小學的奧數是一門重要的課程。下面是收集整理的小升初奧數《濃度與配比》知識點以供大家學習。

小升初奧數知識點:濃度與配比
經驗總結:在配比的過程中存在這樣的一個反比例關系,進行混合的兩種溶液的重量和他們濃度的變化成反比。
溶質:溶解在其它物質里的物質(例如糖、鹽、酒精等)叫溶質。
溶劑:溶解其它物質的物質(例如水、汽油等)叫溶劑。
溶液:溶質和溶劑混合成的液體(例如鹽水、糖水等)叫溶液。
基本公式:溶液重量=溶質重量+溶劑重量;
溶質重量=溶液重量×濃度;
濃度=×100%=×100%
理論部分小練習:試推出溶質、溶液、溶劑三者的其它公式。
經驗總結:在配比的過程中存在這樣的一個反比例關系,進行混合的兩種溶液的重量和他們濃度的變化成反比。
小升初奧數知識點:循環(huán)小數
一、把循環(huán)小數的小數部分化成分數的規(guī)則
①純循環(huán)小數小數部分化成分數:將一個循環(huán)節(jié)的數字組成的數作為分子,分母的各位都是9,9的個數與循環(huán)節(jié)的位數相同,后能約分的再約分。
②混循環(huán)小數小數部分化成分數:分子是第二個循環(huán)節(jié)以前的小數部分的數字組成的數與不循環(huán)部分的數字所組成的數之差,分母的頭幾位數字是9,9的個數與一個循環(huán)節(jié)的位數相同,末幾位是0,0的個數與不循環(huán)部分的位數相同。
二、分數轉化成循環(huán)小數的判斷方法:
①一個簡分數,如果分母中既含有質因數2和5,又含有2和5以外的質因數,那么這個分數化成的小數必定是混循環(huán)小數。
②一個簡分數,如果分母中只含有2和5以外的質因數,那么這個分數化成的小數必定是純循環(huán)小數。
小升初奧數知識點:不定方程
不定方程:含有兩個未知數的一個方程,叫做二元方程,由于它的解不,所以也叫做二元不定方程;
常規(guī)方法:觀察法、試驗法、枚舉法;
多元不定方程:含有三個未知數的方程叫三元方程,它的解也不;
多元不定方程解法:根據已知條件確定一個未知數的值,或者消去一個未知數,這樣就把三元方程變成二元不定方程,按照二元不定方程解即可;
涉及知識點:列方程、數的整除、大小比較;
解不定方程的步驟:1、列方程;2、消元;3、寫出表達式;4、確定范圍;5、確定特征;6、確定答案;
技巧總結:A、寫出表達式的技巧:用特征不明顯的未知數表示特征明顯的未知數,同時考慮用范圍小的未知數表示范圍大的未知數;B、消元技巧:消掉范圍大的未知數。

小升初奧數知識點:濃度與配比
經驗總結:在配比的過程中存在這樣的一個反比例關系,進行混合的兩種溶液的重量和他們濃度的變化成反比。
溶質:溶解在其它物質里的物質(例如糖、鹽、酒精等)叫溶質。
溶劑:溶解其它物質的物質(例如水、汽油等)叫溶劑。
溶液:溶質和溶劑混合成的液體(例如鹽水、糖水等)叫溶液。
基本公式:溶液重量=溶質重量+溶劑重量;
溶質重量=溶液重量×濃度;
濃度=×100%=×100%
理論部分小練習:試推出溶質、溶液、溶劑三者的其它公式。
經驗總結:在配比的過程中存在這樣的一個反比例關系,進行混合的兩種溶液的重量和他們濃度的變化成反比。
小升初奧數知識點:循環(huán)小數
一、把循環(huán)小數的小數部分化成分數的規(guī)則
①純循環(huán)小數小數部分化成分數:將一個循環(huán)節(jié)的數字組成的數作為分子,分母的各位都是9,9的個數與循環(huán)節(jié)的位數相同,后能約分的再約分。
②混循環(huán)小數小數部分化成分數:分子是第二個循環(huán)節(jié)以前的小數部分的數字組成的數與不循環(huán)部分的數字所組成的數之差,分母的頭幾位數字是9,9的個數與一個循環(huán)節(jié)的位數相同,末幾位是0,0的個數與不循環(huán)部分的位數相同。
二、分數轉化成循環(huán)小數的判斷方法:
①一個簡分數,如果分母中既含有質因數2和5,又含有2和5以外的質因數,那么這個分數化成的小數必定是混循環(huán)小數。
②一個簡分數,如果分母中只含有2和5以外的質因數,那么這個分數化成的小數必定是純循環(huán)小數。
小升初奧數知識點:不定方程
不定方程:含有兩個未知數的一個方程,叫做二元方程,由于它的解不,所以也叫做二元不定方程;
常規(guī)方法:觀察法、試驗法、枚舉法;
多元不定方程:含有三個未知數的方程叫三元方程,它的解也不;
多元不定方程解法:根據已知條件確定一個未知數的值,或者消去一個未知數,這樣就把三元方程變成二元不定方程,按照二元不定方程解即可;
涉及知識點:列方程、數的整除、大小比較;
解不定方程的步驟:1、列方程;2、消元;3、寫出表達式;4、確定范圍;5、確定特征;6、確定答案;
技巧總結:A、寫出表達式的技巧:用特征不明顯的未知數表示特征明顯的未知數,同時考慮用范圍小的未知數表示范圍大的未知數;B、消元技巧:消掉范圍大的未知數。