因數(shù)與倍數(shù)教學設計(精選13篇)

字號:

    總結是對過去的一種回顧,也是對未來的一種規(guī)劃。在總結時,可以用單詞、短語或圖表來梳理思路。下面是一些成功人士的經(jīng)驗總結,希望對大家的職業(yè)發(fā)展有所啟發(fā)。
    因數(shù)與倍數(shù)教學設計篇一
    人教版小學數(shù)學五年級下冊第13~16頁。
    1、學生掌握找一個數(shù)的因數(shù),倍數(shù)的方法;
    2、學生能了解一個數(shù)的因數(shù)是有限的,倍數(shù)是無限的;
    3、能熟練地找一個數(shù)的因數(shù)和倍數(shù);
    4、培養(yǎng)學生的觀察能力。
    理解因數(shù)和倍數(shù)的含義;自主探索并總結找一個數(shù)的因數(shù)和倍數(shù)的方法。
    自主探索并總結找一個數(shù)的因數(shù)和倍數(shù)的方法;歸納一個數(shù)的因數(shù)的特點。
    學號牌數(shù)字卡片(也可讓學生按要求自己準備)。
    談話法、比較法、歸納法。
    復習。
    3、8÷2=4,所以8是倍數(shù),4是因數(shù)。這句話對嗎?
    今天,我和大家一道來繼續(xù)共同探討“因數(shù)與倍數(shù)”
    合作交流、共探新知。
    探究找一個數(shù)的因數(shù)的方法(談話法、比較法、歸納法)。
    請認為自己是18的因數(shù)的同學帶著號碼牌上臺來。
    b、學生再次依照1x18,2x9,3x6的順序一個個講出乘法算式。
    學生預設:有的學生可能會說還有6x3,9x2,18x1等,出現(xiàn)這種情況時可以冷一下,讓學生想一想這樣寫的話會出現(xiàn)什么情況,最后讓學生明白一個數(shù)的因數(shù)是不能重復的。
    d、介紹寫一個數(shù)因數(shù)的方法。
    可以用一串數(shù)字表示;也可以用集合圈的方法表示。
    說一說:
    18的因數(shù)共有幾個?
    它最小的因數(shù)是幾?
    最大的因數(shù)是幾?
    做一做(在做這些練習時應放手讓學生去做,相信學生的知識遷移與消化新知的能力)。
    a、30的因數(shù)有哪些,你是怎么想的?
    b、36的因數(shù)有幾個?你是怎么想的?為什么6x6=36,這里只寫一個因數(shù)?
    d、讓學生討論:你從中發(fā)現(xiàn)了“一個數(shù)的因數(shù)”有什么相同的地方嗎?
    因數(shù)與倍數(shù)教學設計篇二
    教學過程:
    生:1×12。
    師:猜猜看,他每排擺了幾個,擺了幾排?
    生:12個,擺了一排。
    生:三四十二。
    生齊:2×6。
    師:張老師來猜測一下同學們腦子里怎么想的,有同學可能想每排擺6個,擺2排。也有同學可能想每排擺2個,擺6排。(屏幕顯示擺法)同樣第二種擺法也可以省。
    師:還有不同的想法嗎?每排能擺5個嗎?12個同樣大小的正方形能擺3種不同的乘法算式,千萬別小看這些乘法算式,今天我們研究的內容就在這里。咱們就以第一道乘法算式為例,3×4=12,數(shù)學上把3是12的因數(shù),以往我們把他叫約數(shù),現(xiàn)在叫因數(shù),3是12的因數(shù),那4(也是12的因數(shù),)倒過來12是3的倍數(shù),12(也是4的倍數(shù))。同學們很有遷移的能力,這就是我們今天所要研究的因數(shù)和倍數(shù)。
    師:這兒還有兩道乘法算式,先自己說一說誰是誰的因數(shù)?誰是誰的倍數(shù)?行不行?
    師:誰先來?
    生說略。
    師:剛才在聽的時候發(fā)現(xiàn)1×12說因數(shù)和倍數(shù)時有兩句特別拗口,是哪兩句???
    生:12是12的因數(shù),12是12的倍數(shù)。
    生:自然數(shù)。
    師:而且誰得除外。
    生:0。
    師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。
    3、5、18、20、36。
    生說略。
    二、探索找因數(shù)倍數(shù)的方法。
    生1:3、18。
    師:還有誰?
    生2:36。
    師:3、18、36都是36的因數(shù),只有這3個嗎?
    生1:1。
    生2:4。
    生3:6。
    師:其實要找出36的一個因數(shù)并不難,難就難在你有沒有能力把36的所有因數(shù)全部找出來?能不能?張老師作一下詳細說明,因為這個問題有點難度,你可以獨立完成也可以同桌完成,下面你選擇你喜歡的方式,可以合作,也可以單干,想一想怎么不遺漏,注意了,當你找出了36的所有因數(shù),別忘了填在作業(yè)紙上,如果能把怎么找到的方法寫在下面更好。
    學生填寫時師巡視搜集作業(yè)。
    師:張老師找到了3份不同的作業(yè),大家仔細觀察這三份作業(yè),可有意思了。我把他命名為a、b、c師板書。
    a:2、4、13、12、18、36。
    b:1、2、4、3、6、9、12、18、36。
    c:1、36、2、18、3、12、4、9、6。
    師:關于a這種方法你有什么話要說?(學生紛紛舉手)能不能從正面的角度說一說,這個同學找出的因數(shù)有沒有值得肯定的地方?(學生沉默)一點都沒有我們值得肯定的地方嗎?你先來。
    生1:都對的。
    師:有沒有道理?看來要找一個人的優(yōu)點挺困難的。
    生2:寫全了。
    生大聲說:沒有!
    生:沒有寫全,少了3、6、9。
    生:36÷4,只寫了4,沒寫9。
    師:他的意思是說用除法來做的話,找一個數(shù)的因數(shù),一個個找,還是兩個兩個找?
    生齊:兩個兩個找。
    生2:先把1寫在頭,36寫在尾,然后再把2寫中間,這樣依次寫下去,這樣比較美觀。
    師:張老師提煉出兩個字:“順序”,好象還不僅僅是因為粗心的問題,沒有按照一定的順序。
    師:第二個同學有沒有找全,有沒有更好的建議送給他。
    生:他應該把4、3調換一下。
    師:你想提出抗議嗎?你們覺得有順序嗎?(有)你自己來說?
    生:他們那樣還要頭對尾頭對尾的,像這樣直接就可以寫了。
    師:有沒有聽明白,也是同樣一對一對出現(xiàn)的。
    生:大小沒有排,b大小排完后從小到大很舒服。
    師:你看你那個舒服嗎?
    生:舒服。
    師:正是因為你的質疑,他把方法說了出來。他用了什么?
    生:乘法口訣。
    師:非常感謝同學們給出的發(fā)言,正是你們的發(fā)言讓我們感受到了如何尋找一個數(shù)的因數(shù),有沒有問題。
    生1:找到開始重復就不找了。
    生2:我認為應該找到比較接近如5、6,7、8找到比較接近就可以了。
    師:體會體會1、學生:36、2、學生:18、3、12、4、9、6這兩個因數(shù)在不斷接近,接近到相差無幾。
    生:
    生:直接找更大數(shù)的所有的因數(shù),這個同學很厲害,已經(jīng)在用分解質因數(shù)的方法在找一個因數(shù)的個數(shù)了。
    師:通過剛才的交流,有辦法了嗎?有沒有方法不遺漏。試一個。20。
    生齊:1、2、4、5、10、20。
    再試一個:15,寫在練習紙上。學生匯報。
    師:尋找一個數(shù)掌握的不錯,這節(jié)課還要研究倍數(shù)呢。會找一書的倍數(shù)嗎?找一個小一點的,3的倍數(shù),誰來找一個。
    生:21、300。
    師:你能把3的倍數(shù)全部寫下來嗎?
    生:不能。太多太多了。
    師:那怎么辦?寫不完可以用省略號表示。試試看。
    學生練習紙上完成,匯報。
    師:同學們雖然找的答案差不多,但腦子里的方法各不相同。我想聽聽你是怎樣找的?
    生1:3×1、3×2。
    因數(shù)與倍數(shù)教學設計篇三
    教學內容:青島版教材小學數(shù)學五年級上冊88—91頁。
    教學目標:
    1、使學生初步認識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
    2、使學生在認識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學知識之間的內在聯(lián)系,提高數(shù)學思考的水平,對數(shù)學產(chǎn)生好奇心,培養(yǎng)學習興趣。
    教學重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。
    教學難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。
    教具準備:多媒體課件、學生練習題。
    教學過程:
    一、談話導入。
    師:同學們看這是什么?
    生:小正方形。
    師:想不想知道王老師給大家?guī)砹硕嗌賯€這樣的小正方形?
    生:想。
    師:多少個?
    生:12個。
    師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?
    生:能。
    因數(shù)與倍數(shù)教學設計篇四
    一、創(chuàng)設情境,明確相互依存的關系。
    1、師:同學們,我們人與人之間存在著各種關系,比如說(指某位同學)他同他爸爸是什么關系呢?(父子關系)老師和你們是——師生關系。
    師:“老師是師生關系”可以這樣說嗎?為什么?
    生:師生關系是指老師和學生之間的相互關系,不能單獨說。師:是呀,人與人之間的關系是相互的,在數(shù)學王國里,也有一些存在著相互依存關系的數(shù),這節(jié)課我們就一起來學習。
    2、談話導入:
    3×4=1。
    2(2)擺2行,一行擺6個。
    2×6=12。
    (3)擺1行,一行擺12個。
    1×12=12師:一行擺5個可以嗎?一行擺7個呢?師:大家仔細觀察這些算式,它里面藏著許多小秘密,這就是我們今天這節(jié)課要探究的因數(shù)和倍數(shù)。(板書課題)。
    師:誰能用2×6=12像這樣說一說因數(shù)和倍數(shù)嗎?(指生匯報)同桌說一說1×12=12的因數(shù)和倍數(shù)。
    師:現(xiàn)在你能快速的說出12所有的因數(shù)嗎?
    (1和12、2和6、3和4)師:為了研究的需要,一般將它們從小到大排列。大家一起說,老師記下來。
    學生回答,老師板書(1、2、3、4、6、12)。
    師:像這樣按照一定的順序,把所有的可能一一列舉出來,最終找到答案的方法,在數(shù)學上叫作列舉法。
    (課件出示:0.3×40=12)師:0.3乘40也等于12,我們這樣說:0.3是12的因數(shù),可以嗎?(不可以)。
    師小結(出示課件):我們研究因數(shù)和倍數(shù)時,所指的數(shù)是自然數(shù),0除外。
    4、找出24所有的因數(shù)。
    師:現(xiàn)在大家對因數(shù)和倍數(shù)有了一定的認識了,下面拿出你的練習本,寫出24所有的因數(shù),咱們比一比誰的方法最巧妙,能做到既不重復也不遺漏。先獨立思考,然后把你的想法在小組內說一說。
    (生交流找因數(shù)的方法)生匯報:師:對比三個同學的方法,有什么相同點?(都是用乘法算式找因數(shù))你喜歡哪種方法?為什么?(強調有序的方法)。
    師講解方法:按順序的寫出積是24的乘法算式,然后依次一對一對地找,這樣既不重復也不遺漏。
    5、即時小練習。
    師:這么好的方法我們得用一用,你能找出16的因數(shù)嗎?你能快速說出16的因數(shù)嗎?(出示課件:1、16、2、8、4)重復的只保留一個。
    師:剛才我們找出了12的因數(shù)、24的因數(shù)和16的因數(shù),仔細觀察這些數(shù)的因數(shù),你有什么發(fā)現(xiàn)?(一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身)看來你是一位既會觀察又會思考的同學,我建議此處應該有掌聲。
    6、游戲鞏固。
    師:大家的表現(xiàn)真是太精彩了,玩?zhèn)€猜數(shù)游戲放松一下怎么樣?(出示課件猜數(shù)游戲)。
    7、找倍數(shù)的方法以及一個數(shù)的倍數(shù)的特征。
    師:能告訴我你為什么停下來了呢?(寫不完)那怎么辦(省略號)現(xiàn)在誰還給大家說一說你的想法。
    生匯報:師:用這個方法你能分別找出5的倍數(shù)、9的倍數(shù)嗎?(生匯報)師:在大家的共同努力下,我們找出了4、5、9的倍數(shù),仔細觀察,你能發(fā)現(xiàn)什么?(板書:一個數(shù)的倍數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù))(說的怎么樣?掌聲送給他吧)。
    三、練習鞏固。
    師:因數(shù)和倍數(shù)的知識我們研究完了,敢不敢接受挑戰(zhàn)?
    1、判斷。
    2、分別找出18和20的所有因數(shù)。
    四、數(shù)學文化。
    師:其實,在我們的數(shù)學中,還存在著一些神奇的數(shù)。
    (課件出示:50、60、70、80、90、100)猜一猜這些數(shù)的因數(shù)的個數(shù),哪個數(shù)的因數(shù)最多?(生猜)(師出示結果)原來一個數(shù)的因數(shù)的多少與數(shù)的大小無關,我們知道:1分=60秒1時=60分,將60作為時間的進率,是因為60的因數(shù)多。
    數(shù)學上還有一種數(shù):例如6的因數(shù)是1、2、3、6,去掉它本身,1+2+3=6;28的因數(shù)是1、2、4、7、14、28去掉它本身,1+2+4+7+14=28,數(shù)學上將這樣的數(shù)叫做完美數(shù),完美數(shù)非常稀少,至今數(shù)學家只發(fā)現(xiàn)了29個完美數(shù)。
    五、總結收獲。
    師:好了,回想一下我們本節(jié)課學習的內容,說一說你有哪些收獲。
    因數(shù)與倍數(shù)教學設計篇五
    理解因數(shù)和倍數(shù)的意義以及兩者之間相互依存的關系,掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù),及因數(shù)和倍數(shù)個數(shù)方面的特征。
    (二)過程與方法。
    通過整數(shù)的乘除運算認識因數(shù)和倍數(shù)的意義,自主探索和總結出求一個數(shù)的因數(shù)和倍數(shù)的方法。
    (三)情感態(tài)度和價值觀。
    在探索的過程中體會數(shù)學知識之間的內在聯(lián)系,在解決問題的過程中培養(yǎng)學生思維的有序性和條理性。
    教學重點:理解因數(shù)和倍數(shù)的含義。
    教學難點:自主探索有序地找一個數(shù)的因數(shù)和倍數(shù)的方法。
    教學課件。
    (一)理解因數(shù)和倍數(shù)的意義。
    教學例1:
    1.觀察算式的特點,進行分類。
    (1)仔細觀察算式的特點,你能把這些算式分類嗎?
    (2)交流學生的分類情況。(預設:學生會根據(jù)算式的計算結果分成兩類)。
    第一類是被除數(shù)、除數(shù)、商都是整數(shù);第二類是被除數(shù)、除數(shù)都是整數(shù),而商不是整數(shù)。
    2.明確因數(shù)和倍數(shù)的意義。
    (1)同學們,在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們就說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。例如,12÷2=6,我們就說12是2的倍數(shù),2是12的因數(shù)。12÷6=2,我們就說12是6的倍數(shù),6是12的因數(shù)。
    (2)在第一類算式中找一個算式,說一說,誰是誰的因數(shù)?誰是誰的倍數(shù)?
    (3)強調一點:為了方便,在研究倍數(shù)與因數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括0)。
    【設計意圖】引導學生從“整數(shù)的除法算式”中認識因數(shù)和倍數(shù)的意義,簡潔明了,同時為學習因數(shù)和倍數(shù)的依存關系進行有效鋪墊。
    3.理解因數(shù)和倍數(shù)的依存關系。
    (1)獨立完成教材第5頁“做一做”。
    (2)我們能不能說“4是因數(shù)”“24是倍數(shù)”呢?表述時應該注意什么?
    【設計意圖】引導學生在理解的基礎上進行正確表述:因數(shù)和倍數(shù)是相互依存的,不是單獨存在的。我們不能說4是因數(shù),24是倍數(shù),而應該說4是24的因數(shù),24是4的倍數(shù)。
    4.理解一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
    (1)今天學的一個數(shù)的“因數(shù)”與以前乘法算式中的“因數(shù)”有什么區(qū)別呢?
    課件出示:
    乘法算式中的“因數(shù)”是相對于“積”而言的,可以是整數(shù),也可以是小數(shù)、分數(shù);而一個數(shù)的“因數(shù)”是相對于“倍數(shù)”而言的,它只能是整數(shù)。
    (2)今天學的“倍數(shù)”與以前的“倍”又有什么不同呢?
    “倍數(shù)”是相對于“因數(shù)”而言的,只適用于整數(shù);而“倍”適用于小數(shù)、分數(shù)、整數(shù)。
    (3)交流匯報。
    【設計意圖】“一個數(shù)的因數(shù)和倍數(shù)”與學生已學過的乘法算式中的“因數(shù)”以及“倍”的概念既有聯(lián)系又有區(qū)別,學生比較容易混淆,這也是學習一個數(shù)的“因數(shù)”和“倍數(shù)”意義的難點。通過觀察、對比、交流,引導學生發(fā)現(xiàn)一個數(shù)的“因數(shù)”和乘法算式中的“因數(shù)”的區(qū)別以及一個數(shù)的“倍數(shù)”與“倍”的區(qū)別。
    (二)找一個數(shù)的因數(shù)。
    教學例2:
    1.探究找18的因數(shù)的方法。
    (1)18的因數(shù)有哪些?你是怎么找的?
    (2)交流方法。
    預設:方法一:根據(jù)因數(shù)和倍數(shù)的意義,通過除法算式找18的因數(shù)。
    因為18÷1=18,所以1和18是18的因數(shù)。
    因為18÷2=9,所以2和9是18的因數(shù)。
    因為18÷3=6,所以3和6是18的因數(shù)。
    方法二:根據(jù)尋找哪兩個整數(shù)相乘的積是18,尋找18的因數(shù)。
    因為1×18=18,所以1和18是18的因數(shù)。
    因為2×9=18,所以2和9是18的因數(shù)。
    因為3×6=18,所以3和6是18的因數(shù)。
    2.明確18的因數(shù)的表示方法。
    (1)我們怎樣來表示18的因數(shù)有哪些呢?怎樣表示簡潔明了?
    (2)交流方法。
    預設:列舉法,18的因數(shù)有:1,2,3,6,9,18。
    3.練習找一個數(shù)的因數(shù)。
    (1)你能找出30的因數(shù)有哪些嗎?36的因數(shù)呢?
    (2)怎樣找才能不遺漏、不重復地找出一個數(shù)的所有因數(shù)?
    【設計意圖】讓學生通過自主探索、交流,獲得找一個數(shù)的因數(shù)的不同方法,在練習中體會“一對一對”有序地找一個數(shù)的因數(shù),避免遺漏或重復。初步感受一個數(shù)的因數(shù)的個數(shù)是有限的,以及“最大因數(shù)、最小因數(shù)”的特征。
    (三)找一個數(shù)的倍數(shù)。
    教學例3:
    1.探究找2的倍數(shù)的方法。
    (1)2的倍數(shù)有哪些?你是怎么找的?
    (2)交流方法。
    預設:方法一:利用除法算式找2的倍數(shù)。
    因為2÷2=1,所以2是2的倍數(shù)。
    因為4÷2=2,所以4是2的倍數(shù)。
    因為6÷2=3,所以6是2的倍數(shù)。
    方法二:利用乘法算式找2的倍數(shù)。
    因為2×1=2,所以2是2的倍數(shù)。
    因為2×2=4,所以4是2的倍數(shù)。
    因為2×3=6,所以6是2的倍數(shù)?!?BR>    (3)2的倍數(shù)能寫完嗎?你能繼續(xù)找嗎?寫不完怎么辦?
    (4)根據(jù)前面的經(jīng)驗,試著表示出2的倍數(shù)有哪些?(預設:列舉法、圖示法)。
    2.練習找一個數(shù)的倍數(shù)。
    你能找出3的倍數(shù)有哪些嗎?5的倍數(shù)呢?
    【設計意圖】在理解“倍數(shù)”的基礎上,讓學生進一步體會有序思考的必要性。初步感受一個數(shù)的倍數(shù)的個數(shù)是無限的,以及“最小倍數(shù)”的特征。
    1.從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?
    2.討論交流。
    3.歸納總結。
    預設:一個數(shù)的因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身;一個數(shù)的倍數(shù)的個數(shù)是無限的,沒有最大的倍數(shù),最小的倍數(shù)是它本身。1是所有非零自然數(shù)的因數(shù)。
    (五)鞏固練習。
    1.課件出示教材第7頁練習二第1題。
    (1)想一想,怎樣找不會遺漏、不會重復?
    (2)哪些數(shù)既是36的因數(shù),也是60的因數(shù)?
    【設計意圖】通過練習,讓學生再次體會“1是所有非零自然數(shù)的因數(shù)”“一個數(shù)最大的因數(shù)是它本身”和“一個數(shù)的因數(shù)的個數(shù)是有限的”。同時,滲透兩個數(shù)的“公因數(shù)”的意義。
    2.課件出示教材第7頁練習二第3題。
    (1)學生獨立完成,交流答案。
    (2)思考:5的倍數(shù)有什么特征?
    【設計意圖】滲透5的倍數(shù)的特征。
    3.課件出示教材第7頁練習二第5題。
    (1)學生獨立完成,交流答案。
    (2)你能改正錯誤的說法嗎?
    (六)全課總結,交流收獲。
    這節(jié)課我們學了哪些知識?你有什么收獲?
    因數(shù)與倍數(shù)教學設計篇六
    知識與技能:使學生結合具體情境初步理解因數(shù)和倍數(shù)的含義,初步理解因數(shù)和倍數(shù)相互依存的關系。
    過程與方法:使學生依據(jù)因數(shù)和倍數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    情感與態(tài)度:使學生在認識因數(shù)和倍數(shù)以及找一個數(shù)的因數(shù)和倍數(shù)的過程中進一步感受數(shù)學知識的內在聯(lián)系,提高數(shù)學思考的水平。
    理解因數(shù)和倍數(shù)的含義。
    探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習本上寫出乘法算式。
    匯報:你是怎么擺?算式是什么?
    指名說,師板書:1×12=12、2×6=12、3×4=12。
    師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數(shù)學奧秘。今天我們就來研究數(shù)學的新奧秘。
    師指3×4=12說:因為3×4=12,所以我們就說3是12的因數(shù)(板書:因數(shù)),4是12的因數(shù);12是3的倍數(shù)(板書:倍數(shù));12是4的倍數(shù)。
    小結:是呀,我們不能直接說誰是因數(shù),誰是倍數(shù),而要清楚的表達出來誰是誰的因數(shù),誰是誰的倍數(shù)。看來,因數(shù)和倍數(shù)是相互依存的(板書:和)。為了方便,在研究因數(shù)和倍數(shù)時,一般不討論0。
    二、探索找一個數(shù)的因數(shù)的方法。
    1、師:看黑板上的3個算式,你能找到12的所有的因數(shù)嗎?(學生齊說。)。
    問:如果沒有算式,你能找出24所有的因數(shù)嗎?先想想怎樣找?然后寫在練習本上。
    學生寫一寫,師巡視。
    匯報展示:(2人)。
    問:你是怎么找的?(學生說方法)。
    評價:他找的怎么樣?(學生評一評)。
    小結:其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復又不遺漏了。看來,有序的思考問題對我們的幫助確實很大。
    2、練習。
    師:用這種方法寫出18的因數(shù)。
    匯報:你找的18的因數(shù)都有哪些?(指名說,師板書)。
    3、發(fā)現(xiàn)規(guī)律。
    問:仔細觀察這幾個數(shù)的因數(shù),你能發(fā)現(xiàn)什么規(guī)律?
    小結:一個數(shù)的因數(shù)最小的是1,最大的是它本身。
    三、探索找一個數(shù)的倍數(shù)的方法。
    1、方法。
    學生找3的倍數(shù),寫在練習本上。
    匯報:指名說,師寫在黑板上。(3的倍數(shù)有:3,6,9,12,15……)。
    問:你能說的完嗎?寫不完怎么辦?(用省略號)。
    你是怎么找的?
    評一評:他的方法怎么樣?
    問:還有別的方法嗎?
    問:怎么找一個數(shù)的倍數(shù)?
    指名說。
    師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數(shù)。
    2、練習。
    找出5的倍數(shù),寫在練習本上。
    指名說,師板書,問:你是用什么方法找的5的倍數(shù)?
    3、發(fā)現(xiàn)規(guī)律。
    問:觀察一下,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?
    師小結:一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的。
    問:一個數(shù)的倍數(shù)個數(shù)是無限的,一個數(shù)的因數(shù)的個數(shù)呢?(有限)。
    (課件出示)。
    四、鞏固練習。
    1、寫一寫:6的因數(shù)、9的因數(shù)、50以內7的倍數(shù)。
    集體訂正。
    2、選一選。
    8的倍數(shù)有哪些?48的因數(shù)又有哪些?
    3、數(shù)學小知識:完美數(shù)。
    師:6的因數(shù)有(1,2,3,6),把前三個因數(shù)相加,你會發(fā)現(xiàn)什么?(1+2+3=6)。
    因數(shù)與倍數(shù)教學設計篇七
    1讓學生理解倍數(shù)和因數(shù)的意義,掌握找一個非零自然數(shù)的倍數(shù)與因數(shù)的方法,發(fā)現(xiàn)一個非零自然數(shù)的倍數(shù)和因數(shù)中最大的數(shù)、最小的數(shù)以及一個非零自然數(shù)的倍數(shù)與因數(shù)個數(shù)的特征。
    2讓學生初步意識到可以從一個新的角度,即倍數(shù)和因數(shù)的角度來研究非零自然數(shù)的特征及其相互關系,培養(yǎng)學生觀察、分析與抽象概括的能力,體會數(shù)學學習的奇妙,對數(shù)學產(chǎn)生好奇心。
    教學重點:理解倍數(shù)和因數(shù)的意義。
    教學難點:從倍數(shù)和因數(shù)的意義出發(fā),尋找一個非零自然數(shù)的倍數(shù)與因數(shù)。
    一、直接導入。
    師:自然數(shù)是我們在數(shù)的王國中認識的第一種數(shù),今天我們將從一個特定的角度,即倍數(shù)和因數(shù)的角度來研究自然數(shù)的特征及其相互關系。(板書課題:倍數(shù)和因數(shù))。
    (屏幕出示12個完全相同的正方形)。
    生:我可以拼出一個3×4的長方形。
    師:你們猜猜看,這會是一個什么樣的長方形?
    生:每排擺3個正方形,擺4排;或每排擺4個正方形,擺3排。(課件演示學生所猜的長方形,并讓學生明白這兩種拼法其實是相同的)。
    生:我還可以拼出一個2×6的長方形。
    生:我還可以拼出一個1×12的長方形。(師問法同上,略)。
    師:同學們可別小看這三道算式,今天我們學習的內容,就將從研究這三道乘法算式拉開帷幕。
    師:根據(jù)3×4=12,我們可以說(屏幕出示):12是3的倍數(shù),12也是4的倍數(shù);3是12的因數(shù),4也是12的因數(shù)。
    師:同學們一起來讀一讀,感受一下。
    師:你讀懂了些什么?(引導學生感知什么是倍數(shù)、什么是因數(shù),即倍數(shù)和因數(shù)的意義;明白在乘法算式中,積就是兩個乘數(shù)的倍數(shù),兩個乘數(shù)就是積的因數(shù))。
    師:請你從6×2=12和12×1=12這兩道算式中任選一題,用上面的話說一說。
    師(出示18÷3=6):誰是誰的倍數(shù)?誰是誰的因數(shù)?為什么?
    生:因為18/3=6可以改寫成3×6=18,所以18是3和6的倍數(shù),3和6是18的因數(shù)。(引導學生明白根據(jù)乘除法的互逆關系,在除法算式中也可以說誰是誰的倍數(shù)、誰是誰的因數(shù))。
    屏幕出示:4是因數(shù),24是倍數(shù)。
    師:這句話對嗎?(讓學生理解倍數(shù)和因數(shù)是兩個數(shù)之間的相互依存關系,必須說誰是誰的倍數(shù)、誰是誰的因數(shù))。
    師:我們再看屏幕上這三道乘法算式(1×12=12、2×6=12、3×4=12),善于觀察的同學一定發(fā)現(xiàn)在這三道乘法算式中。我們其實已經(jīng)找到了12的所有因數(shù),你知道都有哪些嗎?(引導學生說一說)。
    屏幕出示一組數(shù):36、4、9、0、5、2。
    師:請你從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關系來說一說。(生可能會選36和4、36和9、4和2這幾組數(shù))。
    設疑:
    (1)為什么不選0呢?(讓學生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))(屏幕演示將“0”去掉)。
    (2)為什么不選5呢?(例如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))(屏幕演示將“5”去掉)。
    (3)去掉了0和5,剩下的這些數(shù)和36有什么關系呢?(它們都是36的因數(shù),或36是它們的倍數(shù);當然,36也是36的因數(shù),36也是36的倍數(shù))。
    三、探討找一個數(shù)的因數(shù)的方法。
    生:容易漏掉或重復。
    師:你們有沒有什么好辦法,能一個不落地將36的所有因數(shù)都找到呢?同學們可以獨立完成這個任務,也可以同桌的兩位同學合作完成。如果你全部找到了,就請將36的所有因數(shù)寫在練習紙上。同時將你找因數(shù)的方法寫在橫線的下方。(教師巡視,學生討論交流)。
    展示學生的作品,學生可能出現(xiàn)的答案有:
    (2)利用36÷1=36,36÷2=18……也可以得出1、36、2、18、3、12、4、9、6等數(shù)都是36的因數(shù)。
    在寫法上,可能出現(xiàn)的答案為1、36、2、18、3、12、4、9、6(一對一對地寫),或按照從小到大的順序寫,即1、2、3、4、6、9、12、18、36。然后引導學生比較這兩種寫法的不同。將方法優(yōu)化:運用除法算式一對一對地找一個數(shù)的因數(shù)更為簡便,并且不重復、不遺漏,做到答案的完整性;在寫的時候,可以一頭一尾地寫,這樣可以做到答案的有序性。(板書:有序、完整)。
    2探討一個數(shù)的因數(shù)的特征。
    課件出示12的因數(shù)、15的因數(shù)和36的因數(shù)。(從小到大排列)。
    課件出示描述一個非零自然數(shù)的因數(shù)的特征的表格(如下),學生討論、交流后再反饋。
    師(小結):一個非零自然數(shù)的最大因數(shù)是它本身,最小因數(shù)是1,因數(shù)的個數(shù)是有限的。
    四、探討找一個數(shù)的倍數(shù)的方法。
    1師:我們已經(jīng)掌握了如何有序地、完整地找出一個非零自然數(shù)的所有因數(shù)的方法。如果讓你找出一個數(shù)的所有倍數(shù),你會找嗎?(生:會)那么,我們就一起來找找3的倍數(shù)。(學生試著找出3的倍數(shù),教師巡視,對有困難的學生給予幫助)。
    2師:你是怎樣有序地、完整地找出3的倍數(shù)的?
    生:用3分別乘1、2、3……得出3的倍數(shù)。
    生:用3依次地加3得到3的倍數(shù)。
    師:你認為哪種方法能更迅速地找出3的倍數(shù)?(學生討論交流)。
    師:3的倍數(shù)能找得完嗎?(生:找不完)那么,可以怎樣表示3的倍數(shù)的個數(shù)呢?(生:用省略號表示)(相機板書:3、6、9、12、15……)。
    3寫出30以內5的倍數(shù)。(做在練習紙上)。
    4課件出示3的倍數(shù)、4的倍數(shù)、5的倍數(shù),讓學生從最大倍數(shù)、最小倍數(shù)、倍數(shù)的個數(shù)三個方面去描述一個數(shù)的倍數(shù)的特征(見下表)。
    師(小結):一個非零自然數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),所以倍數(shù)的個數(shù)是無限的。
    五、組織游戲,深化認識。
    游戲——請到我家來做客。
    (每位學生的手中,都有一張寫有該名學生的學號卡片)。
    課件演示并配有話外音:春天來了,濃濃的春天氣息讓森林里好客的小動物們,紛紛拿出自己最珍貴的食物款待大家。
    (1)屏幕上出現(xiàn)了可愛的小狗向同學們走來(配音):24的因數(shù)是我的朋友。如果你卡片上的數(shù)是24的因數(shù),歡迎你,我的朋友!(卡片上的數(shù)若符合要求,就請這位學生站起來)。
    (2)屏幕上出現(xiàn)了笨笨的小豬向同學們揮手(配音):我邀請的朋友是5的倍數(shù),喜歡我,就快快來吧!
    (3)瞧!可愛的小貓咪也來了。(屏幕上出現(xiàn)了俏皮、可愛的小貓咪)配音:如果你卡片上的數(shù)是1的倍數(shù),請來我家做客吧!
    (每位學生卡片上的數(shù)都符合要求,所以全班學生都站了起來)。
    師:小貓咪這么好客,老師也想去她家做客。你們來為老師想一個符合要求的數(shù),好嗎?(生答略)。
    師:是不是所有的自然數(shù)都可以呢?
    生:除了0。
    屏幕出示:所有非零自然數(shù)都是1的倍數(shù)。
    (4)配音:威嚴的老虎來了!它請的朋友很特別,它是所有非零自然數(shù)的因數(shù)。這個數(shù)是幾呢?(生討論交流)。
    屏幕出示:只有1才符合要求,因為1是所有非零自然數(shù)的因數(shù)。
    六、挑戰(zhàn)自我,拓展升華。
    師:雖然我們只合作了這短短的三十分鐘,但老師已經(jīng)深深感到我們這個班的同學非常聰明,不僅善于觀察,而且愛動腦筋,所以老師特別準備了一個富有挑戰(zhàn)性的節(jié)目想考考大家,你們敢不敢接受挑戰(zhàn)?(生:敢!)。
    挑戰(zhàn)——你猜、我猜、大家猜i(屏幕演示動畫標題)。
    (1)20、5、4、3。
    答案:去掉3(屏幕演示隱去“3”),剩下的數(shù)是20的因數(shù),或20是它們的倍數(shù)。
    (2)4、12、18、3。
    答案有兩種:一是去掉18(屏幕演示隱去“18”),剩下的數(shù)便是12的因數(shù),或12是它們的倍數(shù);二是去掉4(屏幕演示隱去“4”),剩下的數(shù)便是3的倍數(shù)。
    七、全課總結。
    師:通過今天這節(jié)課的學習,你有什么收獲?你們學得開心嗎?玩得開心嗎?其實。數(shù)學就是這么簡單而有趣,讓我們每天都樂在其中!
    總評:
    本節(jié)課的教學特色是嚴謹靈活、細膩奔放。在“因數(shù)和倍數(shù)”概念的學習過程中,重視師生情感的交流,注重每個學生的發(fā)展,較好地體現(xiàn)了“教師有效引導下學生自主探索”這一教學策略。
    1、意義教學引導學生自主構建。
    在多次的實踐教學中,發(fā)現(xiàn)用12個完全相同的小正方形拼出一個長方形。對于四年級的學生來說非常容易。教材這樣安排的目的,在于幫助學生有意識地感受1和12、2和5、3和4這幾組數(shù)之間的有機聯(lián)系。
    1、借助三個問題讓學生通過想像及大屏幕的直觀演示,引導學生得出三道乘法算式,同時介紹倍數(shù)和因數(shù)的含義。
    2、通過除法算式找因倍關系。
    2、合理組織教材,將找一個數(shù)的因數(shù)及其特征教學提前。
    尋找一個數(shù)的因數(shù)是本節(jié)課的教學難點,學生往往滿足于答案的尋找,而忽視尋找過程中的思考策略及思維方法。
    教學中,教師出示一組數(shù),如36、4、9、0、5、2,讓學生從這組數(shù)中任選兩個數(shù),用倍數(shù)和因數(shù)的關系來說一說。
    最后設疑:
    (1)為什么不選o呢?(讓學生理解倍數(shù)和因數(shù)是針對非零的自然數(shù))。
    (2)為什么不選5呢?(如36和5,因為找不到一個自然數(shù)和5相乘能得到36,或者36除以5有余數(shù))。
    (3)去掉了0和5,剩下的這些數(shù)和36有什么關系呢?(它們都是36的因數(shù),或36是它們的倍數(shù))。
    這樣的改變,既達到預定目的,又為學習找因數(shù)做了鋪墊,引發(fā)了學生尋找36的因數(shù)的濃厚興趣。在引導學生自主探索一個數(shù)的因數(shù)的特征時,教師讓學生帶著問題去觀察討論:每一個非零自然數(shù)的因數(shù)的個數(shù)是有限的還是無限的?一個非零自然數(shù)的最大因數(shù)是幾?一個非零自然數(shù)的最小因數(shù)是幾?以上安排,降低了學生的學習難度。
    3、尋找一個數(shù)的因數(shù)和倍數(shù)的方法讓學生自己生成。
    在尋找一個數(shù)的因數(shù)和倍數(shù)的過程中。教師將學生推向發(fā)現(xiàn)與探索的前臺。
    尋找一個數(shù)的倍數(shù)和因數(shù)。方法不是惟一的。教師在肯定各種方法合理性的同時,及時引導學生進行溝通,尋找它們的共同點和聯(lián)系,進而比較各種方法之間的優(yōu)劣,遴選最優(yōu)方法,提升思維效率。
    4、增強游戲中數(shù)學思維的含量。
    知識在游戲中深化,在挑戰(zhàn)中升華。
    本節(jié)課以“有效引導下自主探索”為教學策略。以三道乘法算式為線索,以教材文本為依托,以有梯度的游戲活動展開對知識的深化鞏固,并適時、適量引入多媒體輔助教學,將諸多細小的認知活動歸整在一個探究性的課堂自主研究活動中。通過自主觀察、交流發(fā)現(xiàn)、共同分享,引領學生經(jīng)歷“研究與發(fā)現(xiàn)”的真實過程。課尾游戲的運用,激發(fā)了學生的學習熱情,讓學生以愉快的心情和良好的體驗融入學習活動中,培養(yǎng)了學生用數(shù)學眼光看待游戲的意識,大大降低了學生對數(shù)學概念學習的枯燥體驗。
    因數(shù)與倍數(shù)教學設計篇八
    教學內容:義務教育課標實驗教科書青島版數(shù)學三年級下冊p109――p110。
    教學目標:
    知識與技能:使學生結合具體情境初步理解因數(shù)和倍數(shù)的含義,初步理解因數(shù)和倍數(shù)相互依存的關系。
    過程與方法:使學生依據(jù)因數(shù)和倍數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    情感與態(tài)度:使學生在認識因數(shù)和倍數(shù)以及找一個數(shù)的因數(shù)和倍數(shù)的過程中進一步感受數(shù)學知識的內在聯(lián)系,提高數(shù)學思考的水平。
    教學重點:理解因數(shù)和倍數(shù)的含義。
    教學難點:探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法。
    教學過程:
    1、操作:用這12個正方形拼成一個長方形,每排擺幾個,擺了幾排,擺完后在練習本上寫出乘法算式。
    匯報:你是怎么擺?算式是什么?
    指名說,師板書:1×12=122×6=123×4=12。
    師:剛才通過擺不同的長方形,我們得到了3道不同的乘法算式,別小看這3個算式,其實在這里面有許多數(shù)學奧秘。今天我們就來研究數(shù)學的新奧秘。
    師指3×4=12說:因為3×4=12,所以我們就說3是12的因數(shù)(板書:因數(shù)),4是12的因數(shù);12是3的倍數(shù)(板書:倍數(shù));12是4的倍數(shù)。
    小結:是呀,我們不能直接說誰是因數(shù),誰是倍數(shù),而要清楚的表達出來誰是誰的因數(shù),誰是誰的倍數(shù)??磥恚驍?shù)和倍數(shù)是相互依存的(板書:和)。為了方便,在研究因數(shù)和倍數(shù)時,一般不討論0。
    二、探索找一個數(shù)的因數(shù)的方法。
    1、師:看黑板上的3個算式,你能找到12的所有的因數(shù)嗎?(學生齊說。)。
    問:如果沒有算式,你能找出24所有的因數(shù)嗎?先想想怎樣找?然后寫在練習本上。
    學生寫一寫,師巡視。
    匯報展示:(2人)。
    問:你是怎么找的?(學生說方法)。
    評價:他找的怎么樣?(學生評一評)。
    小結:其實老師就是按從小到大的順序一對一對找的,這樣就能做到既不重復又不遺漏了??磥恚行虻乃伎紗栴}對我們的幫助確實很大。
    2、練習。
    師:用這種方法寫出18的因數(shù)。
    匯報:你找的18的因數(shù)都有哪些?(指名說,師板書)。
    3、發(fā)現(xiàn)規(guī)律。
    問:仔細觀察這幾個數(shù)的因數(shù),你能發(fā)現(xiàn)什么規(guī)律?
    小結:一個數(shù)的因數(shù)最小的是1,最大的是它本身。
    三、探索找一個數(shù)的倍數(shù)的方法。
    1、方法。
    學生找3的倍數(shù),寫在練習本上。
    匯報:指名說,師寫在黑板上。(3的倍數(shù)有:3,6,9,12,15……)。
    問:你能說的完嗎?寫不完怎么辦?(用省略號)。
    你是怎么找的?
    評一評:他的方法怎么樣?
    問:還有別的方法嗎?
    問:怎么找一個數(shù)的倍數(shù)?
    指名說。
    師:按從小到大的順序,用3依次去乘1、2、3、4……,乘得的積就是3的倍數(shù)。
    2、練習。
    找出5的倍數(shù),寫在練習本上。
    指名說,師板書,問:你是用什么方法找的5的倍數(shù)?
    3、發(fā)現(xiàn)規(guī)律。
    問:觀察一下,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?
    師小結:一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的是它本身,沒有最大的。
    問:一個數(shù)的倍數(shù)個數(shù)是無限的,一個數(shù)的因數(shù)的個數(shù)呢?(有限)。
    (課件出示)。
    四、鞏固練習。
    1、寫一寫:6的因數(shù)、9的因數(shù)、50以內7的倍數(shù)。
    集體訂正。
    2、選一選。
    8的倍數(shù)有哪些?48的因數(shù)又有哪些?
    學生填一填,集體訂正。
    3、數(shù)學小知識:完美數(shù)。
    師:6的因數(shù)有(1,2,3,6),把前三個因數(shù)相加,你會發(fā)現(xiàn)什么?(1+2+3=6)。
    因數(shù)與倍數(shù)教學設計篇九
    本單元是在學生學過整數(shù)的認識、整數(shù)的四則計算、小數(shù)、分數(shù)的認識等知識的基礎上展開教學的。本單元的內容主要包括因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質數(shù)和合數(shù)等知識。通過這部分內容的學習,既可以讓學生在前面所學的整數(shù)知識基礎上進一步探索整數(shù)的性質,又有助于發(fā)展他們的抽象思維。這些知識的學習是以后學生學習公倍數(shù)與公因數(shù)、約分、通分、分數(shù)四則運算等知識的重要基礎。
    學生已經(jīng)學過整數(shù)的認識、整數(shù)的四則計算、小數(shù)、分數(shù)的認識等知識,但本單元的知識屬于“數(shù)論”的初步知識,概念比較多,有些概念比較抽象,概念的前后聯(lián)系又很緊密,部分學生學習時可能會有一定的困難。教材明確規(guī)定在研究因數(shù)與倍數(shù)時,限制在不包括0的自然數(shù)范圍內研究,避免由此帶來一些小學生尚不必研究的問題。教學時要注意以下兩點:
    學情分析。
    1.利用乘法引導學生認識因數(shù)和倍數(shù)。教材在揭示倍數(shù)和因數(shù)的概念時,沒有像原來的教材那樣,先揭示整除的概念,再利用整除認識倍數(shù)和因數(shù),而是讓學生通過分類,用除法算式認識倍數(shù)和因數(shù)。在找一個數(shù)的倍數(shù)時,也是讓學生運用乘除法的知識,探索找一個數(shù)的倍數(shù)的方法。
    2.注重引導學生在數(shù)學活動中探索數(shù)的特征。教材非常強調學生的數(shù)學學習活動,倡導多樣化的學習方式,組織學生在活動中探索、發(fā)現(xiàn)數(shù)的特征。如在探索2、5和3的倍數(shù)的特征時,都是先讓學生在100以內數(shù)的表格中圈出2、5的倍數(shù),再通過分析歸納或猜想驗證等方法發(fā)現(xiàn)它們的倍數(shù)的特征。
    教學目標。
    知識技能:
    1.使學生掌握因數(shù)、倍數(shù)、質數(shù)、合數(shù)等概念,知道相關概念之間的聯(lián)系和區(qū)別。
    2.讓學生通過自主探索,掌握2、5、3的倍數(shù)的特征。
    數(shù)學思考:逐步培養(yǎng)學生的數(shù)學抽象能力,以及滲透分類的思想。
    問題解決:經(jīng)歷與他人合作交流解決問題的過程,嘗試解釋自己的思考過程。
    情感態(tài)度:通過利用因數(shù)和倍數(shù)的相關知識來解決相應的實際問題,使學生進一步體會數(shù)學的應用價值。
    課時劃分:8課時。
    1.因數(shù)和倍數(shù)……………………2課時。
    2.2、5、3的倍數(shù)的特征………2課時。
    3.質數(shù)和合數(shù)……………………3課時。
    4.整理和復習……………………3課時。
    因數(shù)與倍數(shù)教學設計篇十
    教材分析:
    這部分教材首先以例題的形式介紹因數(shù)和倍數(shù)的概念,然后在例1和例2中分別介紹了求一個數(shù)的因數(shù)和倍數(shù)的方法,引導學生從本質上理解概念,避免死記硬背,向學生滲透從具體到一般的抽象歸納的思想方法。
    了解學生:
    學生已經(jīng)學習了四年的數(shù)學,有了四年整數(shù)知識的基礎,本課利用實物圖引出乘法算式,然后引出因數(shù)和倍數(shù)的含義,培養(yǎng)了學生的抽象概括能力。
    教學目標:
    1、知識技能:(1)理解和掌握因數(shù)、倍數(shù)的概念,認識它們之間的聯(lián)系和區(qū)別。(2)學會求一個數(shù)的因數(shù)或倍數(shù)的方法,能夠熟練地求出一個數(shù)的因數(shù)或倍數(shù)。(3)知道一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。
    2、過程方法:經(jīng)歷因數(shù)和倍數(shù)的認識以及求一個數(shù)的因數(shù)或倍數(shù)的過程,體驗類推、列舉和歸納總結等學習方法。
    3、情感態(tài)度:在學習活動中,感受數(shù)學知識之間的內在聯(lián)系,體驗發(fā)現(xiàn)知識的樂趣。
    教學重點:學會求一個數(shù)的因數(shù)或倍數(shù)的方法。
    教學難點:理解和掌握因數(shù)和倍數(shù)的概念。
    教學準備:課件、作業(yè)紙。
    教學過程:
    一、創(chuàng)設情境——找朋友。
    1、唱一唱:你們聽過“找朋友”這首歌嗎?誰愿意大聲的唱給大家聽?(一名學生唱,師評價:老師很喜歡你的聲音,你敢于表現(xiàn)自己,老師很愿意和你成為好朋友)。
    2、說一說:誰能具體的說一說“誰是誰的好朋友”?(鼓勵:老師希望能聽到更多人的聲音)。
    學生完整敘述:“××是李老師的朋友,李老師是××的朋友”。
    3、引入新課:同學們說的很好,那能不能說老師是朋友,××是朋友?看來,朋友是相互依存的,一個人不會是朋友。今天我們就來認識數(shù)學中的一對朋友“因數(shù)和倍數(shù)”(板書課題)。
    二、探究新知。
    1、提出問題:現(xiàn)在有12名同學參加訓練,要排成整齊的隊伍,可以怎樣排?用一個簡單的乘法算式表示出排列的方法。
    學生可能得到:每排6人,排成2排,2×6=12;
    每排4人,排成3排,4×3=12;
    每排12人,排成1排,1×12=12。
    課件出示相應的圖和算式。
    2、揭示概念:以2×6=12為例。
    邊說邊板書:()是12的因數(shù),()是12的因數(shù);
    12是()的倍數(shù),12是()的倍數(shù)。
    學生同桌互相說,指名兩名同學說。(評價:這么短的時間內,同學們就能準確、完整的表述它們之間的因倍關系,真了不起。)。
    突出強調:能不能說12是倍數(shù),2是因數(shù)?(學生回答,揭示并板書:相互依存)。
    3、強化概念:另外兩道乘法算式,你也能像這樣準確地寫出它們之間的關系嗎?分組比賽,在作業(yè)紙上完成,看哪個組能完全做對。
    學生在作業(yè)紙上完成,同時課件出示:(指名兩名學生在白板上利用普通筆標注答案)。
    因數(shù)與倍數(shù)教學設計篇十一
    教學內容:青島版教材小學數(shù)學五年級上冊88—91頁。
    教學目標:
    1、使學生初步認識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。
    2、使學生在認識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進一步體會數(shù)學知識之間的內在聯(lián)系,提高數(shù)學思考的水平,對數(shù)學產(chǎn)生好奇心,培養(yǎng)學習興趣。
    教學重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。
    教學難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。
    教具準備:多媒體課件、學生練習題。
    教學過程:
    一、談話導入。
    師:同學們看這是什么?
    生:小正方形。
    師:想不想知道王老師給大家?guī)砹硕嗌賯€這樣的小正方形?
    生:想。
    師:多少個?
    生:12個。
    師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?
    生:能。
    【設計意圖】:以學生熟悉情景引入,激發(fā)學生的好奇心。
    二、教學因數(shù)和倍數(shù)的意義。
    師:增加一點難度,用一道算式說明你的想法,讓其他同學猜一猜你是怎么擺的,好嗎?
    生:好!
    學生匯報:
    生1:1×12=12。
    師:他是怎么擺的?
    生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。
    課件出示擺法。
    師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)。
    生2:2×6=12。
    師:猜一猜他是在怎么擺的?
    生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。
    師:這兩種情況,我們也算一種。
    生3:3×4=12。
    師:他又是怎么擺的?
    生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。
    師:還有其他擺法嗎?
    生:沒有了。
    師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數(shù)和倍數(shù)(板書課題)。
    2.教學“因數(shù)和倍數(shù)”的意義。
    師:我們以3×4=12為例,在數(shù)學上可以說3是12的因數(shù),4也是12的因數(shù),12是3的倍數(shù),12也是4的倍數(shù)。這里還有兩道算式,同桌兩個同學先互相說一說誰是誰的因數(shù),誰是誰的倍數(shù)。
    學生匯報:任選一道回答。
    生1:12是12的因數(shù),1是12的因數(shù),12是2的倍數(shù),12是1的倍數(shù)。
    師:說的多好?。‰m然有點像繞口令,但數(shù)學上確實是這樣的。我們再一起說一遍。
    師:還有一道算式,誰來說一說?
    生:2是12的因數(shù),6是12的因數(shù),12是2的倍數(shù),12也是6的倍數(shù)。
    師明確:為了研究方便,我們所說的因數(shù)和倍數(shù)都是指自然數(shù),(0除外)。
    師:通過剛才的練習,你有沒有發(fā)現(xiàn)12的因數(shù)一共有哪些?(生邊說老師邊有序的用課件出示12的所有的因數(shù)。)。
    師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。
    3、5、18、20、36。
    【設計意圖】讓學生經(jīng)歷知識的形成過程。通過實際例子,讓學生進一步理解,因數(shù)和倍數(shù)之間存在著相互依存的關系。
    三、教學尋找因數(shù)的方法。
    1、找一個數(shù)的因數(shù)。
    師:說出幾個36的因數(shù)并不難,關鍵是怎樣找的既有序又全面,有沒有信心挑戰(zhàn)一下?
    生:有。
    師:老師提個要求:
    1)、可以獨立完成,也可以同桌交流。
    2)、把這個數(shù)的因數(shù)找全以后,把你的方法記錄在下面。并總結你是怎樣找的。
    2、探索交流找一個數(shù)的因數(shù)的方法。
    找一名有代表性的作業(yè)板書在黑板上。
    師:他找對了嗎?
    生:沒有,漏下了一對。
    師:為什么會漏掉?僅僅是因為粗心嗎?
    生:不是,他沒有按照一定的順序找!
    師:那么要找到36所有的因數(shù)關鍵是什么?
    生:有序。
    師生共同邊說邊有序的把36的所有的因數(shù)板書出來。師:還有問題嗎?
    生:沒有了。
    生:你們沒有,老師有一個問題,你們?yōu)槭裁凑业?就不再接著往下找了?
    生:再接著找就重復了。
    師:那么找到什么時候就不找了?
    生:找到重復了,就不在往下找了。
    師、生共同總結找因數(shù)的方法。(一對一對有序的找,一直找到重復為止)。
    師:有失誤的學生對自己的錯誤進行調整。
    3、鞏固練習。
    找出下面各數(shù)的因數(shù)。
    4、尋找一個數(shù)的因數(shù)的特點。
    【設計意圖】放手讓學生自主找一個數(shù)的因數(shù),并總結找一個數(shù)因數(shù)的方法。學生非常喜歡,而且也能夠讓學生在活動中提升。
    四、教學尋找倍數(shù)的方法。
    1、找一個數(shù)的倍數(shù)。
    生:能!
    師:試試看,找個小的可以嗎?
    生:行!
    師:找一下3的倍數(shù)。30秒時間,把答案寫在練習紙上。??
    師:有什么問題嗎?
    生:老師,寫不完。
    師:為什么寫不完?
    生:有很多個!
    師:那怎么才能全都表示出來呢?
    生:可以加省略號。
    師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?
    師:誰能總結一下你是怎樣找到的?
    生:從小到大依次乘自然數(shù)。
    師:你真會思考!
    課件出示3的倍數(shù)。
    2、找5、7的倍數(shù)。
    師:我們再來練習找一下5的倍數(shù)。
    生:5的倍數(shù)有:5、10、15、20、25??
    生:7的倍數(shù)有:7、14、21、28、35??
    師:你能像總結一個數(shù)因數(shù)的特點一樣,來總結一下一個數(shù)的倍數(shù)有什么特征嗎?
    生:能!
    學生總結:一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。
    【設計意圖】在探索求一個數(shù)的倍數(shù)和因數(shù)的方法時,創(chuàng)設具體的情境讓學生去合作交流,并結合具體事例,讓學生自己觀察并發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征,豐富了教學方式,讓學生在觀察中發(fā)現(xiàn),在合作中體驗成功的喜悅,在主動參與、樂于探究中發(fā)展自我。
    四、知識拓展。
    認識“完美數(shù)”。
    師:(課件出示6的因數(shù))在6的因數(shù)中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽!)我們把6的因數(shù)中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數(shù)學家給這樣的數(shù)起了一個名字,叫“完美數(shù)”。依次出示第二個、第三個一直到第六個完美數(shù)。
    小結:其實有關因數(shù)和倍數(shù)的秘密還有很多,它們在等待著同學們在以后的學習中去研究、去探索。
    【設計意圖】豐富學生的知識,陶冶學生的情操。
    教學反思:
    找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學生來說有一定困難,這里充分發(fā)揮小組學習的優(yōu)勢。先讓學生自己獨立找36的因數(shù),我巡視了一下三分之一的學生能有序的思考,多數(shù)學生寫的算式不按一定的次序進行。接著讓學生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復也不遺漏。在小組交流的過程中,學生對自己剛才的方法進行反思,吸收同伴中好的方法,這時如果再給予有效的指導和總結就更好了。
    因數(shù)與倍數(shù)教學設計篇十二
    師:在寫12的因數(shù)時,我們可以一對一對的寫,(課件出示:1、12、2、6、3、4.)也可以從兩頭開始寫(板書:1、2、3、4、6、12.)找全了畫一個句號。
    3、過渡:12的因數(shù)我們已經(jīng)會找了,那么你能用學到的知識找到18的因數(shù)嗎?試一試,看誰能挑戰(zhàn)成功!
    學生嘗試,獨立在本上完成。
    教師巡視,找出幾個問題學生和完全寫對的學生的作業(yè),在視頻臺上展示。
    學生說如何找全的方法,強化“有序”“一對一對的找”。
    板書:18的因數(shù)有:1,2,3,6,9,18。
    集合圖的形式表示。(課件出示)。
    4、及時反饋:寫自己學號的因數(shù)。
    學生在學號紙上獨立完成,指名板演2的因數(shù),24的因數(shù),25的因數(shù),1的因數(shù)。
    做完的同學,互相檢查糾錯。
    師:誰剛才幫別人找到錯誤了?(評價:你已經(jīng)熟練的掌握了找因數(shù)的方法,真棒!還有誰是最棒的?祝賀你們)。
    學生說出“24”和“25”的最小因數(shù)和最大因數(shù)各是多少。
    通過找這些數(shù)的因數(shù),從中你發(fā)現(xiàn)了什么?學生回答:一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
    其他同學根據(jù)發(fā)現(xiàn)的規(guī)律自己檢驗,并用彩筆圈起來。
    小結:雖然一個數(shù),它因數(shù)的個數(shù)有多有少,但最小的因數(shù)是1,最大因數(shù)是它本身。1的因數(shù)只有1。因為一個數(shù)的因數(shù)有最大和最小,所以個數(shù)是有限的。(板書在表格里)。
    四、找一個數(shù)的倍數(shù)。
    1、過渡:我們已經(jīng)學會了找一個數(shù)的因數(shù),那么怎樣找一個數(shù)的倍數(shù)呢?你能像找一個數(shù)的因數(shù)那樣有序的找嗎?相信這個問題也一定難不倒大家,咱們先來試一個簡單的,找2的倍數(shù),看你能找多少個。
    2、學生獨立找,找好后在小組中交流。
    3、匯報展示,交流方法。
    引導:你能按從小到大的順序找2的倍數(shù)嗎?能寫得完嗎?怎么辦?
    明確方法:用2分別乘1、2、3、4……得到的積都是2的倍數(shù)。
    4、表示方法:2的倍數(shù)有2,4,6,8,10,…(一般寫完前5個,就可以用省略號表示);集合圖。
    5、寫出自己學號的倍數(shù)。
    學生獨立完成,指名兩生板演(3的倍數(shù),5的倍數(shù),1的倍數(shù)),糾正錯誤。
    小組合作:在找一個數(shù)的倍數(shù)時,你有什么發(fā)現(xiàn)?
    交流匯報:一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù),個數(shù)是無限的。
    因數(shù)與倍數(shù)教學設計篇十三
    ()是()的倍數(shù)。()是()的倍數(shù);
    (評價:哪個組的同學都做對了,真是好樣的!)。
    4、明確范圍:打開書12頁明確因數(shù)倍數(shù)的范圍。
    學生齊讀:為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是整數(shù)(一般不包括0)。
    師板書:整數(shù)、不包括“0”。
    三、找一個數(shù)的因數(shù)。
    1、師:通過這些乘法算式,我們找到了12的一些因數(shù),誰能說一說12的因數(shù)有哪些?
    學生說出,12的因數(shù)有6,2,4,3,1,12。
    2、師:找完了嗎?怎樣就能不重復、不遺漏,找到所有的因數(shù)?
    學生可能說出:依據(jù)乘法算式,有序的找。(評價:有序的思考是我們數(shù)學中一種很重要的思維方式,這位同學很了不起,你們學會了嗎?誰還能再說一說這種方法)。