)據(jù)庫中的數(shù)據(jù)進(jìn)行分析的基礎(chǔ)上,建立對已知數(shù)據(jù)詳細(xì)描述的概念模型。然后將每個(gè)測試的樣本與此模型進(jìn)行比較,若有一個(gè)模型在測試中被認(rèn)可,就可以以此模型對管理的對象分類。例如,檔案管理員就某事向客戶進(jìn)行問卷調(diào)查并將答案輸入到數(shù)據(jù)庫中。在該數(shù)據(jù)庫中,對客戶的回答進(jìn)行具體屬性描述,當(dāng)有新的回答內(nèi)容輸入的時(shí)候,系統(tǒng)會(huì)自動(dòng)對該客戶需求分類,在減輕管理員工作壓力的同時(shí),提高了檔案管理的效率。
2.2保留法。
該方法是防止老客戶檔案丟失并將客戶留住的過程。對于任何一個(gè)企業(yè)來說,發(fā)展一個(gè)新的客戶的成本要遠(yuǎn)遠(yuǎn)高于留住一個(gè)來客戶的成本。在客戶保留的過程中,對客戶檔案流失原因的分析至關(guān)重要,因此,采用挖掘技術(shù)對其進(jìn)行分析是必要的。
2.3分類法。
通過計(jì)算機(jī)挖掘技術(shù)對檔案進(jìn)行分類,按照不同的性質(zhì)進(jìn)行系統(tǒng)的劃分,將所有相似或相通的檔案進(jìn)行整理,在人們需要的時(shí)候,能夠快速的被提取出來,提高了檢索的效率和分類的專業(yè)性。
計(jì)算機(jī)挖掘技術(shù)的應(yīng)用,對檔案管理方式的不斷完善有著極其重要的意義,其重要性主要體現(xiàn)在:
3.1對檔案的保護(hù)更全面。
一部分具有歷史意義的檔案,隨著保存的時(shí)間不斷增加,其年代感加強(qiáng),意義和價(jià)值增大。相應(yīng)的,利用的頻率會(huì)隨著利用的價(jià)值增加,也更容易被損壞從而導(dǎo)致檔案信息壽命折損,此外,管理不當(dāng)造成泄密,使檔案失去了原本的利用價(jià)值,這種存在于檔案管理和利用之間的矛盾,使得檔案管理面臨著巨大的難題。挖掘技術(shù)的運(yùn)用,緩解了這種矛盾,在檔案管理工作中具有重要的意義。
3.2提升檔案管理的質(zhì)量。
在檔案信息管理系統(tǒng)中引入計(jì)算機(jī)挖掘技術(shù),使得檔案信息管理打破了傳統(tǒng)的模式,通過挖掘技術(shù),對管理的模式有了極大的創(chuàng)新,工作人員以往繁重的工作壓力得到釋放,時(shí)間和精力更加豐富,在對檔案管理的細(xì)節(jié)方面也就更加注意,同時(shí)也加快了對檔案的數(shù)據(jù)信息進(jìn)行處理的速度,提升檔案管理的整體質(zhì)量。
綜上所述,計(jì)算機(jī)數(shù)據(jù)挖掘技術(shù)涉及的內(nèi)容很廣,對挖掘技術(shù)的運(yùn)用,使得各行各業(yè)的發(fā)展水平得到了很大的提高,推動(dòng)社會(huì)經(jīng)濟(jì)的發(fā)展,帶動(dòng)社會(huì)發(fā)展模式的創(chuàng)新。在檔案管理中使用計(jì)算機(jī)挖掘技術(shù),使得檔案信息保存的方法及安全性有了很大的提高。同時(shí),也需要檔案信息管理人員在進(jìn)行檔案信息管理的時(shí)候,能合理利用計(jì)算機(jī)信息挖掘技術(shù),在提高工作效率的同時(shí),促進(jìn)管理模式的不斷創(chuàng)新,以適應(yīng)時(shí)代發(fā)展的要求。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十一
近些年來,已經(jīng)有越來越多的企業(yè)把通信、網(wǎng)絡(luò)技術(shù)和計(jì)算機(jī)應(yīng)用引入企業(yè)的日常管理工作和業(yè)務(wù)開發(fā)處理當(dāng)中,企業(yè)的各類信息化程度也在不斷提高?,F(xiàn)代科技信息技術(shù)的廣泛應(yīng)用已經(jīng)顯著的提高了企業(yè)的工作效率和經(jīng)濟(jì)效益。但是,在使用信息技術(shù)給企業(yè)帶來的方便、快捷的同時(shí),也不斷的出現(xiàn)了新的問題和需求。企業(yè)經(jīng)過多年積累了大量的歷史數(shù)據(jù),這些數(shù)據(jù)對企業(yè)當(dāng)前的日常經(jīng)營活動(dòng)幾乎沒有任何的使用價(jià)值,成了留之無用棄之可惜的累贅。而且儲(chǔ)藏這些歷史數(shù)據(jù)會(huì)對企業(yè)造成很大的困難和費(fèi)用開銷。為此數(shù)據(jù)挖掘技術(shù)應(yīng)用在網(wǎng)絡(luò)營銷中勢在必行,全面細(xì)致的分析數(shù)據(jù)庫資源并從中提取有價(jià)值的信息來對商業(yè)決策進(jìn)行支持,從而來控制運(yùn)營成本、提高經(jīng)濟(jì)效益。本文將從網(wǎng)絡(luò)營銷中數(shù)據(jù)挖掘技術(shù)的幾個(gè)應(yīng)用進(jìn)行探討和分析。
客戶關(guān)系管理在網(wǎng)絡(luò)營銷,商業(yè)競爭是一家以客戶為中心的競技狀態(tài)的客戶,留住客戶,擴(kuò)大客戶基礎(chǔ),建立密切的客戶關(guān)系,客戶需求分析和創(chuàng)造客戶需求等,是非常關(guān)鍵的營銷問題??蛻絷P(guān)系管理,營銷和信息技術(shù)領(lǐng)域是一個(gè)新概念,這在90年代初,軟件產(chǎn)品在上世紀(jì)90年代后期出現(xiàn)的誕生。目前,在國內(nèi)和國外的此類產(chǎn)品的研究和發(fā)展階段。然而,繼續(xù)與數(shù)據(jù)倉庫和數(shù)據(jù)挖掘技術(shù)的進(jìn)步和發(fā)展,客戶關(guān)系管理,也是對實(shí)際應(yīng)用階段。crm的目標(biāo)是管理者與客戶的互動(dòng),提升客戶價(jià)值,提高客戶滿意度,提高客戶的忠誠度,還發(fā)現(xiàn),市場營銷和銷售渠道,然后尋找新客戶,提高客戶的利潤貢獻(xiàn)率的最終目的是為了推動(dòng)社會(huì)和經(jīng)濟(jì)效益??蛻絷P(guān)系管理的目的,應(yīng)用是改善企業(yè)與客戶的關(guān)系,它是企業(yè)和服務(wù)本質(zhì)管理和協(xié)調(diào),以滿足客戶的需求,企業(yè)政策支持這項(xiàng)工作,并聯(lián)系客戶服務(wù)加強(qiáng)管理,提高客戶滿意度和品牌忠誠度。
然而,數(shù)據(jù)挖掘可以應(yīng)用到很多方面的crm和不同階段,包括以下內(nèi)容:
(1)“一對一”營銷的內(nèi)部工作人員認(rèn)識(shí)到,客戶是在這個(gè)領(lǐng)域的企業(yè),而不是貿(mào)易發(fā)展生存的關(guān)鍵。與每一個(gè)客戶接觸的過程,也是了解客戶的進(jìn)程,而且也讓客戶了解業(yè)務(wù)流程。
(2)企業(yè)與客戶之間的銷售應(yīng)該是一種商業(yè)關(guān)系不斷向前發(fā)展??蛻艉蜖I銷公司成立這種方式,而且有許多方法可以使這種與客戶的關(guān)系,往往以改善包括:延長時(shí)間,客戶關(guān)系和維護(hù)客戶關(guān)系,以進(jìn)一步加強(qiáng)相互交往過程中,公司可以在對方取得聯(lián)系更多的利潤。
(3)客戶對客戶盈利能力分析。我們的客戶盈利能力是非常不同的,如果你不明白客戶盈利能力,很難制定有效的營銷策略,以獲取最有價(jià)值的客戶,或進(jìn)一步提高客戶的忠誠度的價(jià)值。數(shù)據(jù)挖掘技術(shù)可以用來預(yù)測客戶在市場條件變化不同的盈利能力。它可以找到所有這些行為和使用模型來預(yù)測客戶行為模式的客戶交易盈利水平或新客戶找到高利潤。
(4)在所有部門維護(hù)客戶關(guān)系的競爭日趨激烈,企業(yè)獲得新客戶的成本上升,因此,保持現(xiàn)有客戶的關(guān)系變得越來越重要。對于企業(yè)客戶可分為三大類:沒有價(jià)值或者低價(jià)值的客戶,不容易失去寶貴的客戶,并不斷尋找更多的優(yōu)惠,更有價(jià)值的服務(wù)給客戶。前兩個(gè)類型的客戶,客戶關(guān)系管理,現(xiàn)代化,然而,最具潛力的市場活動(dòng),是第三個(gè)層次的用戶,而且還特別需求和營銷工具,以保護(hù)客戶,可以減緩企業(yè)經(jīng)營成本,而且還獲得了寶貴的客戶。數(shù)據(jù)挖掘還可以發(fā)現(xiàn),由于客戶流失,該公司能夠滿足這些客戶的需要,采取適當(dāng)措施,保持銷售。
(5)客戶訪問企業(yè)業(yè)務(wù)系統(tǒng)資源,包括能夠獲得新客戶的關(guān)鍵指標(biāo)。為了提供這些新的資源,包括企業(yè)搜索客戶誰不知道該產(chǎn)品的客戶,可能是競爭對手,服務(wù)客戶。這些細(xì)分客戶,潛在客戶可以幫助企業(yè)完成檢查。
通過挖掘客戶的有關(guān)數(shù)據(jù),可以對客戶進(jìn)行分類,找出其相同點(diǎn)和不同點(diǎn),以便為客戶提供個(gè)性化的產(chǎn)品和服務(wù),使企業(yè)和客戶之間能夠通過網(wǎng)絡(luò)進(jìn)行有效的溝通和信息交流。例如,關(guān)聯(lián)分析,客戶在購買某種商品時(shí),有可能會(huì)連帶著購買其他的相關(guān)產(chǎn)品,這樣購買的某種商品和連帶購買的其他相關(guān)產(chǎn)品之間就存在著某種關(guān)聯(lián),企業(yè)可以針對這種關(guān)聯(lián)進(jìn)行分析,分析出規(guī)律,已制定有效的營銷策略來長效的起到吸引客戶連帶消費(fèi),購買其他產(chǎn)品的營銷策略。它能夠智能化地從大量的數(shù)據(jù)中提取出有用的信息和知識(shí),為企業(yè)的管理人員提供決策支持。數(shù)據(jù)挖掘技術(shù)使數(shù)據(jù)庫技術(shù)進(jìn)入了一個(gè)更高級的階段,它不僅能對過去的數(shù)據(jù)進(jìn)行查詢和遍歷,并且能夠找出過去數(shù)據(jù)之間的潛在聯(lián)系,從而促進(jìn)信息的傳遞。
客戶群體的劃分也會(huì)用到數(shù)據(jù)挖掘,沒有基于數(shù)據(jù)挖掘的客戶劃分,就沒有真正的差異化、個(gè)性化營銷,就沒有現(xiàn)代營銷的根本。做為企業(yè)的領(lǐng)導(dǎo)者,不管你的企業(yè)是賣產(chǎn)品的還是賣服務(wù),第一個(gè)應(yīng)該準(zhǔn)確把握的商業(yè)問題就是你的目標(biāo)客戶群體,他們是誰,有什么特點(diǎn)和行為模式,有那些獨(dú)特的喜好可以作為營銷的突破口,有多大的多長久的贏利價(jià)值。這些問題是你整個(gè)商業(yè)運(yùn)做的核心和基礎(chǔ),不了解你的客戶,下面的路就根本別指望能走下去了。數(shù)據(jù)挖掘營銷應(yīng)用中的客戶群體劃分可以科學(xué)有效的解決這個(gè)問題,也能給企業(yè)找到一個(gè)合理的營銷定位。
數(shù)據(jù)挖掘技術(shù)在90年代開始應(yīng)用于信用評估與風(fēng)險(xiǎn)分析中。企業(yè)在進(jìn)行網(wǎng)絡(luò)營銷的過程中會(huì)受到各種各樣的來自買方的信用風(fēng)險(xiǎn)的威脅,隨著市場競爭的加劇,貿(mào)易信用已經(jīng)成為企業(yè)成功開發(fā)客戶和加強(qiáng)客戶關(guān)系的重要條件。客戶信用管理主要是搜集儲(chǔ)存客戶信息,因?yàn)榭蛻艏仁瞧髽I(yè)最大的財(cái)富來源,也是風(fēng)險(xiǎn)的主要來源。為了讓企業(yè)在這方面更少的受到威脅,可以利用數(shù)據(jù)挖掘技術(shù)發(fā)現(xiàn)企業(yè)經(jīng)常面臨的詐騙行為或延付貨款行為,進(jìn)而進(jìn)行回避。同時(shí)盡可能把客戶信用風(fēng)險(xiǎn)控制在交易發(fā)生之前是成功信用管理的根本。因此,充分獲取客戶的詳細(xì)資料并做出安全的決策非常重要。
客戶信用風(fēng)險(xiǎn)管理應(yīng)用數(shù)據(jù)挖掘技術(shù)的優(yōu)勢:
(3)數(shù)據(jù)挖掘技術(shù)也可以適應(yīng)各種形式的數(shù)據(jù),數(shù)據(jù)挖掘可以是連續(xù)的數(shù)據(jù),離散數(shù)據(jù),而其他形式的數(shù)據(jù)處理,以便在更大的靈活性,在選擇指標(biāo)時(shí),更加符合客觀實(shí)際的信用風(fēng)險(xiǎn)模型。
為現(xiàn)代信用風(fēng)險(xiǎn)管理方法有兩個(gè):第一是所謂的指數(shù)法,其基礎(chǔ)是信用相關(guān)業(yè)務(wù)的某些特性來企業(yè)信用評估;第二類是所謂的結(jié)構(gòu)化方法,根據(jù)歷史數(shù)據(jù)和市場數(shù)據(jù)模擬在企業(yè)資產(chǎn)價(jià)值變化的動(dòng)態(tài)持續(xù)的過程,然后確定其企業(yè)信用的位置。
網(wǎng)絡(luò)營銷作為適應(yīng)網(wǎng)絡(luò)經(jīng)濟(jì)時(shí)代的網(wǎng)絡(luò)虛擬市場的新營銷理論,是市場營銷理念在新時(shí)期的發(fā)展和應(yīng)用。它能夠智能化地從大量的數(shù)據(jù)中提取出有用的信息和知識(shí),為企業(yè)的管理人員提供決策支持。數(shù)據(jù)挖掘技術(shù)使數(shù)據(jù)庫技術(shù)進(jìn)入了一個(gè)更高級的階段,它不僅能對過去的數(shù)據(jù)進(jìn)行查詢和遍歷,并且能夠找出過去數(shù)據(jù)之間的潛在聯(lián)系,從而促進(jìn)信息的傳遞。
1.維護(hù)原有客戶,挖掘潛在新客戶。
網(wǎng)絡(luò)營銷中銷售商可以通過客戶的訪問記錄來挖掘出客戶的潛在信息,跟據(jù)客戶的興趣與需求向客戶有針對性的做個(gè)性化的推薦,制定出客戶滿意的產(chǎn)品服務(wù)。在做好維護(hù)原有老客戶的基礎(chǔ)上,通過對數(shù)據(jù)的挖掘,利用分類技術(shù),也可以尋找出潛在的客戶,通過對web日志的挖掘,可以對已經(jīng)存在的訪問者進(jìn)行分類,根據(jù)這種精細(xì)的分類,還可以找到潛在的新客戶。
2.制定營銷策略,優(yōu)化促銷活動(dòng)。
對于保留的商品訪問記錄和銷售記錄進(jìn)行挖掘,可以發(fā)現(xiàn)客戶的訪問規(guī)律,了解客戶消費(fèi)的生命周期,起伏規(guī)律,結(jié)合市場形勢的變化,針對不同的商品和客戶群制定不同的營銷策略,保證促銷活動(dòng)針對客戶群有的放矢,收到意想不到的效果。
3.降低運(yùn)營成本,提高競爭力。
網(wǎng)絡(luò)營銷的管理者可以通過數(shù)據(jù)挖掘發(fā)現(xiàn)市場反饋的可靠信息,預(yù)測客戶未來的購買行為,有針對性的進(jìn)行營銷活動(dòng),還可以根據(jù)產(chǎn)品訪問者的瀏覽習(xí)慣來覺定產(chǎn)品廣告的位置,使廣告有針對性的起到宣傳的效果。從而提高廣告的投資回報(bào)率,從而能降低運(yùn)營成本,提高且的核心競爭力。
4.對客戶進(jìn)行個(gè)性化推薦。
根據(jù)客戶采礦活動(dòng)對網(wǎng)絡(luò)規(guī)則,有針對性的網(wǎng)絡(luò)營銷平臺(tái),提供“個(gè)性化”服務(wù)。個(gè)性化服務(wù)是在服務(wù)策略和服務(wù)內(nèi)容的不同客戶的不同,其本質(zhì)是客戶為中心的web服務(wù)的需求。它通過收集和分析客戶資料,以了解客戶的利益和購買行為,然后采取主動(dòng),以達(dá)到建議的服務(wù)。
5.完善網(wǎng)絡(luò)營銷網(wǎng)站的設(shè)計(jì)。
1馮英健著,《網(wǎng)絡(luò)營銷基礎(chǔ)與實(shí)踐》,清華大學(xué)出版社,20xx年1月第1版。
2.,and.sky-shairoh,esinknowledgediscoveryanddatamining.aaai/mitpress,menlopark,ca.1996:。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十二
在電子商務(wù)中運(yùn)用數(shù)據(jù)挖掘技術(shù),對服務(wù)器上的日志數(shù)據(jù)、用戶信息和訪問鏈接信息進(jìn)行數(shù)據(jù)挖掘,有效了解客戶的購買欲望,從而調(diào)整電子商務(wù)平臺(tái),最終實(shí)現(xiàn)利益更大化。本文旨在了解電子商務(wù)中的數(shù)據(jù)源有哪些,發(fā)掘數(shù)據(jù)挖掘在電子商務(wù)中的具體作用,從而為數(shù)據(jù)挖掘的具體設(shè)計(jì)奠定基礎(chǔ)。
一、電子商務(wù)中數(shù)據(jù)挖掘的數(shù)據(jù)源。
1.服務(wù)器日志數(shù)據(jù)客戶在訪問網(wǎng)站時(shí),就會(huì)在服務(wù)器上產(chǎn)生相應(yīng)的服務(wù)器數(shù)據(jù),這些文件主要是日志文件。而日志文件又可分為ser-vicelogs、errorlogs、cookielogs。其中servicelogs文件格式是最常用的標(biāo)準(zhǔn)公用日志文件格式,也是標(biāo)準(zhǔn)組合日志文件格式。標(biāo)準(zhǔn)公用日志文件的格式存儲(chǔ)關(guān)于客戶連接的物理信息。標(biāo)準(zhǔn)組合日志文件格式主要包含關(guān)于日志文件元信息的指令,如版本號(hào),會(huì)話監(jiān)控開始和結(jié)束的日期等。在日志文件中,cookielogs日志文件是很重要的日志文件,是服務(wù)器為了自動(dòng)追蹤網(wǎng)站訪問者,為單個(gè)客戶瀏覽器生成日志[1]。
2.客戶登記信息。
客戶登記信息是指客戶通過web頁輸入的、并提交給服務(wù)器的相關(guān)用戶信息,這些信息通常是關(guān)于用戶的常用特征。
在web的數(shù)據(jù)挖掘中,客戶登記信息需要和訪問日志集成,以提高數(shù)據(jù)挖掘的準(zhǔn)確度,使之能更進(jìn)一步的了解客戶。
頁面的超級鏈接。
輔之以監(jiān)視所有到達(dá)服務(wù)器的數(shù)據(jù),提取其中的http請求信息。此部分?jǐn)?shù)據(jù)主要來自瀏覽者的點(diǎn)擊流,用于考察用戶的行為表現(xiàn)。網(wǎng)絡(luò)底層信息監(jiān)聽過濾指監(jiān)聽整個(gè)網(wǎng)絡(luò)的所有信息流量,并根據(jù)信息源主機(jī)、目標(biāo)主機(jī)、服務(wù)協(xié)議端口等信息過濾掉垃圾數(shù)據(jù),然后進(jìn)行進(jìn)一步的處理,如關(guān)鍵字的搜索等,最終將用戶感興趣的數(shù)據(jù)發(fā)送到給定的數(shù)據(jù)接受程序存儲(chǔ)到數(shù)據(jù)庫中進(jìn)行分析統(tǒng)計(jì)。
二、web數(shù)據(jù)挖掘在電子商務(wù)中的應(yīng)用通過對數(shù)據(jù)源的原始積累、仔細(xì)分析,再利用數(shù)據(jù)發(fā)掘技術(shù),最終達(dá)到為企業(yè)為用戶服務(wù)的目的,而這些服務(wù)主要有以下幾種。
1.改進(jìn)站點(diǎn)設(shè)計(jì),提高客戶訪問的興趣對客戶來說,傳統(tǒng)客戶與銷售商之間的空間距離在電子商務(wù)中已經(jīng)不存在了,在internet上,每一個(gè)銷售商對于客戶來說都是一樣的,那么如何使客戶在自己的銷售站點(diǎn)上駐留更長的時(shí)間,對銷售商來說將是一個(gè)挑戰(zhàn)。為了使客戶在自己的網(wǎng)站上駐留更長的時(shí)間,就應(yīng)該對客戶的訪問信息進(jìn)行挖掘,通過挖掘就能知道客戶的瀏覽行為,從而了解客戶的興趣及需求所在,并根據(jù)需求動(dòng)態(tài)地調(diào)整頁面,向客戶展示一個(gè)特殊的頁面,提供特有的一些商品信息和廣告,以使客戶能繼續(xù)保持對訪問站點(diǎn)的興趣。
2.發(fā)現(xiàn)潛在客戶。
在對web的客戶訪問信息的挖掘中,利用分類技術(shù)可以在internet上找到未來的潛在客戶。獲得這些潛在的客戶通常的市場策略是:先對已經(jīng)存在的訪問者進(jìn)行分類。對于一個(gè)新的訪問者,通過在web上的分類發(fā)現(xiàn),識(shí)別出這個(gè)客戶與已經(jīng)分類的老客戶的一些公共的描述,從而對這個(gè)新客戶進(jìn)行正確的歸類。然后從它所屬類判斷這個(gè)新客戶是否為潛在的購買者,決定是否要把這個(gè)新客戶作為潛在的客戶來對待。
客戶的類型確定后,就可以對客戶動(dòng)態(tài)地展示web頁面,頁面的內(nèi)容取決于客戶與銷售商提供的產(chǎn)品和服務(wù)之間的關(guān)聯(lián)。
對于一個(gè)新的客戶,如果花了一段時(shí)間瀏覽市場站點(diǎn),就可以把此客戶作為潛在的客戶并向這個(gè)客戶展示一些特殊的頁面內(nèi)容。
3.個(gè)性化服務(wù)。
根據(jù)網(wǎng)站用戶的訪問情況,為用戶提供個(gè)性化信息服務(wù),這是許多互聯(lián)網(wǎng)應(yīng)用,尤其是互聯(lián)網(wǎng)信息服務(wù)或電子商務(wù)(網(wǎng)站)所追求的目標(biāo)。根據(jù)用戶的訪問行為和檔案向使用者進(jìn)行動(dòng)態(tài)的推薦,對許多應(yīng)用都有很大的吸引力。web日志挖掘是一個(gè)能夠出色地完成這個(gè)目標(biāo)的方式。通過web數(shù)據(jù)挖掘,可以理解訪問者的動(dòng)態(tài)行為,據(jù)此優(yōu)化電子商務(wù)網(wǎng)站的經(jīng)營模式。通過把所掌握的大量客戶分成不同的類,對不同類的客戶提供個(gè)性化服務(wù)來提高客戶的滿意度,從而保住老客戶;通過對具有相似瀏覽行為的客戶進(jìn)行分組,提取組中客戶的共同特征,從而實(shí)現(xiàn)客戶的聚類,這可以幫助電子商務(wù)企業(yè)更好地了解客戶的興趣、消費(fèi)習(xí)慣和消費(fèi)傾向,預(yù)測他們的需求,有針對性地向他們推薦特定的商品并實(shí)現(xiàn)交叉銷售,可以提高交易成功率和交易量,提高營銷效果。
例如全球最大中文購物網(wǎng)站淘寶網(wǎng)。當(dāng)你購買一件商品后,淘寶網(wǎng)會(huì)自動(dòng)提示你“購買過此商品的人也購買過……”類似的信息,這就是個(gè)性化服務(wù)的代表。
4.交易評價(jià)。
現(xiàn)在幾乎每一個(gè)電子商務(wù)網(wǎng)站都增加了交易評價(jià)功能,交易評價(jià)功能主要就是為了降低交易中的信息不對稱問題。
電子商務(wù)交易平臺(tái)設(shè)計(jì)了在線信譽(yù)評價(jià)系統(tǒng),對買賣雙方的交易歷史及其評價(jià)進(jìn)行記錄。在聲譽(yù)效應(yīng)的影響下,賣家也更加重視買家的交易滿意度,并且也形成了為獲取好評減少差評而提高服務(wù)質(zhì)量的良好風(fēng)氣。交易中的不滿意(或者成為糾紛)是產(chǎn)生非好評(包括中評和差評)的直接原因。那么,交易中一般會(huì)產(chǎn)生哪些交易糾紛,這些交易糾紛的存在會(huì)如何影響交易評價(jià)結(jié)果,這些問題的解決對賣家的經(jīng)營具有重要的指導(dǎo)價(jià)值。
總結(jié)。
數(shù)據(jù)挖掘是當(dāng)今世界研究的熱門領(lǐng)域,其研究具有廣闊的應(yīng)用前景和巨大的現(xiàn)實(shí)意義。借助數(shù)據(jù)挖掘可以改進(jìn)企業(yè)的電子商務(wù)平臺(tái),增加企業(yè)的經(jīng)營業(yè)績,拓寬企業(yè)的經(jīng)營思路,最終提高企業(yè)的競爭力。
參考文獻(xiàn):
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十三
:中醫(yī)臨床理論多是由著名醫(yī)家的經(jīng)驗(yàn)升華形成的,反映了臨床上不同學(xué)術(shù)派系以及不同學(xué)科的優(yōu)勢特征,但這其中不免摻雜了個(gè)人主觀經(jīng)驗(yàn),因此本文就中醫(yī)臨床理論研究中醫(yī)病案為基礎(chǔ),對應(yīng)用病案數(shù)據(jù)挖掘結(jié)果來總結(jié)和重建中醫(yī)臨床理論的方式進(jìn)行了探討,認(rèn)為該方法可為完善中醫(yī)臨床理論提供客觀的數(shù)據(jù)支持,使中醫(yī)臨床理論的來源更具有科學(xué)性。
科研一體化中醫(yī)臨床理論決定著中醫(yī)臨床學(xué)科的發(fā)展水平,是中醫(yī)臨床發(fā)展的動(dòng)力。從古至今,中醫(yī)名醫(yī)名家輩出,他們的臨床經(jīng)驗(yàn)和學(xué)術(shù)思想不斷提煉升華,逐步形成了傳統(tǒng)的中醫(yī)臨床理論。新中國成立以來,中醫(yī)不斷汲取最新的科技成果,進(jìn)行了大量臨床實(shí)踐,而中醫(yī)臨床理論發(fā)展緩慢,己經(jīng)成為制約當(dāng)代中醫(yī)學(xué)術(shù)發(fā)展的瓶頸,對如何開拓中醫(yī)臨床理論的研究,可謂見仁見智,但各種新的臨床理論常常裹挾著“各家學(xué)說”。在當(dāng)今大數(shù)據(jù)和信息技術(shù)發(fā)達(dá)的背景下,運(yùn)用數(shù)據(jù)挖掘技術(shù)對中醫(yī)病案進(jìn)行大數(shù)據(jù)分析,客觀揭示當(dāng)前中醫(yī)臨床理論的本來面目,盡可能減少個(gè)人見解的偏倚,對于推動(dòng)中醫(yī)臨床理論發(fā)展具有重要的現(xiàn)實(shí)意義,本文就基于病案數(shù)據(jù)挖掘的中醫(yī)臨床理論重建進(jìn)行探討如下。
1.1中醫(yī)古典文獻(xiàn)是傳統(tǒng)中醫(yī)臨床理論的基礎(chǔ)。
眾所周知,中醫(yī)之所以能夠屹立千年不倒,很大一部分原因是因?yàn)槠溆歇?dú)特的理論體系,而在這其中,中醫(yī)古典文獻(xiàn)做出的貢獻(xiàn)應(yīng)該是第一位的。因?yàn)檫@些古典文獻(xiàn)的記載和流傳,為后世的醫(yī)家提供了參考和借鑒,使得我們從前人的思維上不斷創(chuàng)新,與臨床進(jìn)行有機(jī)結(jié)合,不斷研究出新的適合于當(dāng)前時(shí)代的臨床理論。例如,中醫(yī)學(xué)無論在理論研究還是在臨床治療方面的豐富,許多根本性的理論都是源自于《內(nèi)經(jīng)》。該書創(chuàng)立了藏象、經(jīng)絡(luò)、診法等各方面的理論[1],勾畫了中醫(yī)理論的雛形,構(gòu)建了中醫(yī)理論體系的基本框架。到后期東漢時(shí)期張仲景的《傷寒論》則是創(chuàng)造了以六經(jīng)辨證和臟腑辨證為主的局面,其所倡導(dǎo)的“觀其脈證,知犯何逆,隨證治之”使得辨證論治登上新的高度。到了金元時(shí)期,就是百家爭鳴的時(shí)代,這期間以金元四大家為主的學(xué)派開始萌生,留下了許多可供后世醫(yī)家參考的古典文獻(xiàn)并創(chuàng)建了不同的臨床理論,而明清時(shí)期以葉天士和吳鞠通為首確立的衛(wèi)氣營血和三焦辨證,使溫病學(xué)的辨證理論逐步趨于完善,至今仍是指導(dǎo)臨床治療溫?zé)岵〉睦碚撘罁?jù)。總之,傳統(tǒng)中醫(yī)臨床理論的構(gòu)建和完善,離不開前人的摸索與貢獻(xiàn),也得益于著名醫(yī)學(xué)家創(chuàng)建的傳統(tǒng)中醫(yī)理論,使得我們現(xiàn)在的中醫(yī)體系不斷的飽滿和充實(shí)。
1.2當(dāng)代著名中醫(yī)的臨床經(jīng)驗(yàn)不斷提升為中醫(yī)臨床理論。
傳統(tǒng)中醫(yī)的臨床理論,在很大程度上展示著著名醫(yī)家的臨床經(jīng)驗(yàn)。在中醫(yī)理論與實(shí)踐發(fā)展的相互促進(jìn)過程中,當(dāng)代醫(yī)家通過讀書、臨證、心悟?qū)?shí)踐經(jīng)驗(yàn)不斷總結(jié)并升華為理論,又在實(shí)踐中不斷完善既有的理論,成為中醫(yī)理論發(fā)展的重要途徑和模式,而當(dāng)代中醫(yī)理論的發(fā)展則需要將傳統(tǒng)理論與現(xiàn)代實(shí)踐相互融合起來。例如上世紀(jì)60年代時(shí),面對中醫(yī)基礎(chǔ)理論中新的思想相對匱乏的這一局面,鄧鐵濤結(jié)合其治療的臨床經(jīng)驗(yàn),首次提出了“五臟相關(guān)學(xué)說”。盡管當(dāng)時(shí)的理論準(zhǔn)備并不完善,但是這一理論的提出,在很大程度上完善并且取代了“五行學(xué)說”中某些模糊性和不確定性,并且隨著時(shí)代的發(fā)展,逐漸驗(yàn)證了鄧?yán)系倪@一經(jīng)驗(yàn)的正確性,也成為指導(dǎo)中醫(yī)臨床理論的一大重要體系[2]。又如,腦出血這一現(xiàn)代疾病在古代名為中風(fēng),多數(shù)是“從風(fēng)而治”,認(rèn)為肝臟與中風(fēng)的關(guān)系最為密切。隨著時(shí)代的推進(jìn),自20世紀(jì)80年代以來,許多學(xué)者根據(jù)微觀辨證和中醫(yī)理論“離經(jīng)之血便是瘀”,提出急性出血中風(fēng)屬中醫(yī)血證,瘀血阻滯是急性期腦出血的最基本病機(jī),是治療的關(guān)鍵所在[3]。故現(xiàn)代中醫(yī)臨床治療上多以活血化瘀法治療腦出血、腦梗塞這一系列疾病。若是仔細(xì)研讀傳統(tǒng)中醫(yī)臨床理論后,我們不難得出其構(gòu)成和完善離不開當(dāng)代著名醫(yī)家的臨床經(jīng)驗(yàn),它是在歷經(jīng)歲月的洗禮下不斷塑造成型的。
1.3傳統(tǒng)中醫(yī)臨床理論不斷將現(xiàn)代醫(yī)學(xué)相關(guān)內(nèi)容中醫(yī)化。
傳統(tǒng)中醫(yī)臨床理論不斷吸收現(xiàn)代醫(yī)學(xué)的理論,將其相關(guān)內(nèi)容不斷中醫(yī)化,將病人的各種證型通過五臟辨證、陰陽五行辨證以及八綱辨證劃分得越來越細(xì)化,以提供病人在中醫(yī)臨床上治療的理論依據(jù)。中醫(yī)吸取了現(xiàn)代醫(yī)學(xué)理論后正在不斷壯大其內(nèi)容,現(xiàn)代醫(yī)學(xué)相關(guān)內(nèi)容中醫(yī)化在許多難治疾病的辨證治療中都起到了良好的指導(dǎo)作用[4]。如艾滋病是古代傳統(tǒng)中醫(yī)辨證論治的空白,通過對艾滋病中醫(yī)病因病機(jī)、證候規(guī)律、治法方藥的系統(tǒng)研究,提出了“艾毒傷元”“脾為樞機(jī)”“氣虛為本”的病因病機(jī)學(xué)說,確立了艾滋病“培元解毒”“益氣健脾”的治療原則,為中醫(yī)藥防治艾滋病奠定了理論基礎(chǔ),為進(jìn)一步提高艾滋病的中醫(yī)藥臨床診療效果提供理論依據(jù)[5]。
2.1中醫(yī)主流理論不突出且與時(shí)俱進(jìn)力度不夠。
不可否認(rèn)的是,當(dāng)代的中醫(yī)臨床理論發(fā)展也是存在諸多不足的,中醫(yī)理論的完善和發(fā)展是中華五千年來集體智慧的結(jié)晶,個(gè)別醫(yī)家提出的臨床理論可能各有千秋,其所立的角度和思維也不盡相同。例如,同是治療輸卵管阻塞這一疾病時(shí),朱南孫教授認(rèn)為多是由于濕蘊(yùn)沖任所致,其用自擬的清熱利濕方來進(jìn)行治療;而李廣文教授則認(rèn)為這一疾病多是由于瘀血阻絡(luò)為主,治療上以活血祛瘀為法,擬通任種子湯進(jìn)行治療[6]。又如對于“和解法”這一治療方法的理解,當(dāng)代名醫(yī)蒲輔周老先生認(rèn)為“寒熱并用,補(bǔ)瀉合劑,表里雙解,苦辛分消,調(diào)和氣血,皆謂和解”。而方和謙教授則認(rèn)為“在治法上扶正祛邪,表里兼顧,此法就為和解法”。不同的醫(yī)家在面對不同的疾病,甚至是不同的理法方藥時(shí),所持的看法常常是“各家學(xué)說”,這就導(dǎo)致了當(dāng)前中醫(yī)臨床理論發(fā)展比較混亂,不能全面地體現(xiàn)中國五千年來發(fā)展過程中的中醫(yī)主流理論。目前中醫(yī)基礎(chǔ)理論還存在一個(gè)缺陷就是它的與時(shí)俱進(jìn)力度還不夠,很多古代經(jīng)典方藥的主治病癥,在當(dāng)今時(shí)代已經(jīng)不再多見了。比如蛔蟲導(dǎo)致的蛔厥這一致病因素在現(xiàn)代已經(jīng)不再常見,對應(yīng)的烏梅丸的主要適應(yīng)病癥也不再是蛔厥;在針對沒有明顯臨床表現(xiàn)的疾病如乙肝時(shí),按傳統(tǒng)中醫(yī)往往體現(xiàn)出“無證可治”的狀態(tài);傳統(tǒng)的診斷與現(xiàn)代檢查相結(jié)合的力度也不夠,中醫(yī)臨床基礎(chǔ)理論在某些程度上忽略了其與生化、b超、x光、ct等現(xiàn)代檢查結(jié)果的結(jié)合,并沒有用中醫(yī)理論對其做一合理的陳述;且現(xiàn)在臨床上很多中藥的藥理作用、性味歸經(jīng)的研究作用還不夠深入、細(xì)致,其作用不能在微觀上得以解釋。這些都導(dǎo)致了臨床上很多情況沒有從中醫(yī)理論來認(rèn)識(shí)中醫(yī),不是“以中解中”,而是“以西解中”,形成了臨床拋棄中醫(yī)理論的狀態(tài)[7]。由于中醫(yī)學(xué)是一門實(shí)踐性很強(qiáng)的學(xué)科,它是在哲學(xué)辨證的思想指導(dǎo)下,與臨床經(jīng)驗(yàn)不斷結(jié)合,這與西醫(yī)知識(shí)體系相比較,難免存在一定的滯后性,這都會(huì)使得中醫(yī)臨床理論發(fā)展相對的落后。
2.2部分中醫(yī)理論帶有權(quán)威專家的“個(gè)人學(xué)說”偏見。
傳統(tǒng)中醫(yī)強(qiáng)調(diào)個(gè)人經(jīng)驗(yàn)和學(xué)說,以中醫(yī)內(nèi)科學(xué)為例,第八版中的腦系疾病在第九版中已經(jīng)刪除,其涉及到的各種腦系疾病大多數(shù)歸屬于心系疾病與肝系疾病。根據(jù)其版本的不同,我們可以明顯看出其凸顯的中心內(nèi)容及其思想不同,其多是體現(xiàn)編著者的理論思想,在一定程度上并沒有客觀地揭示疾病的本質(zhì),治療理論也不夠完善,一部分內(nèi)容與最新研究得出的論文理論不符,這使得當(dāng)代中醫(yī)臨床理論在某些程度上,帶有權(quán)威專家的“個(gè)人學(xué)說”色彩。由于現(xiàn)代西方先進(jìn)的科技文化流入,使得中醫(yī)在一定程度上備受質(zhì)疑,而正是因?yàn)槿藗儗τ谥嗅t(yī)理論的一些偏見,才使得中醫(yī)長期讓人詬病。
3.1臨床理論應(yīng)具有真實(shí)性與系統(tǒng)性。
中醫(yī)臨床理論的發(fā)展方形應(yīng)當(dāng)是建立在客觀并且真實(shí)的臨床實(shí)踐基礎(chǔ)上,從一次次臨床實(shí)踐中得出。由于歷史時(shí)代的原因以及假設(shè)推理、模式建設(shè)的廣泛使用,當(dāng)代中醫(yī)臨床理論中理論與假說并存的現(xiàn)象較為普遍,如中醫(yī)的五運(yùn)六氣學(xué)說對現(xiàn)代疫病預(yù)測和人體各經(jīng)絡(luò)臟腑在時(shí)間上對于人體治病效果的不同等,就需要我們在扎實(shí)的文獻(xiàn)與臨床實(shí)踐基礎(chǔ)上,對醫(yī)案進(jìn)行認(rèn)真總結(jié),利用科學(xué)的方法深入挖掘,開展中醫(yī)理論的去偽存真研究,以促進(jìn)中醫(yī)理論的科學(xué)與健康發(fā)展。另外,傳統(tǒng)的中醫(yī)臨床治療上所用的理法方藥,多是根據(jù)個(gè)人經(jīng)驗(yàn)所進(jìn)行的。隨著科技的不斷發(fā)展與時(shí)代的不斷進(jìn)步,當(dāng)代的中醫(yī)臨床理論應(yīng)該在成功的中醫(yī)醫(yī)案上進(jìn)行系統(tǒng)的總結(jié),不斷挖掘和研究其微觀的結(jié)構(gòu),并隨著年月的更迭不斷更新,不斷完善,使其具有科學(xué)性和理論依據(jù)。同時(shí),對近年來興起的傳染性非典型肺炎、艾滋病、禽流感等古人所沒有經(jīng)歷過的疾病的診治,中醫(yī)就其病因病機(jī)的認(rèn)識(shí)以及探究相應(yīng)的診療方法,無疑也是一種理論上的創(chuàng)新[8]。通過對其進(jìn)行深一層次的研究和發(fā)現(xiàn),歸納出合適的治則治法,找到針對這一疾病的理法方藥,使其更具有系統(tǒng)性,使得臨床上中醫(yī)治病可以循序漸進(jìn),注重整體,也是當(dāng)代臨床理論的一大發(fā)展方向。
3.2臨床理論具有信息化的特點(diǎn)并可持續(xù)拓展。
隨著時(shí)代的進(jìn)步,當(dāng)代的中醫(yī)臨床理論可以通過網(wǎng)絡(luò)等方式進(jìn)行共享,在大數(shù)據(jù)的這一時(shí)代背景下,隨著病案的不斷報(bào)道與積累,可以將各類成功的中醫(yī)醫(yī)案進(jìn)行統(tǒng)計(jì)和挖掘,其結(jié)果也會(huì)不斷進(jìn)行更新和發(fā)展。不同的醫(yī)家對于某一疾病的認(rèn)識(shí)角度可能不同,其表現(xiàn)在病位、病性、病勢和證候的判斷標(biāo)準(zhǔn)也不一樣,因此方藥規(guī)律也不一樣。而通過統(tǒng)計(jì)某一中醫(yī)或西醫(yī)疾病的較大樣本病例,并對其進(jìn)行數(shù)據(jù)挖掘,可以得出整個(gè)中醫(yī)群體對于這一疾病診治的證候分布、治則治法、處方用藥等的規(guī)律,甚至可以根據(jù)統(tǒng)計(jì)的結(jié)果探索出新的方藥,分析他們的共同點(diǎn)和所在差異。將中醫(yī)臨床理論具有信息化的這一特點(diǎn)不斷地拓展下去,通過計(jì)算機(jī)等客觀科學(xué)的手段進(jìn)行分析,與主觀的名老中醫(yī)傳承模式相比,更具客觀性,更容易被臨床醫(yī)生接受,對各種疾病的中醫(yī)臨床用藥也更具有指導(dǎo)價(jià)值。
4.1病案研究是中醫(yī)理論發(fā)展的重要基礎(chǔ)。
在當(dāng)今大數(shù)據(jù)的時(shí)代背景下,中醫(yī)固有的傳統(tǒng)整體論科學(xué)特征有了越來越多的可供改變的空間。這種變化既為其按照自身特有的規(guī)律發(fā)展特點(diǎn)帶來了機(jī)遇,也給未來中醫(yī)理論的發(fā)展提出了挑戰(zhàn)。同時(shí),學(xué)習(xí)醫(yī)案研究也是中醫(yī)學(xué)相關(guān)大學(xué)生們應(yīng)該學(xué)習(xí)的一項(xiàng)內(nèi)容。閱讀醫(yī)案是必要的訓(xùn)練,也是中醫(yī)入門的方法之一。醫(yī)案的故事性引人入勝,在自然而然中接受中醫(yī)思維方法和傳統(tǒng)文化知識(shí),同時(shí)醫(yī)案中所呈現(xiàn)的名醫(yī)風(fēng)范,醫(yī)德對學(xué)生起到潛移默化的影響,并培養(yǎng)對專業(yè)的熱愛[9]。病案客觀、真實(shí)地直接記錄疾病診斷和治療過程,醫(yī)案研究作為中醫(yī)理論發(fā)展過程中至關(guān)重要的一環(huán),是中醫(yī)理論發(fā)展的重要基礎(chǔ),以研究病案為基礎(chǔ),對于中醫(yī)理論的形成和臨床上中醫(yī)積累經(jīng)驗(yàn),都起到了一定的輔助提升作用。
4.2數(shù)據(jù)挖掘方法是中醫(yī)理論發(fā)展的現(xiàn)代技術(shù)手段。
利用多種數(shù)據(jù)挖掘技術(shù)對中醫(yī)病案中的有關(guān)信息行進(jìn)行歸納、整理,是近年來傳承中醫(yī)臨床經(jīng)驗(yàn)的重要方法之一[10]。通過對同一種疾病的病案進(jìn)行數(shù)據(jù)挖掘以分析醫(yī)者的思路和探索其用藥的。方法,對中醫(yī)臨床病案進(jìn)行規(guī)范化的整理,能夠深入總結(jié)其臨床經(jīng)驗(yàn),挖掘隱藏在大量病案背后的診治規(guī)律,甚至探索出新的方藥配伍,為中醫(yī)理論的發(fā)展提供一定的科學(xué)依據(jù)的同時(shí),使得中醫(yī)理論的發(fā)展越來越現(xiàn)代化,不僅僅只是停留在以前的靠讀書和個(gè)人經(jīng)驗(yàn)的結(jié)合,也為廣大的中醫(yī)在日后的臨床治療上提供了新的思路和方向。
4.3臨床實(shí)踐推動(dòng)理論發(fā)展,賦予轉(zhuǎn)化醫(yī)學(xué)新的內(nèi)涵。
目前,我們通過并按數(shù)據(jù)挖掘來總結(jié)一些中醫(yī)對于治療同一種疾病所采取的診斷和用藥,可以獲得新的思路,并且為完善我們現(xiàn)有的中醫(yī)理論基礎(chǔ)可以提供可靠的理論支持。采用數(shù)據(jù)挖掘技術(shù)對中醫(yī)學(xué)術(shù)思想和臨證經(jīng)驗(yàn)進(jìn)行研究,可以全面解析其中的規(guī)律,分析中醫(yī)個(gè)體化診療信息特征,提煉出臨證經(jīng)驗(yàn)中蘊(yùn)藏的新理論、新力法,可以實(shí)現(xiàn)經(jīng)驗(yàn)的有效總結(jié)與傳承[11]。與此同時(shí),要求我們用發(fā)展的眼光將現(xiàn)代的科技手段整合加入到傳統(tǒng)的中醫(yī)學(xué)理論中去,推陳出新,通過臨床實(shí)踐與基礎(chǔ)理論的不斷結(jié)合,不斷完善,推動(dòng)祖國醫(yī)學(xué)現(xiàn)代化,譜寫有關(guān)于中醫(yī)學(xué)在轉(zhuǎn)化醫(yī)學(xué)上新的篇章。
[2]邱仕君,吳玉生。在基礎(chǔ)理論與臨床醫(yī)學(xué)之間———對鄧鐵濤教授五臟相關(guān)學(xué)說的理論思考[j].湖北民族學(xué)院學(xué)報(bào)(醫(yī)學(xué)版),2005,22(2):36-39.
[3]顧寧,周仲英。通下法治療急性腦出血研究進(jìn)展[j].中國中醫(yī)急診,2000,9(5):227.
[4]靳士英。鄧鐵濤教授學(xué)術(shù)成就管[j].現(xiàn)代醫(yī)院,2004(9):1-6.
[7]孟靜巖,應(yīng)森林。試論中醫(yī)基礎(chǔ)理論指導(dǎo)臨床研究的思考與途徑[j].上海中醫(yī)藥大學(xué)學(xué)報(bào),2009(3):3-5.
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十四
:數(shù)據(jù)挖掘是一種特殊的數(shù)據(jù)分析過程,其不僅在功能上具有多樣性,同時(shí)還具有著自動(dòng)化、智能化處理以及抽象化分析判斷的特點(diǎn),對于計(jì)算機(jī)犯罪案件中的信息取證有著非常大的幫助。本文結(jié)合數(shù)據(jù)挖掘技術(shù)的概念與功能,對其在計(jì)算機(jī)犯罪取證中的應(yīng)用進(jìn)行了分析。
:數(shù)據(jù)挖掘技術(shù);計(jì)算機(jī);犯罪取證。
隨著信息技術(shù)與互聯(lián)網(wǎng)的不斷普及,計(jì)算機(jī)犯罪案件變得越來越多,同時(shí)由于計(jì)算機(jī)犯罪的隱蔽性、復(fù)雜性特點(diǎn),案件偵破工作也具有著相當(dāng)?shù)碾y度,而數(shù)據(jù)挖掘技術(shù)不僅能夠?qū)τ?jì)算機(jī)犯罪案件中的原始數(shù)據(jù)進(jìn)行分析并提取出有效信息,同時(shí)還能夠?qū)崿F(xiàn)與其他案件的對比,而這些對于計(jì)算機(jī)犯罪案件的偵破都是十分有利的。
數(shù)據(jù)挖掘技術(shù)是針對當(dāng)前信息時(shí)代下海量的網(wǎng)絡(luò)數(shù)據(jù)信息而言的,簡單來說,就是從大量的、不完全的、有噪聲的、模糊的隨機(jī)數(shù)據(jù)中對潛在的有效知識(shí)進(jìn)行自動(dòng)提取,從而為判斷決策提供有利的信息支持。同時(shí),從數(shù)據(jù)挖掘所能夠的得到的知識(shí)來看,主要可以分為廣義型知識(shí)、分類型知識(shí)、關(guān)聯(lián)性知識(shí)、預(yù)測性知識(shí)以及離型知識(shí)幾種。
根據(jù)數(shù)據(jù)挖掘技術(shù)所能夠提取的不同類型知識(shí),數(shù)據(jù)挖掘技術(shù)也可以在此基礎(chǔ)上進(jìn)行功能分類,如關(guān)聯(lián)分析、聚類分析、孤立點(diǎn)分析、時(shí)間序列分析以及分類預(yù)測等都是數(shù)據(jù)挖掘技術(shù)的重要功能之一,而其中又以關(guān)聯(lián)分析與分類預(yù)測最為主要。大量的數(shù)據(jù)中存在著多個(gè)項(xiàng)集,各個(gè)項(xiàng)集之間的取值往往存在著一定的規(guī)律性,而關(guān)聯(lián)分析則正是利用這一點(diǎn),對各項(xiàng)集之間的關(guān)聯(lián)關(guān)系進(jìn)行挖掘,找到數(shù)據(jù)間隱藏的關(guān)聯(lián)網(wǎng),主要算法有fp-growth算法、apriori算法等。在計(jì)算機(jī)犯罪取證中,可以先對犯罪案件中的特征與行為進(jìn)行深度的挖掘,從而明確其中所存在的聯(lián)系,同時(shí),在獲得審計(jì)數(shù)據(jù)后,就可以對其中的審計(jì)信息進(jìn)行整理并中存入到數(shù)據(jù)庫中進(jìn)行再次分析,從而達(dá)到案件樹立的效果,這樣,就能夠清晰的判斷出案件中的行為是否具有犯罪特征[1]。而分類分析則是對現(xiàn)有數(shù)據(jù)進(jìn)行分類整理,以明確所獲得數(shù)據(jù)中的相關(guān)性的一種數(shù)據(jù)挖掘功能。在分類分析的過程中,已知數(shù)據(jù)會(huì)被分為不同的數(shù)據(jù)組,并按照具體的數(shù)據(jù)屬性進(jìn)行明確分類,之后再通過對分組中數(shù)據(jù)屬性的具體分析,最終就可以得到數(shù)據(jù)屬性模型。在計(jì)算機(jī)犯罪案件中,可以將按照這種數(shù)據(jù)分類、分析的方法得到案件的數(shù)據(jù)屬性模型,之后將這一數(shù)據(jù)屬性模型與其他案件的數(shù)據(jù)屬性模型進(jìn)行對比,這樣就能夠判斷嫌疑人是否在作案動(dòng)機(jī)、發(fā)生規(guī)律以及具體特征等方面與其他案件模型相符,也就是說,一旦這一案件的數(shù)據(jù)模型屬性與其他案件的數(shù)據(jù)模型屬性大多相符,那么這些數(shù)據(jù)就可以被確定為犯罪證據(jù)。此外,在不同案件間的共性與差異的基礎(chǔ)上,分類分析還可以實(shí)現(xiàn)對于未知數(shù)據(jù)信息或類似數(shù)據(jù)信息的有效預(yù)測,這對于計(jì)算機(jī)犯罪案件的處理也是很有幫助的。此外,數(shù)據(jù)挖掘分類預(yù)測功能的實(shí)現(xiàn)主要依賴決策樹、支持向量機(jī)、vsm、logisitic回歸、樸素貝葉斯等幾種,這些算法各有優(yōu)劣,在實(shí)際應(yīng)用中需要根據(jù)案件的實(shí)際情況進(jìn)行選擇,例如支持向量機(jī)具有很高的分類正確率,因此適合用于特征為線性不可分的案件,而決策樹更容易理解與解釋。
對于數(shù)據(jù)挖掘技術(shù),目前的計(jì)算機(jī)犯罪取證工作并未形成一個(gè)明確而統(tǒng)一的應(yīng)用步驟,因此,我們可以根據(jù)數(shù)據(jù)挖掘技術(shù)的特征與具體功能,對數(shù)據(jù)挖掘技術(shù)在計(jì)算機(jī)犯罪取證中的應(yīng)用提供一個(gè)較為可行的具體思路[2]。首先,當(dāng)案件發(fā)生后,一般能夠獲取到海量的原始數(shù)據(jù),面對這些數(shù)據(jù),可以利用fp-growth算法、apriori算法等算法進(jìn)行關(guān)聯(lián)分析,找到案件相關(guān)的潛在有用信息,如犯罪嫌疑人的犯罪動(dòng)機(jī)、案發(fā)時(shí)間、作案嫌疑人的基本信息等等。在獲取這些基本信息后,雖然能夠?qū)Π讣幕咎卣饔幸欢ǖ牧私猓缸锵右扇藚s難以通過這些簡單的信息進(jìn)行確定,因此還需利用決策樹、支持向量機(jī)等算法進(jìn)行分類預(yù)測分析,通過對原始信息的準(zhǔn)確分類,可以得到案件的犯罪行為模式(數(shù)據(jù)屬性模型),而通過與其他案件犯罪行為模式的對比,就能夠?qū)Ψ缸锵右扇说木唧w特征進(jìn)行進(jìn)一步的預(yù)測,如經(jīng)常活動(dòng)的場所、行為習(xí)慣、分布區(qū)域等,從而縮小犯罪嫌疑人的鎖定范圍,為案件偵破工作帶來巨大幫助。此外,在計(jì)算機(jī)犯罪案件處理完畢后,所建立的嫌疑人犯罪行為模式以及通過關(guān)聯(lián)分析、分類預(yù)測分析得到的案件信息仍具有著很高的利用價(jià)值,因此不僅需要將這些信息存入到專門的數(shù)據(jù)庫中,同時(shí)還要根據(jù)案件的結(jié)果對數(shù)據(jù)進(jìn)行再次分析與修正,并做好犯罪行為模式的分類與標(biāo)記工作,為之后的案件偵破工作提供更加豐富、詳細(xì)的數(shù)據(jù)參考。
總而言之,數(shù)據(jù)挖掘技術(shù)自計(jì)算機(jī)犯罪取證中的應(yīng)用是借助以各種算法為基礎(chǔ)的關(guān)聯(lián)、分類預(yù)測功能來實(shí)現(xiàn)的,而隨著技術(shù)的不斷提升以及數(shù)據(jù)庫中的犯罪行為模式會(huì)不斷得到完善,在未來數(shù)據(jù)挖掘技術(shù)所能夠起到的作用也必將越來越大。
作者:周永杰單位:河南警察學(xué)院信息安全系。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十五
數(shù)據(jù)挖掘技術(shù)在各行業(yè)都有廣泛運(yùn)用,是一種新興信息技術(shù)。而在線考試系統(tǒng)中存在著很多的數(shù)據(jù)信息,數(shù)據(jù)挖掘技在在線考試系統(tǒng)有著重要的意義,和良好的應(yīng)用前景,從而在眾多技術(shù)中脫穎而出。本文從對數(shù)據(jù)挖掘技術(shù)的初步了解,簡述數(shù)據(jù)挖掘技術(shù)在在線考試系統(tǒng)中成績分析,以及配合成績分析,完善教學(xué)。
隨著計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)的快速發(fā)展,計(jì)算機(jī)輔助教育的不斷普及,在線考試是一種利用網(wǎng)絡(luò)技術(shù)的重要輔助教育手段,其改革有著重要的意義。數(shù)據(jù)挖掘技術(shù)作為一種新興的信息技術(shù),其包括了人工智能、數(shù)據(jù)庫、統(tǒng)計(jì)學(xué)等學(xué)科的內(nèi)容,是一門綜合性的技術(shù)。這種技術(shù)的主要特點(diǎn)是對數(shù)據(jù)庫中大量的數(shù)據(jù)進(jìn)行抽取、轉(zhuǎn)換和分析,從中提取出能夠?qū)處熡凶饔玫年P(guān)鍵性數(shù)據(jù)。將其運(yùn)用于在線考試系統(tǒng)中,能夠很好的處理在線考試中涉及到的數(shù)據(jù),讓在線考試的實(shí)用性和高效性得到進(jìn)一步的增強(qiáng),幫助教師更加快速、完整的統(tǒng)計(jì)考試信息,完善教學(xué)。
數(shù)據(jù)挖掘技術(shù)是從大量數(shù)據(jù)中"挖掘"出對使用者有用的知識(shí),即從大量的、隨機(jī)的、有噪聲的、模糊的、不完全的實(shí)際應(yīng)用數(shù)據(jù)中,"挖掘"出隱含在其中但人們事先卻不知道的,而又是對人們潛在有用的信息與知識(shí)的整個(gè)過程。
目前主要的商業(yè)數(shù)據(jù)挖掘系統(tǒng)有sas公司的enterpriseminer,spss公司的clementine,sybas公司的warehousestudio,minersgi公司的mineset,rulequestresearch公司的see5,ibm公司的intelligent,還有coverstory,knowledgediscovery,quest,explora,dbminer,workbench等。
2.1數(shù)據(jù)分類。
數(shù)據(jù)挖掘技術(shù)通過對數(shù)據(jù)庫中的數(shù)據(jù)進(jìn)行分析,把數(shù)據(jù)按照相似性歸納成若干類別,然后做出分類,并能夠?yàn)槊恳粋€(gè)類別都做出一個(gè)準(zhǔn)確的描述,挖掘出分類的規(guī)則或建立一個(gè)分類模型。
2.2數(shù)據(jù)關(guān)聯(lián)分析。
數(shù)據(jù)庫中的數(shù)據(jù)關(guān)聯(lián)是一項(xiàng)非常重要,并可以發(fā)現(xiàn)的知識(shí)。數(shù)據(jù)關(guān)聯(lián)就是兩組或兩組以上的數(shù)據(jù)之間有著某種規(guī)律性的聯(lián)系。數(shù)據(jù)關(guān)聯(lián)分析的作用就是找出數(shù)據(jù)庫中隱藏的聯(lián)系,從中得到一些對學(xué)校教學(xué)工作管理者有用的信息。就像是在購物中,就可以通過顧客的購買物品的聯(lián)系,從中得到顧客的購買習(xí)慣。
2.3預(yù)測。
預(yù)測是根據(jù)已經(jīng)得到的數(shù)據(jù),從而對未來的情況做出一個(gè)可能性的分析。數(shù)據(jù)挖掘技術(shù)能自動(dòng)在大型的數(shù)據(jù)庫中做出一個(gè)較為準(zhǔn)確的分析。就像是在市場投資中,可以通過各種商品促銷的數(shù)據(jù)來做出一個(gè)未來商品的促銷走勢。從而在投資中得到最大的回報(bào)。
數(shù)據(jù)挖掘技術(shù)融合了多個(gè)學(xué)科、多個(gè)領(lǐng)域的知識(shí)與技術(shù),因此數(shù)據(jù)挖掘的方法也呈現(xiàn)出很多種類的形式。就目前的統(tǒng)計(jì)分析類的數(shù)據(jù)挖掘技術(shù)的角度來講,光統(tǒng)計(jì)分析技術(shù)中所用到的數(shù)據(jù)挖掘模型就回歸分析、邏輯回歸分析、有線性分析、非線性分析、單變量分析、多變量分析、最近鄰算法、最近序列分析、聚類分析和時(shí)間序列分析等多種方法。數(shù)據(jù)挖掘技術(shù)利用這些方法對那些異常形式的數(shù)據(jù)進(jìn)行檢查,然后通過各種數(shù)據(jù)模型和統(tǒng)計(jì)模型對這些數(shù)據(jù)來進(jìn)行解釋,并從這些數(shù)據(jù)中找出隱藏在其中的商業(yè)機(jī)會(huì)和市場規(guī)律。另外還有知識(shí)發(fā)現(xiàn)類數(shù)據(jù)挖掘技術(shù),這種和統(tǒng)計(jì)分析類的數(shù)據(jù)挖掘技術(shù)完全不同,其中包括了支持向量機(jī)、人工神經(jīng)元網(wǎng)絡(luò)、遺傳算法、決策樹、粗糙集、關(guān)聯(lián)順序和規(guī)則發(fā)現(xiàn)等多種方法。
4.1運(yùn)用關(guān)聯(lián)規(guī)則分析教師的年齡對學(xué)生考試成績的影響。
數(shù)據(jù)挖掘技術(shù)中的關(guān)聯(lián)分析在教學(xué)分析中,是一種使用頻繁,行之有效的方法,它能挖掘出大量數(shù)據(jù)中項(xiàng)集之間之間有意義的關(guān)聯(lián)聯(lián)系,幫助知道教師的教學(xué)過程。例如在如今的一些高職院校中,就往往會(huì)把學(xué)生的英語四六級過級率,計(jì)算機(jī)等級等,以這些為依據(jù)來評價(jià)教師的教學(xué)效果。將數(shù)據(jù)挖掘技術(shù)中的關(guān)聯(lián)規(guī)則運(yùn)用于考試的成績分析當(dāng)中,就能夠挖掘出一些對學(xué)生過級率產(chǎn)生影響的因素,對教師的教學(xué)過程進(jìn)行重要的指導(dǎo),讓教師的教學(xué)效率更高,作用更強(qiáng)。
還可以通過關(guān)聯(lián)規(guī)則算法,先設(shè)定一個(gè)最小可信度和支持度,得到初步的關(guān)聯(lián)規(guī)則,根據(jù)相關(guān)規(guī)則,分析出教師的組成結(jié)構(gòu)和過級率的影響,從來進(jìn)行教師隊(duì)伍的結(jié)構(gòu)調(diào)整,讓教師隊(duì)伍更加合理。
4.2采用分類算法探討對考試成績有影響的因素。
數(shù)據(jù)挖掘技術(shù)中的分類算法就是對一組對象或一個(gè)事件進(jìn)行歸類,然后通過這些數(shù)據(jù),可以進(jìn)行分類模型的建立和未來的預(yù)測。分類算法可以進(jìn)行考試中得到的數(shù)據(jù)進(jìn)行分類,然后通過學(xué)生的一些基本情況進(jìn)行探討一些對考試成績有影響的因素。分類算法可以用一下步驟實(shí)施:
4.2.1數(shù)據(jù)采集。
這種方法首先要進(jìn)行數(shù)據(jù)采集,需要這幾方面的數(shù)據(jù),學(xué)生基本信息(姓名、性別、學(xué)號(hào)、籍貫、所屬院系、專業(yè)、班級等)、學(xué)生調(diào)查信息(比如學(xué)習(xí)前的知識(shí)掌握情況、學(xué)習(xí)興趣、課堂學(xué)習(xí)效果、課后復(fù)習(xí)時(shí)間量等)、成績(學(xué)生平常學(xué)習(xí)成績,平常考試成績,各種大型考試成績等)、學(xué)生多次考試中出現(xiàn)的易錯(cuò)點(diǎn)(本次考試中出現(xiàn)的易錯(cuò)點(diǎn),以往考試中出現(xiàn)的易錯(cuò)點(diǎn))。
4.2.2數(shù)據(jù)預(yù)處理。
(1)數(shù)據(jù)集成。把數(shù)據(jù)采集過程中得到的多種信息,利用數(shù)據(jù)挖掘技術(shù)中的數(shù)據(jù)庫技術(shù)生產(chǎn)相應(yīng)的學(xué)生考試成績分析基本數(shù)據(jù)庫。(2)數(shù)據(jù)清理。在學(xué)生成績分析數(shù)據(jù)庫中,肯定會(huì)出現(xiàn)一些情況缺失,對于這些空缺處,就需要使用數(shù)據(jù)清理技術(shù)來進(jìn)行這些數(shù)據(jù)庫中數(shù)據(jù)的填補(bǔ)遺漏。例如,可以采用忽略元組的方法來刪除那些沒有參加考試的學(xué)生考試數(shù)據(jù)已經(jīng)在學(xué)生填寫的調(diào)查數(shù)據(jù)中村中的空缺項(xiàng)。(3)數(shù)據(jù)轉(zhuǎn)換。數(shù)據(jù)轉(zhuǎn)換主要功能是進(jìn)行進(jìn)行數(shù)據(jù)的離散化操作。在這個(gè)過程中可以根據(jù)實(shí)際需要進(jìn)行分類,比如把考試成績從0~59的分到較差的一類,將60到80分為中等類,81到100分為優(yōu)秀等。(4)數(shù)據(jù)消減。數(shù)據(jù)消減的功能就是把所需挖掘的數(shù)據(jù)庫,在消減的過程又不能影響到最終的數(shù)據(jù)挖掘結(jié)果。比如在分析學(xué)生的基本學(xué)習(xí)情況的影響因素情況中,學(xué)生信息表中中出現(xiàn)的字段很多,可以選擇性的刪除班別、籍貫等引述,形成一份新的學(xué)生基本成績分析數(shù)據(jù)表。
4.2.3利用數(shù)據(jù)挖掘技術(shù),得出結(jié)論。
通過數(shù)據(jù)挖掘技術(shù)在在線考試中的應(yīng)用,得出這些學(xué)生數(shù)據(jù)的相關(guān)分析,比如說學(xué)生考試中的易錯(cuò)點(diǎn)在什么地方,學(xué)生考試成績的自身原因,學(xué)生考試成績的環(huán)境原因,教師隊(duì)伍的搭配情況等等,從中得出如何調(diào)整學(xué)校教學(xué)資源,教師的教學(xué)方案調(diào)整等等,從而完善學(xué)校對學(xué)生的教學(xué)。
數(shù)據(jù)挖掘技術(shù)在社會(huì)各行各業(yè)中都有一定程度的使用,基于其在數(shù)據(jù)組織、分析能力、知識(shí)發(fā)現(xiàn)和信息深層次挖掘的能力,在使用中取得了顯著的成效,但數(shù)據(jù)挖掘技術(shù)中還存在著一些問題,例如數(shù)據(jù)的挖掘算法、預(yù)處理、可視化問題、模式識(shí)別和解釋等等。對于這些問題,學(xué)校教學(xué)管理工作者要清醒的認(rèn)識(shí),在在線考試系統(tǒng)中對數(shù)據(jù)挖掘信息做出合理的使用,讓數(shù)字挖掘技術(shù)在在線考試系統(tǒng)中能夠更加有效的發(fā)揮其長處,避免其在在線考試系統(tǒng)中的的缺陷。
[1]胡玉榮?;诖植诩碚摰臄?shù)據(jù)挖掘技術(shù)在高校學(xué)生成績分析中的作用[j]。荊門職業(yè)技術(shù)學(xué)院學(xué)報(bào),20xx,12(22):12.
[2][加]韓家煒,堪博(kamberm.)。數(shù)據(jù)挖掘:概念與技術(shù)(第2版)[m]范明,譯。北京:機(jī)械工業(yè)出版社,20xx.
[3]王潔?!对诰€考試系統(tǒng)的設(shè)計(jì)與開發(fā)》[j]。山西師范大學(xué)學(xué)報(bào),20xx(2)。
[4]王長娥。數(shù)據(jù)挖掘技術(shù)在教育中的應(yīng)用[j]。計(jì)算機(jī)與信息技術(shù),20xx(11)。
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十六
摘要:隨著科學(xué)技術(shù)的快速發(fā)展,各種新鮮的事物和理念得到了廣泛的應(yīng)用。其中機(jī)器學(xué)習(xí)算法就是一則典型案例——作為一種新型的算法,其廣泛應(yīng)用于各行各業(yè)之中。本篇論文旨在探討機(jī)器學(xué)習(xí)算法在數(shù)據(jù)挖掘中的具體應(yīng)用,我們利用龐大的移動(dòng)終端數(shù)據(jù)網(wǎng)絡(luò),加強(qiáng)了基于gsm網(wǎng)絡(luò)的戶外終端定位,從而提出了3個(gè)階段的定位算法,有效提高了定位的精準(zhǔn)度和速度。
關(guān)鍵詞:學(xué)習(xí)算法;gsm網(wǎng)絡(luò);定位;數(shù)據(jù);。
移動(dòng)終端定位技術(shù)由來已久,其主要是利用各種科學(xué)技術(shù)手段定位移動(dòng)物體的精準(zhǔn)位置以及高度。目前,移動(dòng)終端定位技術(shù)主要應(yīng)用于軍事定位、緊急救援、網(wǎng)絡(luò)優(yōu)化、地圖導(dǎo)航等多個(gè)現(xiàn)代化的領(lǐng)域,由于移動(dòng)終端定位技術(shù)能夠帶給精準(zhǔn)的位置服務(wù)信息,所以其在市場上還是有較大的需求的,這也為移動(dòng)終端定位技術(shù)的優(yōu)化和發(fā)展,帶給了推動(dòng)力。隨著通信網(wǎng)絡(luò)普及,移動(dòng)終端定位技術(shù)的發(fā)展也得到了一些幫忙,使得其定位的精準(zhǔn)度和速度都得到了全面的優(yōu)化和提升。同時(shí),傳統(tǒng)的定位方法結(jié)合先進(jìn)的算法來進(jìn)行精準(zhǔn)定位,目前依舊還是有較大的進(jìn)步空間。在工作中我選取機(jī)器學(xué)習(xí)算法結(jié)合數(shù)據(jù)挖掘技術(shù)對傳統(tǒng)定位技術(shù)加以改善,取得了不錯(cuò)的效果,但也遇到了許多問題,例如:使用機(jī)器學(xué)習(xí)算法來進(jìn)行精準(zhǔn)定位暫時(shí)無法滿足更大的區(qū)域要求,還有想要利用較低的設(shè)備成本,實(shí)現(xiàn)得到更多的精準(zhǔn)定位的要求比較困難。所以本文對機(jī)器學(xué)習(xí)算法進(jìn)行了深入的研究,期望能夠幫忙其更快速的定位、更精準(zhǔn)的定位,滿足市場的需要。
數(shù)據(jù)挖掘又名數(shù)據(jù)探勘、信息挖掘。它是數(shù)據(jù)庫知識(shí)篩選中十分重要的一步。數(shù)據(jù)挖掘其實(shí)指的就是在超多的數(shù)據(jù)中透過算法找到有用信息的行為。一般狀況下,數(shù)據(jù)挖掘都會(huì)和計(jì)算機(jī)科學(xué)緊密聯(lián)系在一齊,透過統(tǒng)計(jì)集合、在線剖析、檢索篩選、機(jī)器學(xué)習(xí)、參數(shù)識(shí)別等多種方法來實(shí)現(xiàn)最初的目標(biāo)。統(tǒng)計(jì)算法和機(jī)器學(xué)習(xí)算法是數(shù)據(jù)挖掘算法里面應(yīng)用得比較廣泛的兩類。統(tǒng)計(jì)算法依靠于概率分析,然后進(jìn)行相關(guān)性決定,由此來執(zhí)行運(yùn)算。
而機(jī)器學(xué)習(xí)算法主要依靠人工智能科技,透過超多的樣本收集、學(xué)習(xí)和訓(xùn)練,能夠自動(dòng)匹配運(yùn)算所需的相關(guān)參數(shù)及模式。它綜合了數(shù)學(xué)、物理學(xué)、自動(dòng)化和計(jì)算機(jī)科學(xué)等多種學(xué)習(xí)理論,雖然能夠應(yīng)用的領(lǐng)域和目標(biāo)各不相同,但是這些算法都能夠被獨(dú)立使用運(yùn)算,當(dāng)然也能夠相互幫忙,綜合應(yīng)用,能夠說是一種能夠“因時(shí)而變”、“因事而變”的算法。在機(jī)器學(xué)習(xí)算法的領(lǐng)域,人工神經(jīng)網(wǎng)絡(luò)是比較重要和常見的一種。因?yàn)樗膬?yōu)秀的數(shù)據(jù)處理和演練、學(xué)習(xí)的潛力較強(qiáng)。
而且對于問題數(shù)據(jù)還能夠進(jìn)行精準(zhǔn)的識(shí)別與處理分析,所以應(yīng)用的頻次更多。人工神經(jīng)網(wǎng)絡(luò)依靠于多種多樣的建模模型來進(jìn)行工作,由此來滿足不同的數(shù)據(jù)需求。綜合來看,人工神經(jīng)網(wǎng)絡(luò)的建模,它的精準(zhǔn)度比較高,綜合表述潛力優(yōu)秀,而且在應(yīng)用的過程中,不需要依靠專家的輔助力量,雖然仍有缺陷,比如在訓(xùn)練數(shù)據(jù)的時(shí)候耗時(shí)較多,知識(shí)的理解潛力還沒有到達(dá)智能化的標(biāo)準(zhǔn),但是,相對于其他方式而言,人工神經(jīng)網(wǎng)絡(luò)的優(yōu)勢依舊是比較突出的。
2以機(jī)器學(xué)習(xí)算法為基礎(chǔ)的gsm網(wǎng)絡(luò)定位。
2.1定位問題的建模。
建模的過程主要是以支持向量機(jī)定位方式作為基礎(chǔ),把定位的位置柵格化,面積較小的柵格位置就是獨(dú)立的一種類別,在定位的位置內(nèi),我們收集數(shù)目龐大的終端測量數(shù)據(jù),然后利用計(jì)算機(jī)對測量報(bào)告進(jìn)行分析處理,測量柵格的距離度量和精準(zhǔn)度,然后對移動(dòng)終端柵格進(jìn)行預(yù)估決定,最終利用機(jī)器學(xué)習(xí)進(jìn)行分析求解。
2.2采集數(shù)據(jù)和預(yù)處理。
本次研究,我們采用的模型對象是我國某一個(gè)周邊長達(dá)10千米的二線城市。在該城市區(qū)域內(nèi),我們測量了四個(gè)不同時(shí)間段內(nèi)的數(shù)據(jù),為了保證機(jī)器學(xué)習(xí)算法定位的精準(zhǔn)性和有效性,我們把其中的三批數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),最后一組數(shù)據(jù)作為定位數(shù)據(jù),然后把定位數(shù)據(jù)周邊十米內(nèi)的前三組訓(xùn)練數(shù)據(jù)的相關(guān)信息進(jìn)行清除。一旦確定某一待定位數(shù)據(jù),就要在不同的時(shí)間內(nèi)進(jìn)行測量,按照測量出的數(shù)據(jù)信息的經(jīng)緯度和平均值,再進(jìn)行換算,最終,得到真實(shí)的數(shù)據(jù)量,提升定位的速度以及有效程度。
2.3以基站的經(jīng)緯度為基礎(chǔ)的初步定位。
用機(jī)器學(xué)習(xí)算法來進(jìn)行移動(dòng)終端定位,其復(fù)雜性也是比較大的,一旦區(qū)域面積增加,那么模型和分類也相應(yīng)增加,而且更加復(fù)雜,所以,利用機(jī)器學(xué)習(xí)算法來進(jìn)行移動(dòng)終端定位的過程,會(huì)隨著定位區(qū)域面積的增大,而耗費(fèi)更多的時(shí)間。利用基站的經(jīng)緯度作為基礎(chǔ)來進(jìn)行早期的定位,則需要以下幾個(gè)步驟:要將邊長為十千米的正方形分割成一千米的小柵格,如果想要定位數(shù)據(jù)集內(nèi)的相關(guān)信息,就要選取對邊長是一千米的小柵格進(jìn)行計(jì)算,而如果是想要獲得邊長一千米的大柵格,就要對邊長是一千米的柵格精心計(jì)算。
2.4以向量機(jī)為基礎(chǔ)的二次定位。
在完成初步定位工作后,要確定一個(gè)邊長為兩千米的正方形,由于第一級支持向量機(jī)定位的區(qū)域是四百米,定位輸出的是以一百米柵格作為中心點(diǎn)的經(jīng)緯度數(shù)據(jù)信息,相對于一級向量機(jī)的定位而言,二級向量機(jī)在定位計(jì)算的時(shí)候難度是較低的,更加簡便。后期的預(yù)算主要依靠決策函數(shù)計(jì)算和樣本向量機(jī)計(jì)算。隨著柵格的變小,定位的精準(zhǔn)度將越來越高,而由于增加分類的問題數(shù)量是上升的,所以,定位的復(fù)雜度也是相對增加的。
2.5以k-近鄰法為基礎(chǔ)的三次定位。
第一步要做的就是選定需要定位的區(qū)域面積,在二次輸出之后,確定其經(jīng)緯度,然后依靠經(jīng)緯度來確定邊長面積,這些都是進(jìn)行區(qū)域定位的基礎(chǔ)性工作,緊之后就是定位模型的訓(xùn)練。以k-近鄰法為基礎(chǔ)的三次定位需要的是綜合訓(xùn)練信息數(shù)據(jù),對于這些信息數(shù)據(jù),要以大小為選取依據(jù)進(jìn)行篩選和合并,這樣就能夠減少計(jì)算的重復(fù)性。當(dāng)然了,選取的區(qū)域面積越大,其定位的速度和精準(zhǔn)性也就越低。
3結(jié)語。
近年來,隨著我國科學(xué)技術(shù)的不斷發(fā)展和進(jìn)步,數(shù)據(jù)挖掘技術(shù)愈加重要。根據(jù)上面的研究,我們證明了,在數(shù)據(jù)挖掘的過程中,應(yīng)用機(jī)器學(xué)習(xí)算法具有舉足輕重的作用。作為一門多領(lǐng)域互相交叉的知識(shí)學(xué)科,它能夠幫忙我們提升定位的精準(zhǔn)度以及定位速度,能夠被廣泛的應(yīng)用于各行各業(yè)。所以,對于機(jī)器學(xué)習(xí)算法,相關(guān)人員要加以重視,不斷的進(jìn)行改良以及改善,切實(shí)的發(fā)揮其有利的方面,將其廣泛應(yīng)用于智能定位的各個(gè)領(lǐng)域,幫忙我們解決關(guān)于戶外移動(dòng)終端的定位的問題。
參考文獻(xiàn)。
[2]李運(yùn).機(jī)器學(xué)習(xí)算法在數(shù)據(jù)挖掘中的應(yīng)用[d].北京郵電大學(xué),2014.
數(shù)據(jù)挖掘論文答辯數(shù)據(jù)挖掘論文篇十七
隨著會(huì)計(jì)現(xiàn)代化的發(fā)展,會(huì)計(jì)越來越多的運(yùn)用計(jì)算機(jī)技術(shù)的拓展。
數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢和模式的過程,它融合了現(xiàn)代統(tǒng)計(jì)學(xué)、知識(shí)信息系統(tǒng)、機(jī)器學(xué)習(xí)、決策理論和數(shù)據(jù)庫管理等多學(xué)科的知識(shí)。它能有效地從大量的、不完全的、模糊的實(shí)際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛在有用的信息和知識(shí),揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。數(shù)據(jù)挖掘是從數(shù)據(jù)當(dāng)中發(fā)現(xiàn)趨勢和模式的過程,它融合了現(xiàn)代統(tǒng)計(jì)學(xué)、知識(shí)信息系統(tǒng)、機(jī)器學(xué)習(xí)、決策理論和數(shù)據(jù)庫管理等多學(xué)科的知識(shí)。它能有效地從大量的、不完全的、模糊的實(shí)際應(yīng)用數(shù)據(jù)中,提取隱含在其中的潛存有用的信息和知識(shí),揭示出大量數(shù)據(jù)中復(fù)雜的和隱藏的關(guān)系,為決策提供有用的參考。
常用的數(shù)據(jù)挖掘方法主要有決策樹(decisiontree)、遺傳算法(geneticalgorithms)、關(guān)聯(lián)分析(associationanalysis).聚類分析(c~smranalysis)、序列模式分析(sequentialpattern)以及神經(jīng)網(wǎng)絡(luò)(neuralnetworks)等。
由于數(shù)據(jù)挖掘市場還處于起步的階段,但是發(fā)展很快。在國外有一些著名的大公司對數(shù)據(jù)挖掘系統(tǒng)進(jìn)行了開發(fā)。
igentminer這是ibm公司的數(shù)據(jù)挖掘產(chǎn)品,它提供了很多數(shù)據(jù)挖掘算法,包括關(guān)聯(lián)、分類、回歸、預(yù)測模型、偏離檢測、序列模式分析和聚類。有2個(gè)特點(diǎn):一是它的數(shù)據(jù)挖掘算法的可伸縮性;二是它與ibm/db/2關(guān)系數(shù)據(jù)庫系統(tǒng)緊密地結(jié)合在一起。
t是由sgi公司開發(fā)的,它也提供了多種數(shù)據(jù)挖掘方法,包括關(guān)聯(lián)分析和分類以及高級統(tǒng)計(jì)和可視化工具。特色是它具有的強(qiáng)大的圖形工具,包括規(guī)則可視化工具、樹可視化工具、地圖可視化工具和多維數(shù)據(jù)分散可視化工具,它們用于實(shí)現(xiàn)數(shù)據(jù)和數(shù)據(jù)挖掘結(jié)果的可視化。
tine是由isl公司開發(fā)的,它為終端用戶和開發(fā)者提供提供了一個(gè)集成的數(shù)據(jù)挖掘開發(fā)環(huán)境。
面對日益激烈的競爭環(huán)境,企業(yè)管理者對決策信息的需求也越來越高。管理會(huì)計(jì)作為企業(yè)決策支持系統(tǒng)的重要組成部分,提供更多、更有效的有用信息責(zé)無旁貸。因此,從海量數(shù)據(jù)中挖掘和尋求知識(shí)和信息,為決策提供有力支持成為管理會(huì)計(jì)師使用數(shù)據(jù)挖掘的強(qiáng)大動(dòng)力。例如,數(shù)據(jù)挖掘可以幫助企業(yè)加強(qiáng)成本管理,改進(jìn)產(chǎn)品和服務(wù)質(zhì)量,提高貨品銷量比率,設(shè)計(jì)更好的貨品運(yùn)輸與分銷策略,減少商業(yè)成本。
實(shí)踐證明數(shù)據(jù)挖掘不僅能明顯改善企業(yè)內(nèi)部流程,而且能夠從戰(zhàn)略的高度對企業(yè)的競爭環(huán)境、市場、顧客和供應(yīng)商進(jìn)行分析,以獲得有價(jià)值的商業(yè)情報(bào),保持和提高企業(yè)持續(xù)競爭優(yōu)勢。如,對顧客價(jià)值分析能夠?qū)槠髽I(yè)創(chuàng)造80%價(jià)值的20%的顧客區(qū)分出來,對其提供更優(yōu)質(zhì)的服務(wù),以保持這部分顧客。
險(xiǎn)
利用數(shù)據(jù)挖掘技術(shù)可以建立企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)預(yù)警模型。企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)的發(fā)生并非一蹴而就,而是一個(gè)積累的、漸進(jìn)的過程,通過建立財(cái)務(wù)風(fēng)險(xiǎn)預(yù)警模型,可以隨時(shí)監(jiān)控企業(yè)財(cái)務(wù)狀況,防范財(cái)務(wù)危機(jī)的發(fā)生。另外,也可以利用數(shù)據(jù)挖掘技術(shù),對企業(yè)籌資和投資過程中的行為進(jìn)行監(jiān)控,防止惡意的商業(yè)欺詐行為,維護(hù)企業(yè)利益。尤其是在金融企業(yè),通過數(shù)據(jù)挖掘,可以解決銀行業(yè)面臨的如信用卡的惡意透支及可疑的信用卡交易等欺詐行為。根據(jù)sec的報(bào)告,美國銀行、美國第一銀行、聯(lián)邦住房貸款抵押公司等數(shù)家銀行已采用了數(shù)據(jù)挖掘技術(shù)。
作業(yè)成本法以其對成本的精確計(jì)算和對資源的充分利用引起了人們的極大興趣,但其復(fù)雜的操作使得很多管理者望而卻步。利用數(shù)據(jù)挖掘中的回歸分析、分類分析等方法能幫助管理會(huì)計(jì)師確定成本動(dòng)因,更加準(zhǔn)確計(jì)算成本。同時(shí),也可以通過分析作業(yè)與價(jià)值之間的關(guān)系,確定增值作業(yè)和非增值作業(yè),持續(xù)改進(jìn)和優(yōu)化企業(yè)價(jià)值鏈。在thomasg,johnj和il-woonkim的調(diào)查中,數(shù)據(jù)挖掘被用在作業(yè)成本管理中僅占3%。
管理會(huì)計(jì)師在很多情況下需要對未來進(jìn)行預(yù)測,而預(yù)測是建立在大量的歷史數(shù)據(jù)和適當(dāng)?shù)哪P突A(chǔ)上的。數(shù)據(jù)挖掘自動(dòng)在大型數(shù)據(jù)庫中尋找預(yù)測性信息,利用趨勢分析、時(shí)間序列分析等方法,建立對如銷售、成本、資金等的預(yù)測模型,科學(xué)準(zhǔn)確的預(yù)測企業(yè)各項(xiàng)指標(biāo),作為決策的依據(jù)。例如對市場調(diào)查數(shù)據(jù)的分析可以幫助預(yù)測銷售;根據(jù)歷史資料建立銷售預(yù)測模型等。
投資決策分析本身就是一個(gè)非常復(fù)雜的過程,往往要借助一些工具和模型。數(shù)據(jù)挖掘技術(shù)提供了有效的工具。從公司的財(cái)務(wù)報(bào)告、宏觀的經(jīng)濟(jì)環(huán)境以及行業(yè)基本狀況等大量的數(shù)據(jù)資料中挖掘出與決策相關(guān)的實(shí)質(zhì)性的信息,保證投資決策的正確性和有效性。如利用時(shí)間序列分析模型預(yù)測股票價(jià)格進(jìn)行投資;用聯(lián)機(jī)分析處理技術(shù)分析公司的信用等級,以預(yù)防投資風(fēng)險(xiǎn)等。
品種優(yōu)化是選擇適當(dāng)?shù)漠a(chǎn)品組合以實(shí)現(xiàn)最大的利益的過程,這些利益可以是短期利潤,也可以是長期市場占有率,還可以是構(gòu)建長期客戶群及其綜合體。為了達(dá)到這些目標(biāo),管理會(huì)計(jì)師不僅僅需要價(jià)格和成本數(shù)據(jù)有時(shí)還需要知道替代品的情況,以及在某一市場段位上它們與原產(chǎn)品競爭的狀況。另外企業(yè)也需要了解一個(gè)產(chǎn)品是如何刺激另一些產(chǎn)品的銷量的等等。例如,非盈利性產(chǎn)品本身是沒有利潤可言的,但是,如果它帶來了可觀的客戶流量,并刺激了高利潤產(chǎn)品的銷售,那么,這種產(chǎn)品就非常有利可圖,就應(yīng)該包括在產(chǎn)品清單中。這些信息可根據(jù)實(shí)際數(shù)據(jù),通過關(guān)聯(lián)分析等技術(shù)來得到。
管理會(huì)計(jì)師可以利用數(shù)據(jù)挖掘工具來評價(jià)企業(yè)的財(cái)務(wù)風(fēng)險(xiǎn),建立企業(yè)財(cái)務(wù)危機(jī)預(yù)警模型,進(jìn)行破產(chǎn)預(yù)測。破產(chǎn)預(yù)測或稱財(cái)務(wù)危機(jī)預(yù)警模型能夠幫助管理者及時(shí)了解企業(yè)的財(cái)務(wù)風(fēng)險(xiǎn),提前采取風(fēng)險(xiǎn)防范措施,避免破產(chǎn)。另外,破產(chǎn)預(yù)測模型還能幫助分析破產(chǎn)原因,對企業(yè)管理者意義重大。,數(shù)據(jù)挖掘技術(shù)包括多維判別式分析、邏輯回歸分析、遺傳算法、神經(jīng)網(wǎng)絡(luò)以及決策樹等方法在管理會(huì)計(jì)中得到了廣泛的應(yīng)用。
數(shù)據(jù)挖掘是個(gè)嶄新的領(lǐng)域,對于數(shù)字和信息的處理是非??茖W(xué)和方便的,也是非常高效率和合理分析的非常好的工具,對于會(huì)計(jì)管理領(lǐng)域的應(yīng)用在國際上只是剛剛開始,相信隨著會(huì)計(jì)的國際化的接軌和計(jì)算機(jī)科學(xué)的進(jìn)步,在我國的會(huì)計(jì)領(lǐng)域中的數(shù)據(jù)挖掘理論會(huì)得到不斷的提升,在管理會(huì)計(jì)實(shí)際應(yīng)用中的數(shù)據(jù)挖掘也越來越多樣化和普及化。