高二數(shù)學(xué)必修二知識(shí)點(diǎn)整理

字號(hào):

在學(xué)習(xí)新知識(shí)的同時(shí)還要復(fù)習(xí)以前的舊知識(shí),肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。高二頻道為你整理了《高二數(shù)學(xué)必修二知識(shí)點(diǎn)整理》希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高二數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    一、基礎(chǔ)知識(shí)
    (1)空間幾何體:典型多面體(棱柱、棱錐、棱臺(tái))與典型旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái)、球)的結(jié)構(gòu)特征以及表面積體積公式、球面距離、點(diǎn)面距離、中心投影與平行投影、三視圖、直觀圖;
    (2)點(diǎn)、線、面的位置關(guān)系:平面的三個(gè)公理、平行的傳遞性、等角定理、異面直線的概念、直線與平面的位置關(guān)系、平面與平面的位置關(guān)系、線面平行的概念、判定定理、性質(zhì)定理;面面平行的概念、判定定理、性質(zhì)定理;線面垂直的概念、判定定理、性質(zhì)定理;面面垂直的概念、判定定理與性質(zhì)定理;異面垂直、異面直線所成角、線面角與二面角的概念(不同版本出現(xiàn)時(shí)間略有不同).
    (3)直線與圓:直線的傾斜角與斜率、斜率公式、直線的方程(點(diǎn)斜式、斜截式、一般式、兩點(diǎn)式、截距式)、直線與直線的位置關(guān)系(平行、垂直)、平面直角坐標(biāo)系中的一些公式(兩點(diǎn)間距離公式、中點(diǎn)坐標(biāo)公式、點(diǎn)到直線的距離公式、平行線間的距離公式);圓的標(biāo)準(zhǔn)方程與一般方程、直線與圓的位置關(guān)系、圓與圓的位置關(guān)系.
    常用的拓展知識(shí)與結(jié)論有:截距坐標(biāo)公式、面積坐標(biāo)公式、圓上一點(diǎn)的切線方程;圓外一點(diǎn)的切點(diǎn)弦方程;直線系與圓系的相關(guān)知識(shí)等.
    想不起來(lái),或者不太清楚這些概念與定理的,趕快翻翻教材和筆記吧.
    二、重難點(diǎn)與易錯(cuò)點(diǎn)
    重難點(diǎn)與易錯(cuò)點(diǎn)部分配合必考題型使用,做完必考題型后會(huì)對(duì)重難點(diǎn)與易錯(cuò)部分部分有更深入的理解.
    (1)多面體的體積轉(zhuǎn)化及點(diǎn)面距離的求法;
    (2)較復(fù)雜的三視圖;
    (3)球與其它幾何體的組合;
    (4)平行與垂直的證明;
    (5)立體幾何中的動(dòng)態(tài)問(wèn)題.
    (6)直線方程的選擇與求解,特別要注意斜率不存在的直線;
    (7)直線與圓的位置關(guān)系問(wèn)題;
    (8)直線系相關(guān)的問(wèn)題.
    2.高二數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    一、基礎(chǔ)知識(shí)
    (1)常用邏輯用語(yǔ):四種命題(原、逆、否、逆否)及其相互關(guān)系;充分條件與必要條件;簡(jiǎn)單的邏輯聯(lián)結(jié)詞(或、且、非);全稱量詞與存在性量詞,全稱命題與特稱命題的否定.
    (2)圓錐曲線:曲線與方程;求軌跡的常用步驟;橢圓的定義及其標(biāo)準(zhǔn)方程、橢圓的簡(jiǎn)單幾何性質(zhì)(注意離心率與形狀的關(guān)系);雙曲線的定義及其標(biāo)準(zhǔn)方程、雙曲線的簡(jiǎn)單幾何性質(zhì)(注意雙曲線的漸近線)、等軸雙曲線與共軛雙曲線;拋物線的定義及其標(biāo)準(zhǔn)方程;拋物線的簡(jiǎn)單幾何性質(zhì);直線與圓錐曲線的常用公式(弦長(zhǎng)公式、兩根差公式).
    圓錐曲線的幾何性質(zhì)的常用拓展還有:焦半徑公式、橢圓與雙曲線的焦準(zhǔn)定義、橢圓與雙曲線的“垂徑定理”、焦點(diǎn)三角形面積公式、圓錐曲線的光學(xué)性質(zhì)等等.
    (3)空間向量與立體幾何:空間向量的概念、表示與運(yùn)算(加法、減法、數(shù)乘、數(shù)量積);空間向量基本定理、空間向量運(yùn)算的坐標(biāo)表示;平面的法向量、用空間向量計(jì)算空間的角與距離的方法.
    二、重難點(diǎn)與易錯(cuò)點(diǎn)
    重難點(diǎn)與易錯(cuò)點(diǎn)部分配合必考題型使用,做完必考題型后會(huì)對(duì)重難點(diǎn)與易錯(cuò)部分部分有更深入的理解.
    (1)區(qū)分逆命題與命題的否定;
    (2)理解充分條件與必要條件;
    (3)橢圓、雙曲線與拋物線的定義;
    (4)橢圓與雙曲線的幾何性質(zhì),特別是離心率問(wèn)題;
    (5)直線與圓錐曲線的位置關(guān)系問(wèn)題;
    (6)直線與圓錐曲線中的弦長(zhǎng)與面積問(wèn)題;
    (7)直線與圓錐曲線問(wèn)題中的參數(shù)求解與性質(zhì)證明;
    (8)軌跡與軌跡求法;
    (9)運(yùn)用空間向量求空間中的角度與距離;
    (10)立體幾何中的動(dòng)態(tài)問(wèn)題探究.
    3.高二數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    (1)數(shù)列的概念和簡(jiǎn)單表示法
    了解數(shù)列的概念和幾種簡(jiǎn)單的表示方法(列表、圖象、通項(xiàng)公式).
    了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
    (2)等差數(shù)列、等比數(shù)列
    理解等差數(shù)列、等比數(shù)列的概念.
    掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式.
    能在具體的問(wèn)題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問(wèn)題.
    了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
    了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.
    (2)一元二次不等式
    會(huì)從實(shí)際情境中抽象出一元二次不等式模型.
    通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
    會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.
    (3)二元一次不等式組與簡(jiǎn)單線性規(guī)劃問(wèn)題
    會(huì)從實(shí)際情境中抽象出二元一次不等式組.
    了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
    會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線性規(guī)劃問(wèn)題,并能加以解決.
    (4)基本不等式:
    了解基本不等式的證明過(guò)程.
    會(huì)用基本不等式解決簡(jiǎn)單的(小)值問(wèn)題圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)
    4.高二數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
    建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
    寫(xiě)出點(diǎn)M的集合;
    列出方程=0;
    化簡(jiǎn)方程為最簡(jiǎn)形式;
    檢驗(yàn)。
    二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
    直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
    定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
    相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
    參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
    交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
    直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
    ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
    ②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
    ③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
    ④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
    ⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
    5.高二數(shù)學(xué)必修二知識(shí)點(diǎn)整理
    1.橢圓
    橢圓的定義是橢圓章節(jié)的基礎(chǔ)內(nèi)容,高考對(duì)本節(jié)內(nèi)容的考查可能仍然將以求橢圓的方程和研究橢圓的性質(zhì)為主,兩種題型均有可能出現(xiàn).橢圓方面的知識(shí)與向量等知識(shí)的綜合考查命題趨勢(shì)較強(qiáng)。
    2.雙曲線
    標(biāo)準(zhǔn)方程的求法:雙曲線標(biāo)準(zhǔn)方程最常用的兩種方法是定義法和待定系數(shù)法.利用定義法求解,首先要熟悉雙曲線的定義,只要知道雙曲線的焦點(diǎn)和雙曲線上的任意一點(diǎn)的坐標(biāo)都可以運(yùn)用定義法求解其標(biāo)準(zhǔn)方程;解法二是利用待定系數(shù)法求解,是求雙曲線方程的根本方法之一,其思想是根據(jù)題目中的條件確定雙曲線方程中的系數(shù)a,b,主要是解方程組;解法三是利用共焦點(diǎn)曲線系方程求解,其要點(diǎn)是根據(jù)題目中的一個(gè)條件寫(xiě)出含一個(gè)參數(shù)的共焦點(diǎn)的二次曲線系方程,再根據(jù)另外一個(gè)條件求出這個(gè)參數(shù).
    3.拋物線
    1)利用已知條件求拋物線方程,一般有兩種方法:待定系數(shù)法和軌跡法。
    2)韋達(dá)定理的熟練運(yùn)用,可以防止運(yùn)算復(fù)雜的焦點(diǎn)坐標(biāo),巧妙利用拋物線的性質(zhì)進(jìn)行解題。
    3)焦點(diǎn)弦的幾何性質(zhì)是答題中容易忽略的問(wèn)題,在復(fù)雜的求解拋物線方程中,運(yùn)用好這方面的知識(shí)能夠少走很多彎路。
    用點(diǎn)差法解圓錐曲線的中點(diǎn)弦問(wèn)題