高一數(shù)學(xué)上學(xué)期知識點總結(jié)

字號:


     高中階段學(xué)習(xí)難度、強(qiáng)度、容量加大,學(xué)習(xí)負(fù)擔(dān)及壓力明顯加重,不能再依賴初中時期老師“填鴨式”的授課,“看管式”的自習(xí),“命令式”的作業(yè),要逐步培養(yǎng)自己主動獲取知識、鞏固知識的能力,制定學(xué)習(xí)計劃,養(yǎng)成自主學(xué)習(xí)的好習(xí)慣。今天高一頻道為正在拼搏的你整理了《高一數(shù)學(xué)上學(xué)期知識點總結(jié)》,希望以下內(nèi)容可以幫助到您!
    1.高一數(shù)學(xué)上學(xué)期知識點總結(jié)
    二面角
    (1)半平面:平面內(nèi)的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
    (2)二面角:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
    (3)二面角的棱:這一條直線叫做二面角的棱。
    (4)二面角的面:這兩個半平面叫做二面角的面。
    (5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
    (6)直二面角:平面角是直角的二面角叫做直二面角。
    2.高一數(shù)學(xué)上學(xué)期知識點總結(jié)
    函數(shù)的奇偶性(整體性質(zhì))
    (1)偶函數(shù)
    一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
    (2)奇函數(shù)
    一般地,對于函數(shù)f(x)的定義域內(nèi)的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
    (3)具有奇偶性的函數(shù)的圖象的特征
    偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點對稱.
    3.高一數(shù)學(xué)上學(xué)期知識點總結(jié)
    正棱錐
    正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質(zhì):
    (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (2)多個特殊的直角三角形
    a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
    b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
    4.高一數(shù)學(xué)上學(xué)期知識點總結(jié)
    圓的方程定義:
    圓的標(biāo)準(zhǔn)方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。
    直線和圓的位置關(guān)系:
    1、直線和圓位置關(guān)系的判定:
    方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系。
    ①Δ>0,直線和圓相交
    ②Δ=0,直線和圓相切
    ③Δ<0,直線和圓相離。
    方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
    2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
    3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
    切線的性質(zhì)
    ⑴圓心到切線的距離等于圓的半徑;
    ⑵過切點的半徑垂直于切線;
    ⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點;
    ⑷經(jīng)過切點,與切線垂直的直線必經(jīng)過圓心;
    當(dāng)一條直線滿足
    (1)過圓心;
    (2)過切點;
    (3)垂直于切線三個性質(zhì)中的兩個時,第三個性質(zhì)也滿足。
    切線的判定定理
    經(jīng)過半徑的外端點并且垂直于這條半徑的直線是圓的切線。
    切線長定理
    從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
    5.高一數(shù)學(xué)上學(xué)期知識點總結(jié)
    函數(shù)圖象
    (1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(x,y),均在C上.
    (2)畫法
    A、描點法:
    B、圖象變換法
    常用變換方法有三種
    1)平移變換
    2)伸縮變換
    3)對稱變換
    6.高一數(shù)學(xué)上學(xué)期知識點總結(jié)
    1.多面體的結(jié)構(gòu)特征
    (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。
    正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形.
    (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形.
    正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心.
    (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形.
    2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
    (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到.
    (2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到.
    (3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到.
    (4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到.
    3.空間幾何體的三視圖
    空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖.
    三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法.
    4.空間幾何體的直觀圖
    空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
    (1)畫幾何體的底面
    在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话?
    (2)畫幾何體的高
    在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變.