三角形內(nèi)角和教學(xué)設(shè)計方案(熱門13篇)

字號:

    方案是指為解決某一問題或?qū)崿F(xiàn)某一目標(biāo)而提出的一套操作步驟或行動計劃。在制定方案之前,我們需要對問題進行充分的了解和分析。請大家充分利用這些范文,并結(jié)合自己的實際情況,靈活運用方案寫作的技巧和方法。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇一
    三角形的內(nèi)角和是三角形的一個重要特征。本課時安排在三角形的特性和分類之后進行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和的基礎(chǔ)。學(xué)生在掌握知識方面:基本掌握三角形的分類,角的分類等有關(guān)知識;能力方面:學(xué)生已具備了初步的動手操作能力和主觀探究能力以及合作學(xué)習(xí)的習(xí)慣。因此,教材特重視知識的探索宇發(fā)現(xiàn),安排了一系列的實驗操作活動。教材在呈現(xiàn)教學(xué)內(nèi)容時,即重視知識的形成過程,又注意提供學(xué)生自主探究的空間,為教師組織教學(xué)提供了清晰的思路。學(xué)生通過量;剪;拼;算等活動,讓學(xué)生探索.實驗.發(fā)現(xiàn).驗證三角形內(nèi)角和是180度。
    知識于技能:讓學(xué)生通過親自動手量.剪.拼等活動,發(fā)現(xiàn)三角形內(nèi)角和是180度,并會應(yīng)用這一知識解決生活中簡單的實際問題。
    情感態(tài)度與價值觀:通過學(xué)習(xí)讓學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。
    學(xué)生已經(jīng)認識了三角形,并掌握了三角形的分類,較熟悉平角等有關(guān)知識;具備了初步的動手操作能力和主動探究能力。因此概念的形成是通過量.算.拼等活動,讓學(xué)生探索.實驗.發(fā)現(xiàn).討論.推理.歸納出三角形的內(nèi)角和是180度。
    1.關(guān)注學(xué)生的學(xué)習(xí)過程,注意培養(yǎng)學(xué)生動手操作能力以及和作與交流的能力,培養(yǎng)應(yīng)用和創(chuàng)新意識。
    2.從學(xué)生已有的知識和生活經(jīng)驗出發(fā),讓學(xué)生通過操作.觀察.思考.交流.推理.歸等活動,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,體驗數(shù)學(xué)的價值。
    教具準(zhǔn)備;多媒體課件.一副三角板。
    學(xué)具準(zhǔn)備:量角器.各種三角形.剪刀等。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇二
    【教學(xué)目標(biāo)】。
    1.使學(xué)生知道三角形的內(nèi)角和是180,并能運用三角形的內(nèi)角和是180解決生活中常見的問題。
    2.讓學(xué)生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、判斷、交流和推理探索用多種方法證明三角形的內(nèi)角和是180。
    3.培養(yǎng)學(xué)生自主學(xué)習(xí)、互動交流、合作探究的能力和習(xí)慣,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣,感受學(xué)習(xí)數(shù)學(xué)的樂趣。
    【教學(xué)重點】。
    使學(xué)生知道三角形的內(nèi)角和是180,并能運用它解決生活中常見的問題。
    【教學(xué)難點】。
    【教學(xué)準(zhǔn)備】。
    課件。四組教學(xué)用三角板。鉛筆。大帆布兜子。固體膠。剪刀??曜尤舾伞?BR>    【教學(xué)過程】。
    一、激趣導(dǎo)入,提煉學(xué)習(xí)方法。
    1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學(xué)生面前。激發(fā)學(xué)生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學(xué)藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當(dāng)一會我的徒弟試試這幾道題呢?”
    2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。
    3.選擇工具,總結(jié)方法。
    讓選擇不同工具的同學(xué)用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。
    師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。
    4.導(dǎo)入新課。
    圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學(xué)過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)。
    二、動手操作,探索交流新知。
    1.分組活動,探索新知。
    根據(jù)學(xué)生的選擇把學(xué)生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。
    量一量組同學(xué)發(fā)給以下幾種學(xué)具:
    折一折組同學(xué)發(fā)給上面的三角形一組。
    拼一拼組同學(xué)發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。
    在學(xué)生探索的過程中教師要走近學(xué)生,與他們共同交流探討,在學(xué)生有困難的時候要適當(dāng)給予引導(dǎo)。
    2.多方互動,交流新知。
    師:請我的大徒弟(量一量組)的同學(xué)先來匯報你們的研究成果。
    (1)首先要求學(xué)生說一說你們小組是怎樣進行探究的。
    (2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學(xué)生不正確的結(jié)論,因為這是知識的形成過程。)。
    (3)請學(xué)生說說通過探究活動你們組得出的結(jié)論是什么。
    師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?
    引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。
    師:別看小徒弟(拼一拼組)這么小,方法可能是最好的。快來把你們的方法給大家匯報匯報。
    同樣引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。
    3.思想碰撞,夯實新知。
    師:三個徒弟你們能說說誰的方法最好嗎?
    學(xué)生都會說自己的方法最好,再讓其他同學(xué)發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導(dǎo)學(xué)生說出量一量的方法可能由于量的不夠準(zhǔn)確,所以結(jié)果可能比180大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)。
    師:不論你量的怎樣認真都會有不準(zhǔn)確的地方,這就叫誤差。而其他兩組同學(xué)的方法更準(zhǔn)確。三角形的內(nèi)角和就是180。(板書:三角形的內(nèi)角和是180)。
    四、走進生活,提升運用能力。
    1.出示課前那架柁標(biāo)出它的頂角是120,求它的一個底角是多少度?
    2.給你三根木條,能做出一個有兩個直角的三角形嗎?
    五、總結(jié)。
    六、拓展新知,課外延伸。
    師:俗話說“活到老,學(xué)到老。”你們下山后還要繼續(xù)探索,所以我要把我畢生都沒有完成的任務(wù)交給你們?nèi)パ芯俊?BR>    大屏幕出示:
    能用你今天學(xué)過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?
    三角形內(nèi)角和教學(xué)設(shè)計方案篇三
    教學(xué)內(nèi)容:
    教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。
    教學(xué)目標(biāo):
    1、通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
    3、培養(yǎng)學(xué)生動手動腦及分析推理能力。
    重點難點:
    教學(xué)準(zhǔn)備:
    導(dǎo)學(xué)過程。
    一、復(fù)習(xí)。
    1、什么是平角?平角是多少度?
    2、計算角的度數(shù)。
    3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。
    二、新知。
    (設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。
    1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。
    4、驗證:
    (1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。
    (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
    (3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)。
    (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
    5、結(jié)論:修改板書,把“?”去掉,寫“是”。
    6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。
    7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
    三、知識運用(課件出示練習(xí)題,生解答)。
    1、填空。
    (2)一個直角三角形的一個銳角是50,則另一個銳角是()。
    (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
    (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
    2、判斷。
    (1)一個三角形中最多有兩個直角。()。
    (3)有一個角是60的等腰三角形不一定是等邊三角形。()。
    (5)直角三角形中的兩個銳角的和等于90。()。
    四、拓展探究。
    根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
    1、小組討論。2、匯報結(jié)果。3、課件提示幫助理解。
    五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇四
    1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
    2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進掌握學(xué)習(xí)數(shù)學(xué)的方法。
    3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
    重點掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。
    《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學(xué)生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。
    一、創(chuàng)設(shè)情境,激發(fā)興趣。
    出示課件,提出兩個兩個疑問:
    1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?
    二、初建模型,實際驗證自己的猜想。
    在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進行交流。
    內(nèi)角和。
    銳角三角形。
    鈍角三角形。
    直角三角形。
    等腰三角形。
    等邊三角形。
    三、再建模型,徹底的得出正確的結(jié)論。
    因為在上一環(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進行演示。
    四、應(yīng)用新知,鞏固練習(xí)。
    1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習(xí))。
    2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)。
    3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。
    五、拓展與延伸。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇五
    《三角形內(nèi)角和》是北師大版《數(shù)學(xué)》四年級下冊的內(nèi)容。是在學(xué)生學(xué)習(xí)了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎(chǔ),因此,掌握三角形的內(nèi)角和是180度這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學(xué)生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了試一試,練一練的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇六
    【教材內(nèi)容】:
    北師大版四年級數(shù)學(xué)下冊。
    【教學(xué)目標(biāo)】:
    1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
    2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進掌握學(xué)習(xí)數(shù)學(xué)的方法。
    3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
    【教學(xué)重點和難點】:
    重點掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。
    【教材分析】。
    《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學(xué)生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。
    【教學(xué)過程】。
    一、創(chuàng)設(shè)情境,激發(fā)興趣。
    出示課件,提出兩個兩個疑問:
    1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?
    二、初建模型,實際驗證自己的猜想。
    在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進行交流。
    三角形的形狀。
    內(nèi)角和。
    銳角三角形。
    鈍角三角形。
    直角三角形。
    等腰三角形。
    等邊三角形。
    三、再建模型,徹底的得出正確的結(jié)論。
    因為在上一環(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進行演示。
    四、應(yīng)用新知,鞏固練習(xí)。
    1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習(xí))。
    2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)。
    3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。
    五、拓展與延伸。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇七
    教學(xué)目標(biāo):
    1、通過測量、撕拼、折疊等探索活動,使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?
    2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
    3、培養(yǎng)學(xué)生動手實踐,動腦思考的習(xí)慣。
    教學(xué)重點:
    教學(xué)難點:
    教具學(xué)具準(zhǔn)備:
    教材與學(xué)生。
    教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學(xué)生測量,折疊,撕拼來找到答案。
    學(xué)生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學(xué)生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。
    教學(xué)過程:
    學(xué)生各抒己見。
    師;剛才我們觀察三角形哪個內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。
    (1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。
    (2)組內(nèi)交流。
    (3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)。
    (4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。
    (一)組內(nèi)探索:
    (1)以小組為單位探索更好的辦法。
    (2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。
    (有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學(xué)生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)。
    (3)把你沒有想到的方法動手做一次。
    (使學(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)。
    (4)根據(jù)學(xué)生的反饋情況教師進行操作演示。
    (二)教師演示。
    撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示。
    2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?
    生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。
    師:平角是多少度呢?說明什么?
    生:180?說明三個內(nèi)角和剛好等于180。
    師:這種方法是不是適用各種三角形呢?
    進行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。
    折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。
    你們也來試一試好嗎?
    在學(xué)生完成這一實踐后肯定這一發(fā)現(xiàn)。
    四。鞏固練習(xí),知識升華。
    1.完成課本第28頁的“試一試”第三題。
    2.想一想:鈍角三角形最多有幾個鈍角?為什么?
    3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?
    試一試,看誰算得快。
    師:誰來說說自己的計算過程?
    生:它們的內(nèi)角和都是180度。
    [回答可能有二]:
    (一種全部說是:)。
    師:請問,你們是怎么想的,為什么這么認為?
    生:……。
    師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)。
    (一種有一部分同學(xué)說是,有一部分同學(xué)說不是:)。
    師:看來,大家的意見不一致,想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)。
    (二)動手操作,探究新知。
    師:老師看你們有答案了,哪位同學(xué)愿意說一說你的奇思妙想?
    生:我準(zhǔn)備用量的方法。
    師:然后呢?
    生:然后把它們?nèi)齻€內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?
    師:說的真不錯,還有沒有其它的方法?
    生:我是把三角形的三個角剪下來,拼在一起(師鼓勵:你的想法很有創(chuàng)意,等一會兒用你的行動來驗證你的猜想吧?。?。
    生:……。
    (如生一時想不到,師可引導(dǎo):他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)。
    師:好啦,老師相信咱們班的同學(xué)個個都是小數(shù)學(xué)家,一定能找出更多的方法的,請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學(xué)們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內(nèi)角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!
    開始吧?。▽W(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時間:5分鐘。
    師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來交流一下?
    師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?
    (預(yù)設(shè):如果第一類同學(xué)說的是量的方法)。
    師:你是用什么來研究的?
    生:量角器。
    師:那請你說一下你度量的結(jié)果好嗎?
    (生匯報度量結(jié)果)。
    生:180度。
    師:那到底三角形的內(nèi)角和是不是180度呢?還有哪位同學(xué)有其它的方法進行驗證嗎?
    生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻€角組成的度數(shù)。
    師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
    (師邊講解邊點擊flash:把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學(xué)生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)。
    生:我們還用了折的方法(生介紹方法)。
    師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
    (師邊講解邊點擊flash:先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向?qū)厡φ郏侔呀嵌蚶飳φ?,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,這個大角是個什么角呢?)。
    生:是個平角。180度。
    師:請這位同學(xué)來說給大家聽聽吧!
    生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360度,那么一個三角形的內(nèi)角和就是180度。
    生1:量的不準(zhǔn)。
    生2:有的量角器有誤差。
    師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準(zhǔn)確一些,那么任意一個三角形的內(nèi)角和也將是180度。
    師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
    (三)拓展應(yīng)用,深化認識。
    師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生:180度)右邊呢(生:也是180度)。
    師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?
    (生答后師引導(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是180度。)。
    師:剛才我們在討論學(xué)習(xí)三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧?。ǔ鍪菊n件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)。
    師:到底誰說的對呢?今天我們就用我們今天學(xué)到的知識來為它們解決解決吧!
    師:好,請看大屏幕!
    (出示基礎(chǔ)練習(xí))在一個三角形中角一是140度,角三是25度,求角二的度數(shù)。
    生答后,師提問:你是怎樣想的?
    生陳述后,師鼓勵:說的真好!
    出示自行車、等邊三角形的路標(biāo)牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習(xí)。
    師:同學(xué)們,今天我們一起學(xué)習(xí)了三角形的內(nèi)角和,你有哪些收獲呢?
    師:嗯,真不錯,你們知道嗎?三角形的內(nèi)角和等于180度是法國著名的數(shù)學(xué)家帕斯卡在1635年他12歲時獨自發(fā)現(xiàn)的,今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習(xí)和刻苦鉆研下,你們就是下一個“帕斯卡”!
    師:好,下課!同學(xué)們再見!
    三角形內(nèi)角和教學(xué)設(shè)計方案篇八
    (一)知識與技能:掌握“三角形內(nèi)角和定理”的證明及其簡單應(yīng)用,讓學(xué)生探索發(fā)現(xiàn)三角形的內(nèi)角和是180。
    (二)過程與方法:通過量算、撕拼、折拼等活動培養(yǎng)學(xué)生觀察、操作、探究、歸納、概括、反思等能力和初步的空間想象力,感受數(shù)學(xué)的轉(zhuǎn)化思想;發(fā)展學(xué)生的空間觀念和初步的邏輯思維能力;能運用所學(xué)知識解決簡單的問題,訓(xùn)練學(xué)生對所學(xué)知識的運用能力。
    (三)情感態(tài)度與價值觀:
    1、滲透轉(zhuǎn)化遷移思想,培養(yǎng)學(xué)生大膽質(zhì)疑的勇氣和嚴(yán)謹(jǐn)科學(xué)的精神,及與他人合作交流的意識。
    2、讓學(xué)生切實感受到從實驗中得到的現(xiàn)象,經(jīng)過簡單的推理證明以后可以成為我們的一般公理,初步感受從個別到一般的思維過程。
    教學(xué)重點:
    讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180度”這一知識的形成、發(fā)展和應(yīng)用的全過程;知道三角形的內(nèi)角和是180度并且能應(yīng)用。
    教學(xué)難點:
    教學(xué)過程:
    一、激趣引入。
    1、畫三角形。
    2、畫有兩個直角的三角形。
    二、探究新知。
    60°+30°+90°=180°。
    45°+45°+90°=180°。
    1、小組合作完成。
    2、匯報。
    第一種:通過度量完成。
    第二種:通過撕拼或者折拼完成。
    第三類:通過長方形推算得出。
    其他類。
    3、小結(jié):
    (課件演示)剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出,無論是什么樣的三角形的內(nèi)角和都是180°,你們真不錯,讓我們帶著自豪的語氣大聲地讀出“三角形的內(nèi)角和是180°”
    4、知識升華:
    三、實踐檢驗。
    2、老師不小心把墨水倒在了三角形上,你知道它的度數(shù)嗎?
    3、數(shù)學(xué)日記。
    四、評價樹。
    你對自己的評價。
    結(jié)束語:
    數(shù)學(xué)是一棵大樹,三角形只是它的一片葉子;
    生活是一棵大樹,數(shù)學(xué)只是它的一片葉子,
    讓我們欣賞著、享受著三角形為生活添得美!
    三角形內(nèi)角和教學(xué)設(shè)計方案篇九
    教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。
    1、通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
    2、能運用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。
    3、培養(yǎng)學(xué)生動手動腦及分析推理能力。
    一、復(fù)習(xí)。
    1、什么是平角?平角是多少度?
    2、計算角的度數(shù)。
    3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。
    二、新知。
    (設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。
    1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。
    4、驗證:
    (1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。
    (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
    (3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)。
    (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
    5、結(jié)論:修改板書,把“?”去掉,寫“是”。
    6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。
    7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
    三、知識運用(課件出示練習(xí)題,生解答)。
    1、填空。
    (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是()、
    (2)一個直角三角形的一個銳角是50,則另一個銳角是()。
    (3)等邊三角形的3個內(nèi)角都是()。
    (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
    (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
    2、判斷。
    (1)一個三角形中最多有兩個直角。()。
    (3)有一個角是60的等腰三角形不一定是等邊三角形。()。
    (4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。
    (5)直角三角形中的兩個銳角的和等于90。()。
    四、拓展探究。
    根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
    1、小組討論。2、匯報結(jié)果。3、課件提示幫助理解。
    五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇十
    1、讓學(xué)生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。
    2、讓學(xué)生學(xué)會根據(jù)三角形的內(nèi)角和是180這一知識求三角形中一個未知角的度數(shù)。
    3、激發(fā)學(xué)生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。
    三角板,量角器、點子圖、自制的三種三角形紙片等。
    一、提出猜想。
    看了這2個算式你有什么猜想?
    (三角形的三個角加起來等于180度)。
    二、驗證猜想。
    1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。
    老師注意巡視和指導(dǎo)。交流各自加得的結(jié)果,說說你的發(fā)現(xiàn)。
    2、折、拼:學(xué)生用自己事先剪好的圖形,折一折。
    指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。
    繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。
    直角三角形的折法有不同嗎?
    通過交流使學(xué)生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。
    3、撕、拼:可能有個別學(xué)生對折的方法感到有困難。那么還可以用撕的方法。
    在撕之前要分別在三個角上標(biāo)好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。
    小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180。
    4、試一試。
    三角形中,角1=75,角2=39,角3=()。
    算一算,量一量,結(jié)果相同嗎?
    三、完成想想做做。
    1、算出下面每個三角形中未知角的度數(shù)。
    在交流的時候可以分別學(xué)生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
    指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。
    可先猜想:兩個三角形拼在一起,會不會它的內(nèi)角和變成1802=360呢?為什么?
    然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180。
    3、用一張正方形紙折一折,填一填。
    4、說理:一個直角三角形中最多有幾個直角?為什么?
    一個鈍角三角形中最多有幾個直角?為什么?
    四、布置作業(yè)。
    第4、5題。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇十一
    2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
    3、培養(yǎng)學(xué)生動手實踐,動腦思考的習(xí)慣。
    教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學(xué)生測量,折疊,撕拼來找到答案。
    學(xué)生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學(xué)生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。
    一、呈現(xiàn)真實狀態(tài)。
    學(xué)生各抒己見。
    二、提出問題:
    師;剛才我們觀察三角形哪個內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。
    (1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。
    (2)組內(nèi)交流。
    (3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)。
    (4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。
    意圖:通過這一操作活動,激發(fā)學(xué)生的興趣,讓學(xué)生積極參與培養(yǎng)學(xué)生的動手操作能力]。
    三、自主探索、研究問題、歸納總結(jié):
    (一)組內(nèi)探索:
    (1)以小組為單位探索更好的辦法。
    (2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。
    (有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學(xué)生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習(xí)到良好的學(xué)習(xí)方法)。
    (3)把你沒有想到的方法動手做一次。
    (使學(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)。
    (4)根據(jù)學(xué)生的反饋情況教師進行操作演示。
    (二)教師演示。
    撕拼法:
    1、教師取出三角形教具,把三個角撕下來,拼在一起,
    2、師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?
    生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。
    師:平角是多少度呢?說明什么?
    生:180?說明三個內(nèi)角和剛好等于180。
    師:這種方法是不是適用各種三角形呢?
    進行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。
    折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。
    你們也來試一試好嗎?
    在學(xué)生完成這一實踐后肯定這一發(fā)現(xiàn)。
    四、鞏固練習(xí),知識升華。
    1、完成課本第28頁的“試一試”第三題。
    2、想一想:鈍角三角形最多有幾個鈍角?為什么?
    3、有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?
    意圖:這樣分層安排練習(xí),注重培養(yǎng)學(xué)生的分析能力,同時也培養(yǎng)學(xué)生的思維能力和口頭表達能力。
    五、總結(jié)延伸。
    這節(jié)課同學(xué)們通過測量,發(fā)現(xiàn)了問題,然后運用撕拼,折疊兩種方法驗證自己的猜想,得出結(jié)論,這種學(xué)習(xí)方式很好,我們在今后的學(xué)習(xí)中還要用到,我們今天探究了三角形的一個秘密,其實它的秘密還很多,有興趣的話,我們以后繼續(xù)研究。課后反思:
    當(dāng)我設(shè)計這節(jié)課時,首先思考,學(xué)生面對這個新問題時會想到用那些方法來思考呢?很顯然,學(xué)生根據(jù)三角形大的內(nèi)角就大,是學(xué)生在探究時的真實想法,是一種合情推理,在探究過程中,怎樣對待學(xué)生的這個錯誤呢?我沒有簡單地予以否定,迫不及待的幫助,而是引導(dǎo)學(xué)生否定錯誤猜想,尋找錯誤產(chǎn)生的原因,在這個過程中,教師啟迪學(xué)生“轉(zhuǎn)化”的思想求得突破,然后引導(dǎo)學(xué)生進行操作驗證,從中得出結(jié)論,學(xué)生完整地經(jīng)歷探究的整個過程,不僅獲得知識,還獲得思想,充分發(fā)揮了學(xué)生的主觀能動性,使他們輕松愉快的學(xué)習(xí),提高了課堂效率。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇十二
    教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。
    1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
    2.能運用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。
    3.培養(yǎng)學(xué)生動手動腦及分析推理能力。
    導(dǎo)學(xué)過程。
    1、什么是平角?平角是多少度?
    2、計算角的度數(shù)。
    3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。
    (設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。
    1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。
    4、驗證:
    (1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。
    (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
    (3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)。
    (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
    5、結(jié)論:修改板書,把“?”去掉,寫“是”。
    6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。
    7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
    1、填空。
    (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是().
    (2)一個直角三角形的一個銳角是50,則另一個銳角是()。
    (3)等邊三角形的3個內(nèi)角都是()。
    (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
    (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
    2、判斷。
    (1)一個三角形中最多有兩個直角。()。
    (2)銳角三角形任意兩個內(nèi)角的和大于90。()。
    (3)有一個角是60的等腰三角形不一定是等邊三角形。()。
    (4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。
    (5)直角三角形中的兩個銳角的和等于90。()。
    根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
    1、小組討論。
    2、匯報結(jié)果。
    3、課件提示幫助理解。
    教學(xué)反思。
    今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達到這節(jié)課的教學(xué)目標(biāo)了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。
    任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。
    如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進入主題。
    如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴(yán)格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴(yán)謹(jǐn),同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。
    本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰(zhàn)。
    給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當(dāng)有了空間,孩子才會施展他們的才華。這是我的一大收獲。
    前邊驗證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。
    總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。
    三角形內(nèi)角和教學(xué)設(shè)計方案篇十三
    教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。
    3、培養(yǎng)學(xué)生動手動腦及分析推理能力。
    一、復(fù)習(xí)。
    1、什么是平角?平角是多少度?
    2、計算角的度數(shù)。
    3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。
    二、新知。
    (設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。
    1、讀學(xué)卡的學(xué)習(xí)目標(biāo)、任務(wù)目標(biāo),做到心里有數(shù)。
    4、驗證:
    (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
    (3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)。
    (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
    5、結(jié)論:修改板書,把“?”去掉,寫“是”。
    6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。
    7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
    三、知識運用(課件出示練習(xí)題,生解答)。
    1、填空。
    (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是()、
    (2)一個直角三角形的一個銳角是50,則另一個銳角是()。
    (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
    (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
    2、判斷。
    (1)一個三角形中最多有兩個直角。()。
    (3)有一個角是60的等腰三角形不一定是等邊三角形。()。
    (4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。
    (5)直角三角形中的兩個銳角的和等于90。()。
    四、拓展探究。
    根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
    1、小組討論。
    2、匯報結(jié)果。
    3、課件提示幫助理解。
    五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。
    六、談?wù)勛约罕竟?jié)課的收獲。
    今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達到這節(jié)課的教學(xué)目標(biāo)了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。
    任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。
    如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進入主題。
    如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴(yán)格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴(yán)格的證明。但是這節(jié)課我們除了要尊重知識的嚴(yán)謹(jǐn)還應(yīng)該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴(yán)謹(jǐn),同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。
    本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰(zhàn)。
    給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當(dāng)有了空間,孩子才會施展他們的才華。這是我的一大收獲。
    前邊驗證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。
    總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。