生活中的瑣事擾亂了我們的思緒,寫一份總結(jié)可以幫助我們理清頭緒。寫總結(jié)時要充分運用自己的思考和判斷能力,以推動問題的解決。下面是一些總結(jié)范文供大家參考,希望能夠給大家一些啟發(fā)。
數(shù)學(xué)二次函數(shù)課件篇一
考核要求:
(1)通過實例認識變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;。
(2)知道常值函數(shù);。
(3)知道函數(shù)的表示方法,知道符號的意義。
考核要求:
(1)掌握求函數(shù)解析式的方法;。
(2)在求函數(shù)解析式中熟練運用待定系數(shù)法。
注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原。
考核要求:
(1)知道函數(shù)圖像的意義,會在平面直角坐標系中用描點法畫函數(shù)圖像。
(2)理解二次函數(shù)的圖像,體會數(shù)形結(jié)合思想;。
考點4:二次函數(shù)的圖像及其基本性質(zhì)。
考核要求:
(2)會用配方法求二次函數(shù)的頂點坐標,并說出二次函數(shù)的有關(guān)性質(zhì)。
注意:
(1)解題時要數(shù)形結(jié)合;。
數(shù)學(xué)二次函數(shù)課件篇二
二次函數(shù)的復(fù)習(xí)我分為兩部分:第一部分為基礎(chǔ)的復(fù)習(xí),第二部分為綜合知識的復(fù)習(xí)?;A(chǔ)知識的復(fù)習(xí)思路還是比較傳統(tǒng):二次函數(shù)圖象和性質(zhì)--實踐(方法的選擇)--應(yīng)用(方法的融合),基礎(chǔ)知識的復(fù)習(xí)我沒有把書上的公式再一一講解,而是采用給出例題,在具體的題目中讓學(xué)生回答它的開口方向、對稱軸、頂點坐標圖象與x,y軸的交點,這樣學(xué)習(xí)起來不枯燥??傊麄€過程主要是采用學(xué)生做、學(xué)生講、學(xué)生補充,注重突出學(xué)生的數(shù)學(xué)活動,變“教學(xué)”為“導(dǎo)學(xué)”。綜合知識的復(fù)習(xí)我放在第二課時,采用循序漸進的方法來復(fù)習(xí),在習(xí)題的選擇上我注意了廣度與前后知識的聯(lián)系,但深度和綜合性還不夠。這兩節(jié)復(fù)習(xí)課不僅僅是對知識的復(fù)習(xí),而且也讓學(xué)生學(xué)會對所學(xué)知識進行歸納總結(jié),同時回用所學(xué)知識解決相關(guān)的實際問題。
上完這堂課我首先感受到了集體備課的好處,可以取長補短,整堂課也具有連貫性,而不是以前的講到哪兒算哪兒。課前的精心備課也讓我整個課堂比較流暢、緊湊容量大??偟膩碚f要上好一堂復(fù)習(xí)課應(yīng)該注意以下幾點:
1、課前精心備課,加強備課組的聯(lián)系。
2、重視課本,夯實基礎(chǔ)。
3、復(fù)習(xí)不要只講究快,而要注意前后的聯(lián)系,尤其是初三的知識要注意隨時滲透。
總的來說,用好教材是我們面臨的最重要的問題,教材改變了傳統(tǒng)的教學(xué)大綱對教學(xué)內(nèi)容的輕能力重知識的要求,出現(xiàn)了許多新的教育思想把教材的內(nèi)容分解成一個一個的小步子,一會兒幾何知識,一會兒代數(shù)知識,作為教師就是要讓學(xué)生自己去探究,教會學(xué)生學(xué)習(xí)的方法。通過幾年的教學(xué)實踐探究,使我清楚地認識到,必須要改變以往的以教師為中心,學(xué)生機械模仿教師的解題過程,死記硬背,這種方法已在教臺站不著腳。同時,新教材還有獨特的一面,那就是緊密結(jié)合學(xué)生的生活實際,從學(xué)生的心理和年齡特點考慮:使枯燥的數(shù)學(xué)變得有趣了,變的學(xué)生好容易理解了,這樣不但激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且體會到數(shù)學(xué)就在身邊,感受到數(shù)學(xué)的趣味和作用,體驗到數(shù)學(xué)的魅力。
數(shù)學(xué)二次函數(shù)課件篇三
今天,我說課的內(nèi)容是北師大版《二次函數(shù)的圖象及性質(zhì)》復(fù)習(xí)課的第一課時,根據(jù)新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教法分析,學(xué)法指導(dǎo),教學(xué)程序及板書設(shè)計這五個方面來加以說明。
1、命題解讀。
二次函數(shù)的圖象及性質(zhì)近8年考查7次,以解答題為主,且綜合性較強,一般涉及求交點坐標及頂點坐標。在選擇、填空題中考查的知識點有二次函數(shù)圖象與系數(shù)a、b、c的關(guān)系、與一元二次方程的關(guān)系、增減性、對稱軸、頂點坐標及與x軸、y軸的交點。
2.教學(xué)目標。
(1)認識二次函數(shù)是常見的簡單函數(shù)之一,也是刻畫現(xiàn)實世界變量之間關(guān)系的重要數(shù)學(xué)模型.理解二次函數(shù)的概念,掌握其函數(shù)關(guān)系式以及自變量的取值范圍.
(2)能正確地描述二次函數(shù)的圖象,能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的'特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題.
(3)、了解二次函數(shù)與一元二次方程的關(guān)系,能利用二次函數(shù)的圖象求一元二次方程的近似解.
3、教學(xué)重點:。
1、二次函數(shù)的圖象與性質(zhì)2、二次函數(shù)的平移。
4.教學(xué)難點:
能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題.
基于本節(jié)課的特點和我們學(xué)校正在進行的“三、三、六”教學(xué)模式,我采用“先學(xué)后教,當堂訓(xùn)練”的教學(xué)方法。即:教師激情導(dǎo)課,學(xué)生自學(xué)自做,教師進行面批,組織小組交流,展示學(xué)習(xí)成果,檢測導(dǎo)結(jié)反饋。對于課堂上學(xué)生出現(xiàn)的疑問,盡量讓學(xué)生互相解決,教師起到幫助、組織、合作、協(xié)調(diào)的作用。最后讓學(xué)生當堂完成實踐練題和檢測導(dǎo)結(jié),經(jīng)過嚴格有梯度的訓(xùn)練,使學(xué)生學(xué)會知識、形成能力。同時鼓勵和培養(yǎng)學(xué)生提高分析能力、表達能力和探究能力。以“學(xué)—導(dǎo)—練”三步為主線,以“六環(huán)節(jié)”為結(jié)構(gòu),來進行本節(jié)課的教學(xué)。在整個教學(xué)過程中加強學(xué)生自學(xué)方法的指導(dǎo)。以問題“引”自學(xué),以自測“顯”問題,以優(yōu)生“帶”差生,以點撥“疏”疑點,以訓(xùn)練“鞏”新知。
由于是復(fù)習(xí)課,因此我在以學(xué)生為主體的原則下,讓他們通過畫圖、觀察、比較、推理、小組交流,直至最后探索出結(jié)論。以引導(dǎo)、探究、合作、點拔、評價的方式貫穿整個課堂。
本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):1、挑戰(zhàn)自我;2、考點清單;3、夯實基礎(chǔ);4、小結(jié)感悟;5、目標檢測6、拓展延伸7、作業(yè)布置。
一、挑戰(zhàn)自我。
出示3道有關(guān)二次函數(shù)的圖象與性質(zhì),二次函數(shù)圖象的平移的中考試題,讓學(xué)生自主完成,引起有關(guān)知識點的回憶.第一題是二次函數(shù)對稱軸的考查;第二題考察圖象的平移;第三題解有關(guān)拋物線與系數(shù)a、b、c關(guān)系的題。
教學(xué)效果:學(xué)生積極投入思考,開篇就為學(xué)生創(chuàng)設(shè)了一個自由、寬松的討論氛圍。
二、考點清單。
師生共同回憶1、二次函數(shù)的圖象與性質(zhì)2、二次函數(shù)圖象與系數(shù)a、b、c。
教學(xué)效果:預(yù)計學(xué)生對這些知識有遺忘,應(yīng)積極引導(dǎo)回憶問題,達到對知識點有明確的認識。
三、夯實基礎(chǔ)。
師生共同探討四道典型例題,強化知識點的靈活應(yīng)用。題讓學(xué)生先想后答,遇到難題小組交流,教師點撥,全班展示,充分發(fā)揮學(xué)生對積極主動性。
教學(xué)效果:大部分學(xué)生學(xué)習(xí)二次函數(shù)有困難,應(yīng)互幫互助,共同進步。
四、小結(jié)感悟:說說你在本節(jié)課解題過程中的收獲及疑惑?(小組交流)。
教師給學(xué)生一定的時間去反思回顧,本節(jié)課對知識的研究探索過程,小結(jié)方法及相關(guān)結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律,從而達到鞏固所學(xué)知識目的增強學(xué)習(xí)興趣和合作意識.
五、目標檢測:
為學(xué)生提供自我檢測的機會,教師針對學(xué)生反饋情況,及時調(diào)整授課,查漏補缺.并要求學(xué)生在規(guī)定五分鐘內(nèi)完成,同時對每道題進行分數(shù)量化。當大部分學(xué)生完成后,教師出示答案,以便學(xué)生核對。同組的學(xué)生進行作業(yè)互相批改。并把結(jié)果告訴老師,以便老師掌握每位學(xué)生是否都當堂達到學(xué)習(xí)目標。對于當堂不能完成任務(wù)的學(xué)生課下進行適當?shù)妮o導(dǎo)。
六、拓展延伸:給學(xué)有余力的學(xué)生提供更多的練習(xí)機會。
七、課后作業(yè):《中考指導(dǎo)》。
以上就是我的說課內(nèi)容,歡迎各位領(lǐng)導(dǎo)、同仁批評指導(dǎo)!
1.給學(xué)生展示自我的空間。本節(jié)課的設(shè)計本著以教師為主導(dǎo)、學(xué)生為主體,以知識為載體、培養(yǎng)學(xué)生的思維能力為重點的教學(xué)思想。教師以探究任務(wù)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供給學(xué)生自主合作探究的舞臺。在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生分類、探究、合作、歸納的能力。課堂上把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)的能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。
2.在課堂上要給予學(xué)生充分的時間去思考、動手實踐,而不是使合作流于形式。要把合作交流的空間真正的還給學(xué)生。教師在課堂中還要照顧到每一名學(xué)生,讓全體的學(xué)生都動起來。
數(shù)學(xué)二次函數(shù)課件篇四
11月18日,我在九年三班上了《2.1二次函數(shù)所描述的關(guān)系》這節(jié)課,結(jié)合一些聽課老師的建議,現(xiàn)總結(jié)教學(xué)反思如下:
1.對二次函數(shù)的學(xué)習(xí),本節(jié)課通過豐富的現(xiàn)實背景和學(xué)生感興趣的問題出發(fā),以多媒體演示圖片的形式使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價值。對二次函數(shù)的學(xué)習(xí),通過學(xué)生的探究性活動,通過學(xué)生之間的合作與交流,通過分析實際問題,如探究面積問題,利息問題、觀察表格找規(guī)律及用關(guān)系式表示這些關(guān)系的過程,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。
2.在新知鞏固環(huán)節(jié),我精心設(shè)計了具有代表性和易錯題型的問題,鞏固應(yīng)用了本節(jié)的新知,課堂達到了較好的教學(xué)效果。
3.在合作討論的環(huán)節(jié)中,銀行利率問題中文字敘述不夠嚴密,兩年后的利息一句產(chǎn)生分歧,應(yīng)該改成第二年的利息。
4.在課堂時間的安排上不算太合理,有一道能力提升的問題沒講。總之,通過本節(jié)課,讓我真正意識到:對于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗設(shè)計。在每節(jié)課的課前,一定要進行精心的預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進行分組教學(xué)時,提前預(yù)設(shè)好教學(xué)時間,在每節(jié)課上,既要放的開,同時又要注意在適當?shù)臅r機收回,以保證每節(jié)教學(xué)基本任務(wù)完成。
數(shù)學(xué)二次函數(shù)課件篇五
這節(jié)課是在學(xué)完正、反比例、一次函數(shù),認識了一元二次方程之后的二次函數(shù)的第一節(jié)課,從課本的體系來看,這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。
但是如果光從這些知識點上來講這節(jié)課,其實很簡單,學(xué)生在原有知識的儲備基礎(chǔ)上很容易遷移和接受這些知識,那么這節(jié)課還有什么好設(shè)計的呢?重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實際問題,由此引出了二次函數(shù),我才意識其實這節(jié)課的重點實際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗,從而形成定義”上,有了這個認識,一切變得簡單了!
整節(jié)課的流程可以這樣概括:學(xué)生感興趣的簡單實際問題——引出學(xué)過的一次函數(shù)——復(fù)習(xí)學(xué)過的所有函數(shù)形式——設(shè)問:有沒有新的函數(shù)形式呢?——探索新的問題——形成關(guān)系式——是函數(shù)嗎?——是學(xué)過的函數(shù)嗎?——探索出新的函數(shù)形式——概括新函數(shù)形式的特點——將特點公式化——形成二次函數(shù)定義——有練習(xí)鞏固定義特點——返回實際問題討論實際問題對自變量的限制——提出新的問題,深入討論——課堂的小結(jié),這樣設(shè)計一氣呵成,感覺上無拖沓生硬之處,最關(guān)鍵的是我認為這符合學(xué)生的基本認知規(guī)律,是容易讓學(xué)生理解和接受的。
對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設(shè)計既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
和一元二次方程的知識進行的思考,因而他們的想法和說法,不論對錯,不論全面還是有所偏頗,其中都涉及到了重要的數(shù)學(xué)思想方法,而這些恰恰是非常重要的。事實證明學(xué)生的思維真的是非?;钴S的,你要你給了足夠的空間,他們總能從各方各面進行思考和解釋,我也從中看到了他們智慧的火花,這是很令人欣慰的。
數(shù)學(xué)二次函數(shù)課件篇六
(1)知識結(jié)構(gòu)。
(2)重點、難點分析。
本節(jié)的重點之一是使學(xué)生能掌握用描點法畫出拋物線的方法。后面的學(xué)習(xí)中,經(jīng)常會涉及到利用函數(shù)圖像解決數(shù)學(xué)問題。因此,快速、準確地畫出二次函數(shù)的圖像,是學(xué)生必須要掌握的基本技能。畫圖時要求科學(xué)、準確。并且要盡量做到美觀,這就要求要確定拋物線頂點的位置,與y軸、x軸交點的位置,對稱軸開口方向等。因此,利用圖像或配方法確定拋物線的開口方向及對稱軸、頂點的位置成為本節(jié)的另一個重點,二次函數(shù)是初中階段遇到的較為復(fù)雜的函數(shù),無論它的解析式,還是它的圖像、性質(zhì)等都比另外三種函數(shù)復(fù)雜。在中考中,更始幾乎每一年都要考察二次函數(shù)的相關(guān)知識。學(xué)生在反復(fù)地描點畫圖過程中,逐漸體會數(shù)形結(jié)合的數(shù)學(xué)思想,認識到圖形更直觀,能幫助我們發(fā)現(xiàn)解決問題的線索。在配方的具體訓(xùn)練中,學(xué)生能體會到配方的思想。
本節(jié)的難點之一是初步理解數(shù)形結(jié)合的思想。學(xué)生對深刻理解數(shù)形結(jié)合的數(shù)學(xué)思想方法有一定的困難。往往是題目要求畫圖了才畫圖,比較被動,不能形成主動畫圖解題的習(xí)慣。另外,對二次函數(shù)對稱軸的理解也是難點。學(xué)生可以從圖像中識別出拋物線關(guān)于哪條直線對稱,但對主動應(yīng)用拋物線的對稱性解題卻有一定的困難。例如拋物線直線方程也不太理解。
2、教學(xué)建議。
這一節(jié)的知識點較多,正如前面所分析的二次函數(shù)是初中階段所遇到的較為復(fù)雜的函數(shù),而且對靈活性的要求較高。因此,要求學(xué)生在學(xué)習(xí)這一部分知識時要深刻地理解,不能機械地模仿、記憶。在老師創(chuàng)設(shè)的教學(xué)情境中,親自感受數(shù)學(xué)知識的形成過程,積累豐富的經(jīng)驗,憑借自己的力量獲取知識,從而達到培養(yǎng)能力的目的。
(1)創(chuàng)設(shè)情境,激勵學(xué)生提出問題。
辯證唯物主義告訴我們,理性認識是從豐富的感性認識中抽象、概括出來的。沒有一定數(shù)量的材料和經(jīng)驗,事物的規(guī)律、本質(zhì)是很難發(fā)現(xiàn)的。因此,在這一節(jié)課的開始,建議教師留出一段時間與學(xué)生共同列表、畫圖,允許學(xué)生有一個走彎,對稱軸方程是x=1,學(xué)生對表示對稱軸的路的過程,在探索的過程中,會有許多的疑問。而這恰是學(xué)習(xí)新知識的開始。例如,有的同學(xué)會認識到在畫圖時,有一個點是很重要的,必須要畫出來。那么這個點的坐標是如何確定的呢?如果教師舍不得花時間,讓學(xué)生不斷地體驗,而是迅速切入正題,指明二次函數(shù)的形狀,教學(xué)生記下二次函數(shù)的性質(zhì)。那么學(xué)生就喪失了主動探索的機會。我們要意識到,認識客觀事物是有一個過程的,人為地縮短或逾越,違反了事物發(fā)展的一般規(guī)律。由老師代替學(xué)生的思考,會使數(shù)學(xué)學(xué)習(xí)索然無味,學(xué)習(xí)成為機械地模仿、復(fù)制,這樣也會導(dǎo)致學(xué)生對數(shù)學(xué)概念的膚淺理解,無法把握事物運動變化的規(guī)律性,數(shù)學(xué)能力自然無法提高。
(2)數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題。
學(xué)習(xí)數(shù)學(xué)要善于多問幾個為什么。剛才提到,在畫圖時,我們意識到二次函數(shù)的頂點非常重要,是必須要畫出來的。二次函數(shù)在頂點處拐了一個彎,當拋物線開口向上時,圖像有最低點;當拋物線開口向下時,圖像有最高點。那么為什么二次函數(shù)有這個性質(zhì),而一次函數(shù)就沒有呢?例如:,可變形為,依靠以前學(xué)過的代數(shù)知識,可知。又因為拋物線開口向上,所以會有最低點。學(xué)生在探索過程中不斷地發(fā)現(xiàn)問題,并利用自己學(xué)過的知識解決問題。在這個過程中,對數(shù)學(xué)的理解不斷地加深。
(3)反思回顧,總結(jié)深化。
我們的教學(xué)可以從畫個圖開始,卻不能止于僅能熟練畫出圖像。在發(fā)現(xiàn)二次函數(shù)的性質(zhì)并進行代數(shù)方面的逐一說理論證的過程中。試圖使學(xué)生領(lǐng)悟到數(shù)學(xué)知識的客觀存在性,樹立懷疑一切的科學(xué)探索精神。在學(xué)習(xí)時,既要建立相應(yīng)的圖像,借助形象整體、全面地把握知識,又要會用數(shù)學(xué)抽象,概括的語言去刻畫。使學(xué)生既欣賞到數(shù)學(xué)的美,又為數(shù)學(xué)的力量所折服。正如笛卡兒所說:“每一個我解決過的問題都成為以后解決其它問題的原則或方法?!币虼?,如果學(xué)生情況允許的話,可以組織學(xué)生撰寫小論文,談一談二次函數(shù)的學(xué)習(xí)。對這部分知識不僅要知道操作步驟,還要善于多問幾個為什么?這樣,在熟練地畫圖過程中,學(xué)生逐漸地體會到了數(shù)形結(jié)合的思想方法。
數(shù)學(xué)二次函數(shù)課件篇七
數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
二、重視每一個學(xué)生。
三、做好課外與學(xué)生的溝通。
四、要多了解學(xué)生。
你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。
數(shù)學(xué)二次函數(shù)課件篇八
1.教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2.教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
數(shù)學(xué)二次函數(shù)課件篇九
二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
三、教師在設(shè)計教學(xué)目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感.這樣他們才會更有興趣的學(xué)習(xí)下去.
數(shù)學(xué)二次函數(shù)課件篇十
二次函數(shù)與其圖像是初中代數(shù)的重要內(nèi)容之一,是學(xué)過一次函數(shù)概念及性質(zhì),含確定一次函數(shù)的解析式運用數(shù)形結(jié)合思想解決實際問題的基礎(chǔ)上進入二次函數(shù)的學(xué)習(xí),它把代數(shù)和幾何揉合在一起,因此成為了中考中的重點內(nèi)容,也是高中數(shù)學(xué)知識的基石,中考數(shù)學(xué)輔導(dǎo):二次函數(shù)復(fù)習(xí)重在把握。
1.理解二次函數(shù)概念、性質(zhì)、含畫二次函數(shù)的圖像。
2.能確定拋物線的開口方向,頂點坐標,對稱軸方程,以及拋物線與坐標軸的交點坐標。
3.含根據(jù)不同條件確定二次函數(shù)的'解析式。
4.靈活運用函數(shù)思想,數(shù)形結(jié)合思想解決問題。
從容易題到較難題中都會出現(xiàn),也就是說每年中考試卷中即有相對穩(wěn)定的基礎(chǔ)題,也有新穎的試題來考查學(xué)生的分析,解決問題能力,實踐和創(chuàng)新能力,因此經(jīng)常與一次函數(shù),三角形,四邊形知識結(jié)合在一起,成為試卷的壓軸題,中考數(shù)學(xué)參考《中考數(shù)學(xué)輔導(dǎo):二次函數(shù)復(fù)習(xí)重在把握》。
1.函數(shù)圖像中點的橫縱坐標與二條線段之間的轉(zhuǎn)化。
2.函數(shù)題目中有關(guān)”函數(shù)語言“的理解及表達,例如二次函數(shù)圖象過原點,將二次函數(shù)以軸翻折,系數(shù)即改變符號等等。
3.當繪畫出函數(shù)圖象后,一定要分析圖像的性質(zhì)及基本圖形的特征,例如出現(xiàn)等腰直角三角形,平行四邊形等等。
數(shù)學(xué)二次函數(shù)課件篇十一
在整個中學(xué)數(shù)學(xué)知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點,也是線性數(shù)學(xué)知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。
二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海。教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
三、教師在設(shè)計教學(xué)目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果。
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要。因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感。這樣他們才會更有興趣的學(xué)習(xí)下去。
1、質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3、學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
1、教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2、教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
數(shù)學(xué)二次函數(shù)課件篇十二
二次函數(shù)的最大值,最小值及增減性的理解和求法·。
《22·2二次函數(shù)與一元二次方程》同步練習(xí)。
三、解答題。
7·(1)請在坐標系中畫出二次函數(shù)y=x2—2x的大致圖象;
(3)觀察圖象,直接寫出方程x2—2x=1的根(精確到0·1)·。
《22·2二次函數(shù)與一元二次方程》練習(xí)題。
(1)當t=3時,求足球距離地面的高度;
(2)當足球距離地面的高度為10米時,求t;
數(shù)學(xué)二次函數(shù)課件篇一
考核要求:
(1)通過實例認識變量、自變量、因變量,知道函數(shù)以及函數(shù)的定義域、函數(shù)值等概念;。
(2)知道常值函數(shù);。
(3)知道函數(shù)的表示方法,知道符號的意義。
考核要求:
(1)掌握求函數(shù)解析式的方法;。
(2)在求函數(shù)解析式中熟練運用待定系數(shù)法。
注意求函數(shù)解析式的步驟:一設(shè)、二代、三列、四還原。
考核要求:
(1)知道函數(shù)圖像的意義,會在平面直角坐標系中用描點法畫函數(shù)圖像。
(2)理解二次函數(shù)的圖像,體會數(shù)形結(jié)合思想;。
考點4:二次函數(shù)的圖像及其基本性質(zhì)。
考核要求:
(2)會用配方法求二次函數(shù)的頂點坐標,并說出二次函數(shù)的有關(guān)性質(zhì)。
注意:
(1)解題時要數(shù)形結(jié)合;。
數(shù)學(xué)二次函數(shù)課件篇二
二次函數(shù)的復(fù)習(xí)我分為兩部分:第一部分為基礎(chǔ)的復(fù)習(xí),第二部分為綜合知識的復(fù)習(xí)?;A(chǔ)知識的復(fù)習(xí)思路還是比較傳統(tǒng):二次函數(shù)圖象和性質(zhì)--實踐(方法的選擇)--應(yīng)用(方法的融合),基礎(chǔ)知識的復(fù)習(xí)我沒有把書上的公式再一一講解,而是采用給出例題,在具體的題目中讓學(xué)生回答它的開口方向、對稱軸、頂點坐標圖象與x,y軸的交點,這樣學(xué)習(xí)起來不枯燥??傊麄€過程主要是采用學(xué)生做、學(xué)生講、學(xué)生補充,注重突出學(xué)生的數(shù)學(xué)活動,變“教學(xué)”為“導(dǎo)學(xué)”。綜合知識的復(fù)習(xí)我放在第二課時,采用循序漸進的方法來復(fù)習(xí),在習(xí)題的選擇上我注意了廣度與前后知識的聯(lián)系,但深度和綜合性還不夠。這兩節(jié)復(fù)習(xí)課不僅僅是對知識的復(fù)習(xí),而且也讓學(xué)生學(xué)會對所學(xué)知識進行歸納總結(jié),同時回用所學(xué)知識解決相關(guān)的實際問題。
上完這堂課我首先感受到了集體備課的好處,可以取長補短,整堂課也具有連貫性,而不是以前的講到哪兒算哪兒。課前的精心備課也讓我整個課堂比較流暢、緊湊容量大??偟膩碚f要上好一堂復(fù)習(xí)課應(yīng)該注意以下幾點:
1、課前精心備課,加強備課組的聯(lián)系。
2、重視課本,夯實基礎(chǔ)。
3、復(fù)習(xí)不要只講究快,而要注意前后的聯(lián)系,尤其是初三的知識要注意隨時滲透。
總的來說,用好教材是我們面臨的最重要的問題,教材改變了傳統(tǒng)的教學(xué)大綱對教學(xué)內(nèi)容的輕能力重知識的要求,出現(xiàn)了許多新的教育思想把教材的內(nèi)容分解成一個一個的小步子,一會兒幾何知識,一會兒代數(shù)知識,作為教師就是要讓學(xué)生自己去探究,教會學(xué)生學(xué)習(xí)的方法。通過幾年的教學(xué)實踐探究,使我清楚地認識到,必須要改變以往的以教師為中心,學(xué)生機械模仿教師的解題過程,死記硬背,這種方法已在教臺站不著腳。同時,新教材還有獨特的一面,那就是緊密結(jié)合學(xué)生的生活實際,從學(xué)生的心理和年齡特點考慮:使枯燥的數(shù)學(xué)變得有趣了,變的學(xué)生好容易理解了,這樣不但激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且體會到數(shù)學(xué)就在身邊,感受到數(shù)學(xué)的趣味和作用,體驗到數(shù)學(xué)的魅力。
數(shù)學(xué)二次函數(shù)課件篇三
今天,我說課的內(nèi)容是北師大版《二次函數(shù)的圖象及性質(zhì)》復(fù)習(xí)課的第一課時,根據(jù)新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教法分析,學(xué)法指導(dǎo),教學(xué)程序及板書設(shè)計這五個方面來加以說明。
1、命題解讀。
二次函數(shù)的圖象及性質(zhì)近8年考查7次,以解答題為主,且綜合性較強,一般涉及求交點坐標及頂點坐標。在選擇、填空題中考查的知識點有二次函數(shù)圖象與系數(shù)a、b、c的關(guān)系、與一元二次方程的關(guān)系、增減性、對稱軸、頂點坐標及與x軸、y軸的交點。
2.教學(xué)目標。
(1)認識二次函數(shù)是常見的簡單函數(shù)之一,也是刻畫現(xiàn)實世界變量之間關(guān)系的重要數(shù)學(xué)模型.理解二次函數(shù)的概念,掌握其函數(shù)關(guān)系式以及自變量的取值范圍.
(2)能正確地描述二次函數(shù)的圖象,能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的'特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題.
(3)、了解二次函數(shù)與一元二次方程的關(guān)系,能利用二次函數(shù)的圖象求一元二次方程的近似解.
3、教學(xué)重點:。
1、二次函數(shù)的圖象與性質(zhì)2、二次函數(shù)的平移。
4.教學(xué)難點:
能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題.
基于本節(jié)課的特點和我們學(xué)校正在進行的“三、三、六”教學(xué)模式,我采用“先學(xué)后教,當堂訓(xùn)練”的教學(xué)方法。即:教師激情導(dǎo)課,學(xué)生自學(xué)自做,教師進行面批,組織小組交流,展示學(xué)習(xí)成果,檢測導(dǎo)結(jié)反饋。對于課堂上學(xué)生出現(xiàn)的疑問,盡量讓學(xué)生互相解決,教師起到幫助、組織、合作、協(xié)調(diào)的作用。最后讓學(xué)生當堂完成實踐練題和檢測導(dǎo)結(jié),經(jīng)過嚴格有梯度的訓(xùn)練,使學(xué)生學(xué)會知識、形成能力。同時鼓勵和培養(yǎng)學(xué)生提高分析能力、表達能力和探究能力。以“學(xué)—導(dǎo)—練”三步為主線,以“六環(huán)節(jié)”為結(jié)構(gòu),來進行本節(jié)課的教學(xué)。在整個教學(xué)過程中加強學(xué)生自學(xué)方法的指導(dǎo)。以問題“引”自學(xué),以自測“顯”問題,以優(yōu)生“帶”差生,以點撥“疏”疑點,以訓(xùn)練“鞏”新知。
由于是復(fù)習(xí)課,因此我在以學(xué)生為主體的原則下,讓他們通過畫圖、觀察、比較、推理、小組交流,直至最后探索出結(jié)論。以引導(dǎo)、探究、合作、點拔、評價的方式貫穿整個課堂。
本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):1、挑戰(zhàn)自我;2、考點清單;3、夯實基礎(chǔ);4、小結(jié)感悟;5、目標檢測6、拓展延伸7、作業(yè)布置。
一、挑戰(zhàn)自我。
出示3道有關(guān)二次函數(shù)的圖象與性質(zhì),二次函數(shù)圖象的平移的中考試題,讓學(xué)生自主完成,引起有關(guān)知識點的回憶.第一題是二次函數(shù)對稱軸的考查;第二題考察圖象的平移;第三題解有關(guān)拋物線與系數(shù)a、b、c關(guān)系的題。
教學(xué)效果:學(xué)生積極投入思考,開篇就為學(xué)生創(chuàng)設(shè)了一個自由、寬松的討論氛圍。
二、考點清單。
師生共同回憶1、二次函數(shù)的圖象與性質(zhì)2、二次函數(shù)圖象與系數(shù)a、b、c。
教學(xué)效果:預(yù)計學(xué)生對這些知識有遺忘,應(yīng)積極引導(dǎo)回憶問題,達到對知識點有明確的認識。
三、夯實基礎(chǔ)。
師生共同探討四道典型例題,強化知識點的靈活應(yīng)用。題讓學(xué)生先想后答,遇到難題小組交流,教師點撥,全班展示,充分發(fā)揮學(xué)生對積極主動性。
教學(xué)效果:大部分學(xué)生學(xué)習(xí)二次函數(shù)有困難,應(yīng)互幫互助,共同進步。
四、小結(jié)感悟:說說你在本節(jié)課解題過程中的收獲及疑惑?(小組交流)。
教師給學(xué)生一定的時間去反思回顧,本節(jié)課對知識的研究探索過程,小結(jié)方法及相關(guān)結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律,從而達到鞏固所學(xué)知識目的增強學(xué)習(xí)興趣和合作意識.
五、目標檢測:
為學(xué)生提供自我檢測的機會,教師針對學(xué)生反饋情況,及時調(diào)整授課,查漏補缺.并要求學(xué)生在規(guī)定五分鐘內(nèi)完成,同時對每道題進行分數(shù)量化。當大部分學(xué)生完成后,教師出示答案,以便學(xué)生核對。同組的學(xué)生進行作業(yè)互相批改。并把結(jié)果告訴老師,以便老師掌握每位學(xué)生是否都當堂達到學(xué)習(xí)目標。對于當堂不能完成任務(wù)的學(xué)生課下進行適當?shù)妮o導(dǎo)。
六、拓展延伸:給學(xué)有余力的學(xué)生提供更多的練習(xí)機會。
七、課后作業(yè):《中考指導(dǎo)》。
以上就是我的說課內(nèi)容,歡迎各位領(lǐng)導(dǎo)、同仁批評指導(dǎo)!
1.給學(xué)生展示自我的空間。本節(jié)課的設(shè)計本著以教師為主導(dǎo)、學(xué)生為主體,以知識為載體、培養(yǎng)學(xué)生的思維能力為重點的教學(xué)思想。教師以探究任務(wù)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供給學(xué)生自主合作探究的舞臺。在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生分類、探究、合作、歸納的能力。課堂上把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)的能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。
2.在課堂上要給予學(xué)生充分的時間去思考、動手實踐,而不是使合作流于形式。要把合作交流的空間真正的還給學(xué)生。教師在課堂中還要照顧到每一名學(xué)生,讓全體的學(xué)生都動起來。
數(shù)學(xué)二次函數(shù)課件篇四
11月18日,我在九年三班上了《2.1二次函數(shù)所描述的關(guān)系》這節(jié)課,結(jié)合一些聽課老師的建議,現(xiàn)總結(jié)教學(xué)反思如下:
1.對二次函數(shù)的學(xué)習(xí),本節(jié)課通過豐富的現(xiàn)實背景和學(xué)生感興趣的問題出發(fā),以多媒體演示圖片的形式使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價值。對二次函數(shù)的學(xué)習(xí),通過學(xué)生的探究性活動,通過學(xué)生之間的合作與交流,通過分析實際問題,如探究面積問題,利息問題、觀察表格找規(guī)律及用關(guān)系式表示這些關(guān)系的過程,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。
2.在新知鞏固環(huán)節(jié),我精心設(shè)計了具有代表性和易錯題型的問題,鞏固應(yīng)用了本節(jié)的新知,課堂達到了較好的教學(xué)效果。
3.在合作討論的環(huán)節(jié)中,銀行利率問題中文字敘述不夠嚴密,兩年后的利息一句產(chǎn)生分歧,應(yīng)該改成第二年的利息。
4.在課堂時間的安排上不算太合理,有一道能力提升的問題沒講。總之,通過本節(jié)課,讓我真正意識到:對于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗設(shè)計。在每節(jié)課的課前,一定要進行精心的預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進行分組教學(xué)時,提前預(yù)設(shè)好教學(xué)時間,在每節(jié)課上,既要放的開,同時又要注意在適當?shù)臅r機收回,以保證每節(jié)教學(xué)基本任務(wù)完成。
數(shù)學(xué)二次函數(shù)課件篇五
這節(jié)課是在學(xué)完正、反比例、一次函數(shù),認識了一元二次方程之后的二次函數(shù)的第一節(jié)課,從課本的體系來看,這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。
但是如果光從這些知識點上來講這節(jié)課,其實很簡單,學(xué)生在原有知識的儲備基礎(chǔ)上很容易遷移和接受這些知識,那么這節(jié)課還有什么好設(shè)計的呢?重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實際問題,由此引出了二次函數(shù),我才意識其實這節(jié)課的重點實際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗,從而形成定義”上,有了這個認識,一切變得簡單了!
整節(jié)課的流程可以這樣概括:學(xué)生感興趣的簡單實際問題——引出學(xué)過的一次函數(shù)——復(fù)習(xí)學(xué)過的所有函數(shù)形式——設(shè)問:有沒有新的函數(shù)形式呢?——探索新的問題——形成關(guān)系式——是函數(shù)嗎?——是學(xué)過的函數(shù)嗎?——探索出新的函數(shù)形式——概括新函數(shù)形式的特點——將特點公式化——形成二次函數(shù)定義——有練習(xí)鞏固定義特點——返回實際問題討論實際問題對自變量的限制——提出新的問題,深入討論——課堂的小結(jié),這樣設(shè)計一氣呵成,感覺上無拖沓生硬之處,最關(guān)鍵的是我認為這符合學(xué)生的基本認知規(guī)律,是容易讓學(xué)生理解和接受的。
對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設(shè)計既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
和一元二次方程的知識進行的思考,因而他們的想法和說法,不論對錯,不論全面還是有所偏頗,其中都涉及到了重要的數(shù)學(xué)思想方法,而這些恰恰是非常重要的。事實證明學(xué)生的思維真的是非?;钴S的,你要你給了足夠的空間,他們總能從各方各面進行思考和解釋,我也從中看到了他們智慧的火花,這是很令人欣慰的。
數(shù)學(xué)二次函數(shù)課件篇六
(1)知識結(jié)構(gòu)。
(2)重點、難點分析。
本節(jié)的重點之一是使學(xué)生能掌握用描點法畫出拋物線的方法。后面的學(xué)習(xí)中,經(jīng)常會涉及到利用函數(shù)圖像解決數(shù)學(xué)問題。因此,快速、準確地畫出二次函數(shù)的圖像,是學(xué)生必須要掌握的基本技能。畫圖時要求科學(xué)、準確。并且要盡量做到美觀,這就要求要確定拋物線頂點的位置,與y軸、x軸交點的位置,對稱軸開口方向等。因此,利用圖像或配方法確定拋物線的開口方向及對稱軸、頂點的位置成為本節(jié)的另一個重點,二次函數(shù)是初中階段遇到的較為復(fù)雜的函數(shù),無論它的解析式,還是它的圖像、性質(zhì)等都比另外三種函數(shù)復(fù)雜。在中考中,更始幾乎每一年都要考察二次函數(shù)的相關(guān)知識。學(xué)生在反復(fù)地描點畫圖過程中,逐漸體會數(shù)形結(jié)合的數(shù)學(xué)思想,認識到圖形更直觀,能幫助我們發(fā)現(xiàn)解決問題的線索。在配方的具體訓(xùn)練中,學(xué)生能體會到配方的思想。
本節(jié)的難點之一是初步理解數(shù)形結(jié)合的思想。學(xué)生對深刻理解數(shù)形結(jié)合的數(shù)學(xué)思想方法有一定的困難。往往是題目要求畫圖了才畫圖,比較被動,不能形成主動畫圖解題的習(xí)慣。另外,對二次函數(shù)對稱軸的理解也是難點。學(xué)生可以從圖像中識別出拋物線關(guān)于哪條直線對稱,但對主動應(yīng)用拋物線的對稱性解題卻有一定的困難。例如拋物線直線方程也不太理解。
2、教學(xué)建議。
這一節(jié)的知識點較多,正如前面所分析的二次函數(shù)是初中階段所遇到的較為復(fù)雜的函數(shù),而且對靈活性的要求較高。因此,要求學(xué)生在學(xué)習(xí)這一部分知識時要深刻地理解,不能機械地模仿、記憶。在老師創(chuàng)設(shè)的教學(xué)情境中,親自感受數(shù)學(xué)知識的形成過程,積累豐富的經(jīng)驗,憑借自己的力量獲取知識,從而達到培養(yǎng)能力的目的。
(1)創(chuàng)設(shè)情境,激勵學(xué)生提出問題。
辯證唯物主義告訴我們,理性認識是從豐富的感性認識中抽象、概括出來的。沒有一定數(shù)量的材料和經(jīng)驗,事物的規(guī)律、本質(zhì)是很難發(fā)現(xiàn)的。因此,在這一節(jié)課的開始,建議教師留出一段時間與學(xué)生共同列表、畫圖,允許學(xué)生有一個走彎,對稱軸方程是x=1,學(xué)生對表示對稱軸的路的過程,在探索的過程中,會有許多的疑問。而這恰是學(xué)習(xí)新知識的開始。例如,有的同學(xué)會認識到在畫圖時,有一個點是很重要的,必須要畫出來。那么這個點的坐標是如何確定的呢?如果教師舍不得花時間,讓學(xué)生不斷地體驗,而是迅速切入正題,指明二次函數(shù)的形狀,教學(xué)生記下二次函數(shù)的性質(zhì)。那么學(xué)生就喪失了主動探索的機會。我們要意識到,認識客觀事物是有一個過程的,人為地縮短或逾越,違反了事物發(fā)展的一般規(guī)律。由老師代替學(xué)生的思考,會使數(shù)學(xué)學(xué)習(xí)索然無味,學(xué)習(xí)成為機械地模仿、復(fù)制,這樣也會導(dǎo)致學(xué)生對數(shù)學(xué)概念的膚淺理解,無法把握事物運動變化的規(guī)律性,數(shù)學(xué)能力自然無法提高。
(2)數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題。
學(xué)習(xí)數(shù)學(xué)要善于多問幾個為什么。剛才提到,在畫圖時,我們意識到二次函數(shù)的頂點非常重要,是必須要畫出來的。二次函數(shù)在頂點處拐了一個彎,當拋物線開口向上時,圖像有最低點;當拋物線開口向下時,圖像有最高點。那么為什么二次函數(shù)有這個性質(zhì),而一次函數(shù)就沒有呢?例如:,可變形為,依靠以前學(xué)過的代數(shù)知識,可知。又因為拋物線開口向上,所以會有最低點。學(xué)生在探索過程中不斷地發(fā)現(xiàn)問題,并利用自己學(xué)過的知識解決問題。在這個過程中,對數(shù)學(xué)的理解不斷地加深。
(3)反思回顧,總結(jié)深化。
我們的教學(xué)可以從畫個圖開始,卻不能止于僅能熟練畫出圖像。在發(fā)現(xiàn)二次函數(shù)的性質(zhì)并進行代數(shù)方面的逐一說理論證的過程中。試圖使學(xué)生領(lǐng)悟到數(shù)學(xué)知識的客觀存在性,樹立懷疑一切的科學(xué)探索精神。在學(xué)習(xí)時,既要建立相應(yīng)的圖像,借助形象整體、全面地把握知識,又要會用數(shù)學(xué)抽象,概括的語言去刻畫。使學(xué)生既欣賞到數(shù)學(xué)的美,又為數(shù)學(xué)的力量所折服。正如笛卡兒所說:“每一個我解決過的問題都成為以后解決其它問題的原則或方法?!币虼?,如果學(xué)生情況允許的話,可以組織學(xué)生撰寫小論文,談一談二次函數(shù)的學(xué)習(xí)。對這部分知識不僅要知道操作步驟,還要善于多問幾個為什么?這樣,在熟練地畫圖過程中,學(xué)生逐漸地體會到了數(shù)形結(jié)合的思想方法。
數(shù)學(xué)二次函數(shù)課件篇七
數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
二、重視每一個學(xué)生。
三、做好課外與學(xué)生的溝通。
四、要多了解學(xué)生。
你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。
數(shù)學(xué)二次函數(shù)課件篇八
1.教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2.教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
數(shù)學(xué)二次函數(shù)課件篇九
二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
三、教師在設(shè)計教學(xué)目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感.這樣他們才會更有興趣的學(xué)習(xí)下去.
數(shù)學(xué)二次函數(shù)課件篇十
二次函數(shù)與其圖像是初中代數(shù)的重要內(nèi)容之一,是學(xué)過一次函數(shù)概念及性質(zhì),含確定一次函數(shù)的解析式運用數(shù)形結(jié)合思想解決實際問題的基礎(chǔ)上進入二次函數(shù)的學(xué)習(xí),它把代數(shù)和幾何揉合在一起,因此成為了中考中的重點內(nèi)容,也是高中數(shù)學(xué)知識的基石,中考數(shù)學(xué)輔導(dǎo):二次函數(shù)復(fù)習(xí)重在把握。
1.理解二次函數(shù)概念、性質(zhì)、含畫二次函數(shù)的圖像。
2.能確定拋物線的開口方向,頂點坐標,對稱軸方程,以及拋物線與坐標軸的交點坐標。
3.含根據(jù)不同條件確定二次函數(shù)的'解析式。
4.靈活運用函數(shù)思想,數(shù)形結(jié)合思想解決問題。
從容易題到較難題中都會出現(xiàn),也就是說每年中考試卷中即有相對穩(wěn)定的基礎(chǔ)題,也有新穎的試題來考查學(xué)生的分析,解決問題能力,實踐和創(chuàng)新能力,因此經(jīng)常與一次函數(shù),三角形,四邊形知識結(jié)合在一起,成為試卷的壓軸題,中考數(shù)學(xué)參考《中考數(shù)學(xué)輔導(dǎo):二次函數(shù)復(fù)習(xí)重在把握》。
1.函數(shù)圖像中點的橫縱坐標與二條線段之間的轉(zhuǎn)化。
2.函數(shù)題目中有關(guān)”函數(shù)語言“的理解及表達,例如二次函數(shù)圖象過原點,將二次函數(shù)以軸翻折,系數(shù)即改變符號等等。
3.當繪畫出函數(shù)圖象后,一定要分析圖像的性質(zhì)及基本圖形的特征,例如出現(xiàn)等腰直角三角形,平行四邊形等等。
數(shù)學(xué)二次函數(shù)課件篇十一
在整個中學(xué)數(shù)學(xué)知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點,也是線性數(shù)學(xué)知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。
二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海。教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
三、教師在設(shè)計教學(xué)目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果。
四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要。因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感。這樣他們才會更有興趣的學(xué)習(xí)下去。
1、質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2、二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
3、學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4、初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
1、教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
2、教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
4、教學(xué)案例必須從教學(xué)任務(wù)分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
數(shù)學(xué)二次函數(shù)課件篇十二
二次函數(shù)的最大值,最小值及增減性的理解和求法·。
《22·2二次函數(shù)與一元二次方程》同步練習(xí)。
三、解答題。
7·(1)請在坐標系中畫出二次函數(shù)y=x2—2x的大致圖象;
(3)觀察圖象,直接寫出方程x2—2x=1的根(精確到0·1)·。
《22·2二次函數(shù)與一元二次方程》練習(xí)題。
(1)當t=3時,求足球距離地面的高度;
(2)當足球距離地面的高度為10米時,求t;

