勾股定理教案第一課時(shí) 勾股定理教案(匯總9篇)

字號(hào):

    作為一名專為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫(xiě)教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。寫(xiě)教案的時(shí)候需要注意什么呢?有哪些格式需要注意呢?這里我給大家分享一些最新的教案范文,方便大家學(xué)習(xí)。
    勾股定理教案第一課時(shí)篇一
    教學(xué)目標(biāo)1.在探索平行四邊形的判別條件中,理解并掌握用邊、對(duì)角線來(lái)判定平行四邊形的方法.
    2.會(huì)綜合運(yùn)用平行四邊形的判定方法和性質(zhì)來(lái)解決問(wèn)題
    教學(xué)重點(diǎn):平行四邊形的判定方法及應(yīng)用
    教學(xué)難點(diǎn):平行四邊形的判定定理與性質(zhì)定理的靈活應(yīng)用
    引
    二.探
    閱讀教材p44至p45
    利用手中的學(xué)具——硬紙板條,通過(guò)觀察、測(cè)量、猜想、驗(yàn)證、探索構(gòu)成平行四邊形的條件,思考并探討:
    (1)你能適當(dāng)選擇手中的硬紙板條搭建一個(gè)平行四邊形嗎?
    (2)你怎樣驗(yàn)證你搭建的四邊形一定是平行四邊形?
    (3)你能說(shuō)出你的做法及其道理嗎?
    (4)能否將你的探索結(jié)論作為平行四邊形的一種判別方法?你能用文字語(yǔ)言表述出來(lái)嗎?
    (5)你還能找出其他方法嗎?
    從探究中得到:
    平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
    平行四邊形判定方法2對(duì)角線互相平分的四邊形是平行四邊形。
    證一證
    平行四邊形判定方法1兩組對(duì)邊分別相等的四邊形是平行四邊形。
    證明:(畫(huà)出圖形)
    平行四邊形判定方法2一組對(duì)邊平行且相等的四邊形是平行四邊形。
    證明:(畫(huà)出圖形)
    三.結(jié)
    兩組對(duì)邊分別相等的四邊形是平行四邊形。
    對(duì)角線互相平分的四邊形是平行四邊形。
    四.用
    勾股定理教案第一課時(shí)篇二
    1、通過(guò)拼圖,用面積的方法說(shuō)明勾股定理的正確性.
    2、通過(guò)實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識(shí)應(yīng)用技能.
    1.用面積的方法說(shuō)明勾股定理的正確.
    2.勾股定理的應(yīng)用.
    勾股定理的應(yīng)用.
    一、學(xué)前準(zhǔn)備:
    1、閱讀課本第46頁(yè)到第47頁(yè),完成下列問(wèn)題:
    2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的'圖形。大正方形的面積可以表示為_(kāi)________________________,又可以表示為_(kāi)_________________________.對(duì)比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說(shuō)明勾股定理是正確的方法(請(qǐng)逐一說(shuō)明)
    二、合作探究:
    (一)自學(xué)、相信自己:
    (二)思索、交流:
    (三)應(yīng)用、探究:
    (四)鞏固練習(xí):
    1、如圖,64、400分別為所在正方形的面積,則圖中字
    母a所代表的正方形面積是_________。
    三.學(xué)習(xí)體會(huì):
    本節(jié)課我們進(jìn)一步認(rèn)識(shí)了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問(wèn)題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來(lái)解決。
    2②圖
    四.自我測(cè)試:
    五.自我提高:
    勾股定理教案第一課時(shí)篇三
    勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.
    即直角三角形兩直角的平方和等于斜邊的平方.
    因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):
    (2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);
    2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理
    如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.
    請(qǐng)讀者證明.
    請(qǐng)同學(xué)們自己證明圖(2)、(3).
    3.在數(shù)軸上表示無(wú)理數(shù)
    二、典例精析
    解:由勾股定理,得
    132-52=144,所以另一條直角邊的長(zhǎng)為12.
    所以這個(gè)直角三角形的面積是×12×5=30(cm2).
    例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)a爬到
    頂點(diǎn)b,則它走過(guò)的最短路程為
    a.b.c.3ad.分析:本題顯然與例2屬同種類型,思路相同.但正方體的
    各棱長(zhǎng)相等,因此只有一種展開(kāi)圖.
    解:將正方體側(cè)面展開(kāi)
    勾股定理教案第一課時(shí)篇四
    本節(jié)課教學(xué)模式主要采用“互動(dòng)式”教學(xué)模式及“類比”的教學(xué)方法.通過(guò)前面所學(xué)的垂直平分線定理及其逆定理,做類比對(duì)象,讓學(xué)生自己提出問(wèn)題并解決問(wèn)題.在課堂教學(xué)中營(yíng)造輕松、活潑的課堂氣氛.通過(guò)師生互動(dòng)、生生互動(dòng)、學(xué)生與教材之間的互動(dòng),造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的.具體說(shuō)明如下:
    (1)讓學(xué)生主動(dòng)提出問(wèn)題
    (2)讓學(xué)生自己解決問(wèn)題
    (3)通過(guò)實(shí)際問(wèn)題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí).
    勾股定理教案第一課時(shí)篇五
    勾股定理是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特點(diǎn)。學(xué)習(xí)勾股定理極其逆定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必然基礎(chǔ)?!缎掳鏀?shù)學(xué)課程標(biāo)準(zhǔn)》對(duì)勾股定理教學(xué)內(nèi)容的要求是:
    1、在研究圖形性質(zhì)和運(yùn)動(dòng)等過(guò)程中,進(jìn)一步發(fā)展空間觀念;
    2、在多種形式的數(shù)學(xué)活動(dòng)中,發(fā)展合情推理能力;
    3、經(jīng)歷從不同角度分析問(wèn)題和解決問(wèn)題的方法的過(guò)程,體驗(yàn)解決問(wèn)題方法的多樣性;
    4、探索勾股定理及其逆定理,并能運(yùn)用它們解決一些簡(jiǎn)單的實(shí)際問(wèn)題。
    本節(jié)課的教學(xué)目標(biāo)是:
    1、能正確運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。
    教學(xué)重點(diǎn)和難點(diǎn):
    應(yīng)用勾股定理及其逆定理解決實(shí)際問(wèn)題是重點(diǎn)。
    把實(shí)際問(wèn)題化歸成數(shù)學(xué)模型是難點(diǎn)。
    根據(jù)新課標(biāo)提出的“要從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋和運(yùn)用的同時(shí),在思維能力情感態(tài)度和價(jià)值觀等方面得到進(jìn)步和發(fā)展”的理念,我想盡量給學(xué)生創(chuàng)設(shè)豐富的實(shí)際問(wèn)題情境 ,使教學(xué)活動(dòng)充滿趣味性和吸引力,讓他們?cè)谧灾魈骄浚献鹘涣髦蟹治鰡?wèn)題,建立數(shù)學(xué)模型,利用勾股定理及其逆定理解決問(wèn)題。在教學(xué)過(guò)程中,采用一題多變的形式拓寬學(xué)生視野,訓(xùn)練學(xué)生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學(xué)生在獲得知識(shí)的同時(shí)提高能力。
    在教學(xué)設(shè)計(jì)中,盡量考慮到不同學(xué)習(xí)水平的學(xué)生,注意知識(shí)由易到難的層次性,在課堂上,要照顧到接受較慢的學(xué)生。使不同學(xué)生有不同的收獲和發(fā)展。
    本節(jié)課設(shè)計(jì)了七個(gè)環(huán) 《勾股定理的應(yīng)用》教學(xué)設(shè)計(jì)節(jié)、第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):變式訓(xùn)練;第四環(huán)節(jié):議一議;第五環(huán)節(jié):做一做;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
    第一環(huán)節(jié):情境引入
    情景1:復(fù)習(xí)提 問(wèn):勾股定理的語(yǔ)言表述以及幾何語(yǔ)言表達(dá)?
    設(shè)計(jì)意圖:溫習(xí)舊知識(shí),規(guī)范語(yǔ)言及數(shù)學(xué)表達(dá),體現(xiàn)
    設(shè)計(jì)意圖:既靈活考察學(xué)生對(duì)勾股定理的理解,又增加了趣味性,還能考察學(xué)生三角形三邊關(guān)系。
    第二環(huán)節(jié):合作探究(圓柱體表面路程最短問(wèn)題)
    情景3:課本引例(螞蟻怎樣走最近)
    第三環(huán)節(jié):變式訓(xùn)練(由圓柱體表面路程最短問(wèn)題逐步變?yōu)殚L(zhǎng)方體表面的距離最短問(wèn)題)
    設(shè)計(jì)意圖:將問(wèn)題的條件稍做改變,讓學(xué)生嘗試獨(dú)立解決,拓展學(xué)生視野,又加深他們對(duì)知識(shí)的理解和鞏固。再將圓柱問(wèn)題變?yōu)檎襟w長(zhǎng)方體問(wèn)題,學(xué)生有了之前的經(jīng)驗(yàn),自然而然的將立體轉(zhuǎn)化為平面,利用勾股定理解決,此處長(zhǎng)方體問(wèn)題中學(xué)生會(huì)有不同的做法,正好透分類討論思想。
    第四環(huán)節(jié):議一議
    內(nèi)容:李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺:
    (1)你能替他想辦法完成任務(wù)嗎?
    設(shè)計(jì)意圖:
    第五環(huán)節(jié):方程與勾股定理
    在我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問(wèn)題,這個(gè)問(wèn)題的意思是:有一個(gè)水池,水面是一個(gè)邊長(zhǎng)為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面,請(qǐng)問(wèn)這個(gè)水池的深度和這根蘆葦?shù)拈L(zhǎng)度各是多 少尺?《意圖:學(xué)生可以進(jìn)一步了解勾股定理的悠久歷史和廣泛應(yīng)用,了解我國(guó)古代人民的聰明才智;學(xué)會(huì)運(yùn)用方程的思想借助勾股定理解決實(shí)際問(wèn)題。
    第六環(huán)節(jié):交流小結(jié)內(nèi)容:師生相互交流總結(jié):
    1、解決實(shí)際問(wèn)題的方法是建立數(shù)學(xué)模型求解、
    2、在尋求最短路徑時(shí),往往把空間問(wèn)題平面化,利用勾股定理及其逆定理解決實(shí)際問(wèn)題、
    3、在直角三角形中,已知一條邊和另外兩條邊的關(guān)系,借助方程可以求出另外兩條邊。
    第七環(huán)作業(yè)設(shè)計(jì):
    第一道題難度較小,大部分學(xué)生可以獨(dú)立完成,第二道題有較大難度,可以交流討論完成。
    勾股定理教案第一課時(shí)篇六
    1.理解勾股定理的逆定理的證明方法和證明過(guò)程;
    2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;
    二數(shù)學(xué)思考
    1.通過(guò)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生發(fā)展與形成的過(guò)程;
    2.通過(guò)三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合法的應(yīng)用.
    三解決問(wèn)題
    通過(guò)勾股定理的逆定理的證明及其應(yīng)用,體會(huì)數(shù)形結(jié)合法在問(wèn)題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問(wèn)題.
    四情感態(tài)度
    2.在探究勾股定理的逆定理的證明及應(yīng)用的活動(dòng)中,通過(guò)一系列富有探究性的問(wèn)題,滲透與他人交流合作的意識(shí)和探究精神.
    勾股定理教案第一課時(shí)篇七
    勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
    本節(jié)教科書(shū)從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
    一、知識(shí)與技能
    1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
    2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題
    3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理
    二、過(guò)程與方法
    引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
    三、情感與態(tài)度目標(biāo)
    通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
    四、重點(diǎn)與難點(diǎn)
    1、探索和證明勾股定理
    2、熟練運(yùn)用勾股定理
    一、創(chuàng)設(shè)情景,揭示課題
    1、教師展示圖片并介紹第一情景
    以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。
    周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也?!?BR>    2、教師展示圖片并介紹第二情景
    畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
    二、師生協(xié)作,探究問(wèn)題
    1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
    2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
    3、你能得到什么結(jié)論嗎?
    三、得出命題
    勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋:由于我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
    四、勾股定理的證明
    第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
    第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、,斜邊為 的
    角三角形拼接形成的(虛線表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。
    因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
    這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
    五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
    勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。
    六、歸納總結(jié)
    2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
    七、討論交流
    讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
    我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
    勾股定理教案第一課時(shí)篇八
    本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
    采用“七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。
    勾股定理教案第一課時(shí)篇九
    1、知識(shí)與技能目標(biāo)
    學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念。
    2、過(guò)程與方法
    (1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力。
    (2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想。
    3、情感態(tài)度與價(jià)值觀
    (1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣。
    (2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性。
    教學(xué)重點(diǎn):
    探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題。
    教學(xué)難點(diǎn):
    利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題。
    教學(xué)準(zhǔn)備:
    多媒體
    教學(xué)過(guò)程:
    第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)
    情景:
    第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)
    學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算。
    第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)
    教材23頁(yè)
    李叔叔想要檢測(cè)雕塑底座正面的ad邊和bc邊是否分別垂直于底邊ab,但他隨身只帶了卷尺。
    (1)你能替他想辦法完成任務(wù)嗎?
    第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)
    2.如圖,臺(tái)階a處的螞蟻要爬到b處搬運(yùn)食物,它怎么走最近?并求出最近距離。
    第五環(huán)節(jié)課堂小結(jié)(3分鐘,師生問(wèn)答)
    內(nèi)容:如何利用勾股定理及逆定理解決最短路程問(wèn)題?
    第六環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)
    作業(yè):1.課本習(xí)題1.5第1,2,3題.
    要求:a組(學(xué)優(yōu)生):1、2、3
    b組(中等生):1、2
    c組(后三分之一生):1