各個科目都有自己的學(xué)習(xí)方法,基本離不開背、記,練,數(shù)學(xué)作為最燒腦的科目之一,也是一樣的。為各位同學(xué)整理了《高二必修二數(shù)學(xué)知識點(diǎn)筆記》,希望對你的學(xué)習(xí)有所幫助!
1.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇一
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
2.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇二
兩個平面平行的判定定理
(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。
(線線平行→面面平行),
(3)垂直于同一條直線的兩個平面平行,
兩個平面平行的性質(zhì)定理
(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)
3.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇三
1.向量可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。
2.規(guī)定若線段AB的端點(diǎn)A為起點(diǎn),B為終點(diǎn),則線段就具有了從起點(diǎn)A到終點(diǎn)B的方向和長度。具有方向和長度的線段叫做有向線段。
3.向量的模:向量的大小,也就是向量的長度(或稱模)。向量a的模記作|a|。
注:向量的模是非負(fù)實(shí)數(shù),是可以比較大小的。因為方向不能比較大小,所以向量也就不能比較大小。對于向量來說“大于”和“小于”的概念是沒有意義的。
4.單位向量:長度為一個單位(即模為1)的向量,叫做單位向量.與向量a同向,且長度為單位1的向量,叫做a方向上的單位向量,記作a0。
5.長度為0的向量叫做零向量,記作0。零向量的始點(diǎn)和終點(diǎn)重合,所以零向量沒有確定的方向,或說零向量的方向是任意的。
4.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇四
數(shù)學(xué)指數(shù)與指數(shù)冪的運(yùn)算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈x。
當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。
當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。
2、分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。
5.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇五
圓的一般方程
圓的標(biāo)準(zhǔn)方程是一個關(guān)于x和y的二次方程,將它展開并按x、y的降冪排列,得:
x+y—2ax—2by+a+b—R=0
設(shè)D=—2a,E=—2b,F(xiàn)=a+b—R;則方程變成:
x+y+Dx+Ey+F=0
任意一個圓的方程都可寫成上述形式。把它和下述的一般形式的二元二次方程比較,可以看出它有這樣的特點(diǎn):
(1)x2項和y2項的系數(shù)相等且不為0(在這里為1);
(2)沒有xy的乘積項。
Ax+Bxy+Cy+Dx+Ey+F=0
圓的端點(diǎn)式:
若已知兩點(diǎn)A(a1,b1),B(a2,b2),則以線段AB為直徑的圓的方程為(x—a1)(x—a2)+(y—b1)(y—b2)=0
圓的離心率e=0,在圓上任意一點(diǎn)的曲率半徑都是r。
經(jīng)過圓x+y=r上一點(diǎn)M(a0,b0)的切線方程為a0·x+b0·y=r
在圓(x+y=r)外一點(diǎn)M(a0,b0)引該圓的兩條切線,且兩切點(diǎn)為A,B,則A,B兩點(diǎn)所在直線的方程也為a0·x+b0·y=r。
1.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇一
空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關(guān)系的判定和性質(zhì)定理
①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。
性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。
性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。
2.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇二
兩個平面平行的判定定理
(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。
(線線平行→面面平行),
(3)垂直于同一條直線的兩個平面平行,
兩個平面平行的性質(zhì)定理
(1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)
3.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇三
1.向量可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。
2.規(guī)定若線段AB的端點(diǎn)A為起點(diǎn),B為終點(diǎn),則線段就具有了從起點(diǎn)A到終點(diǎn)B的方向和長度。具有方向和長度的線段叫做有向線段。
3.向量的模:向量的大小,也就是向量的長度(或稱模)。向量a的模記作|a|。
注:向量的模是非負(fù)實(shí)數(shù),是可以比較大小的。因為方向不能比較大小,所以向量也就不能比較大小。對于向量來說“大于”和“小于”的概念是沒有意義的。
4.單位向量:長度為一個單位(即模為1)的向量,叫做單位向量.與向量a同向,且長度為單位1的向量,叫做a方向上的單位向量,記作a0。
5.長度為0的向量叫做零向量,記作0。零向量的始點(diǎn)和終點(diǎn)重合,所以零向量沒有確定的方向,或說零向量的方向是任意的。
4.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇四
數(shù)學(xué)指數(shù)與指數(shù)冪的運(yùn)算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈x。
當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù)。此時,的次方根用符號表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。
當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù)。此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。
2、分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。
5.高二必修二數(shù)學(xué)知識點(diǎn)筆記 篇五
圓的一般方程
圓的標(biāo)準(zhǔn)方程是一個關(guān)于x和y的二次方程,將它展開并按x、y的降冪排列,得:
x+y—2ax—2by+a+b—R=0
設(shè)D=—2a,E=—2b,F(xiàn)=a+b—R;則方程變成:
x+y+Dx+Ey+F=0
任意一個圓的方程都可寫成上述形式。把它和下述的一般形式的二元二次方程比較,可以看出它有這樣的特點(diǎn):
(1)x2項和y2項的系數(shù)相等且不為0(在這里為1);
(2)沒有xy的乘積項。
Ax+Bxy+Cy+Dx+Ey+F=0
圓的端點(diǎn)式:
若已知兩點(diǎn)A(a1,b1),B(a2,b2),則以線段AB為直徑的圓的方程為(x—a1)(x—a2)+(y—b1)(y—b2)=0
圓的離心率e=0,在圓上任意一點(diǎn)的曲率半徑都是r。
經(jīng)過圓x+y=r上一點(diǎn)M(a0,b0)的切線方程為a0·x+b0·y=r
在圓(x+y=r)外一點(diǎn)M(a0,b0)引該圓的兩條切線,且兩切點(diǎn)為A,B,則A,B兩點(diǎn)所在直線的方程也為a0·x+b0·y=r。

