高二年級(jí)必修一數(shù)學(xué)知識(shí)點(diǎn)梳理

字號(hào):

高中學(xué)習(xí)方法其實(shí)很簡單,但是這個(gè)方法要一直保持下去,才能在最終考試時(shí)看到成效,以下是整理的《高二年級(jí)必修一數(shù)學(xué)知識(shí)點(diǎn)梳理》希望能夠幫助到大家。
    1.高二年級(jí)必修一數(shù)學(xué)知識(shí)點(diǎn)梳理 篇一
    空間中的垂直問題
    (1)線線、面面、線面垂直的定義
    ①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
    ②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直.
    ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直.
    (2)垂直關(guān)系的判定和性質(zhì)定理
    ①線面垂直判定定理和性質(zhì)定理
    判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.
    性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.
    ②面面垂直的判定定理和性質(zhì)定理
    判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.
    性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.
    2.高二年級(jí)必修一數(shù)學(xué)知識(shí)點(diǎn)梳理 篇二
    柱、錐、臺(tái)、球的結(jié)構(gòu)特征
    (1)棱柱:
    幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
    (2)棱錐
    幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
    (3)棱臺(tái):
    幾何特征:
    ①上下底面是相似的平行多邊形
    ②側(cè)面是梯形
    ③側(cè)棱交于原棱錐的頂點(diǎn)
    (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
    幾何特征:
    ①底面是全等的圓;
    ②母線與軸平行;
    ③軸與底面圓的半徑垂直;
    ④側(cè)面展開圖是一個(gè)矩形.
    (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
    幾何特征:
    ①底面是一個(gè)圓;
    ②母線交于圓錐的頂點(diǎn);
    ③側(cè)面展開圖是一個(gè)扇形.
    (6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
    幾何特征:
    ①上下底面是兩個(gè)圓;
    ②側(cè)面母線交于原圓錐的頂點(diǎn);
    ③側(cè)面展開圖是一個(gè)弓形.
    (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
    幾何特征:
    ①球的截面是圓;
    ②球面上任意一點(diǎn)到球心的距離等于半徑.
    3.高二年級(jí)必修一數(shù)學(xué)知識(shí)點(diǎn)梳理 篇三
    導(dǎo)數(shù)的應(yīng)用
    1、用導(dǎo)數(shù)研究函數(shù)的最值
    確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。
    學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。
    2、生活中常見的函數(shù)優(yōu)化問題
    (1)費(fèi)用、成本最省問題
    (2)利潤、收益問題
    (3)面積、體積最(大)問題
    4.高二年級(jí)必修一數(shù)學(xué)知識(shí)點(diǎn)梳理 篇四
    函數(shù)的奇偶性(整體性質(zhì))
    (1)偶函數(shù)
    一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
    (2).奇函數(shù)
    一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
    (3)具有奇偶性的函數(shù)的圖象的特征
    偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
    利用定義判斷函數(shù)奇偶性的步驟:
    1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;
    2確定f(-x)與f(x)的關(guān)系;
    3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
    注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,
    (1)再根據(jù)定義判定;
    (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
    (3)利用定理,或借助函數(shù)的圖象判定.
    5.高二年級(jí)必修一數(shù)學(xué)知識(shí)點(diǎn)梳理 篇五
    1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.
    2.所謂輾轉(zhuǎn)相法,就是對(duì)于給定的兩個(gè)數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對(duì)數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時(shí)的除數(shù)就是原來兩個(gè)數(shù)的公約數(shù).
    3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對(duì)于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)就是所求的公約數(shù).
    4.秦九韶算法是一種用于計(jì)算一元二次多項(xiàng)式的值的方法.
    5.常用的排序方法是直接插入排序和冒泡排序.
    6.進(jìn)位制是人們?yōu)榱擞?jì)數(shù)和運(yùn)算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,進(jìn)制的基數(shù)是k.
    7.將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進(jìn)制數(shù)的運(yùn)算規(guī)則計(jì)算出結(jié)果.
    8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個(gè)數(shù)就是相應(yīng)的進(jìn)制數(shù).