高一上學期數(shù)學月考復習知識點:函數(shù)及其表示

字號:

一:函數(shù)及其表示
    知識點詳解文檔包含函數(shù)的概念、映射、函數(shù)關系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等
    1. 函數(shù)與映射的區(qū)別:
    \
    2. 求函數(shù)定義域
    常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:
    ①當f(x)為整式時,函數(shù)的定義域為R.
    ②當f(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。
    ③當f(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。
    ④當f(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。
    ⑤如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。
    ⑥復合函數(shù)的定義域是復合的各基本的函數(shù)定義域的交集。
    ⑦對于由實際問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。
    3. 求函數(shù)值域
    (1)、觀察法:通過對函數(shù)定義域、性質的觀察,結合函數(shù)的解析式,求得函數(shù)的值域;
    (2)、配方法;如果一個函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;
    (3)、判別式法:
    (4)、數(shù)形結合法;通過觀察函數(shù)的圖象,運用數(shù)形結合的方法得到函數(shù)的值域;
    (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉化為以新變量為自變量的函數(shù)形式,進而求出值域;
    (6)、利用函數(shù)的單調性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調的,那么就可以利用端點的函數(shù)值來求出值域;
    (7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;
    (8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;
    (9)、反函數(shù)法:如果函數(shù)在其定義域內存在反函數(shù),那么求函數(shù)的值域可以轉化為求反函數(shù)的定義域。