數(shù)學(xué)說(shuō)課教案高中范文(17篇)

字號(hào):

    教案是教師對(duì)教學(xué)過(guò)程的規(guī)劃和設(shè)計(jì),是教學(xué)工作的重要組成部分。在編寫(xiě)教案時(shí),要關(guān)注學(xué)生的個(gè)性差異,采取差異化教學(xué)策略。通過(guò)閱讀教案范例,可以了解到教學(xué)過(guò)程的安排和教學(xué)環(huán)節(jié)的設(shè)置。
    數(shù)學(xué)說(shuō)課教案高中篇一
    集合概念及其基本理論,稱(chēng)為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。
    教學(xué)重點(diǎn).難點(diǎn)
    重點(diǎn):集合的含義與表示方法.
    難點(diǎn):表示法的恰當(dāng)選擇.
    教學(xué)目標(biāo)
    l.知識(shí)與技能
    (1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;
    (2)知道常用數(shù)集及其專(zhuān)用記號(hào); (3)了解集合中元素的確定性.互異性.無(wú)序性;
    (4)會(huì)用集合語(yǔ)言表示有關(guān)數(shù)學(xué)對(duì)象;
    2.過(guò)程與方法
    (1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義.
    (2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí).
    3.情感.態(tài)度與價(jià)值觀
    使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.
    1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué).
    (一)創(chuàng)設(shè)情景,揭示課題
    1.教師首先提出問(wèn)題:(1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現(xiàn)在的班級(jí)。
    (2)問(wèn)題:像“家庭”、“學(xué)?!?、“班級(jí)”等,有什么共同特征?
    引導(dǎo)學(xué)生互相交流.與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià).
    2.活動(dòng):(1)列舉生活中的集合的例子;(2)分析、概括各實(shí)例的共同特征
    由此引出這節(jié)要學(xué)的內(nèi)容。
    設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
    (二)研探新知,建構(gòu)概念
    1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:
    (1)1—20以?xún)?nèi)的所有質(zhì)數(shù);(2)我國(guó)古代的四大發(fā)明;
    (3)所有的安理會(huì)常任理事國(guó); (4)所有的正方形;
    (5)海南省在20xx年9月之前建成的所有立交橋;
    (6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);
    (7)國(guó)興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.
    2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?
    3.每個(gè)小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義.一般地,指定的某些對(duì)象的全體稱(chēng)為集合(簡(jiǎn)稱(chēng)為集).集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素.
    4.教師指出:集合常用大寫(xiě)字母a,b,c,d,?表示,元素常用小寫(xiě)字母a,b,c,d?表示.
    設(shè)計(jì)意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神
    (三)質(zhì)疑答辯,發(fā)展思維
    1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無(wú)序性.只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱(chēng)這兩個(gè)集合相等.
    2.教師組織引導(dǎo)學(xué)生思考以下問(wèn)題:
    判斷以下元素的全體是否組成集合,并說(shuō)明理由:
    (1)大于3小于11的偶數(shù);(2)我國(guó)的小河流.讓學(xué)生充分發(fā)表自己的建解.
    3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說(shuō)明理由.教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià).
    4.教師提出問(wèn)題,讓學(xué)生思考
    高一(4)班的一位同學(xué),那么a,b與集合a分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.
    如果a是集合a的元素,就說(shuō)a屬于集合a,記作a?a.
    如果a不是集合a的元素,就說(shuō)a不屬于集合a,記作a?a.
    (2)如果用a表示“所有的安理會(huì)常任理事國(guó)”組成的集合,則中國(guó).日本與集合a的關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示.
    (3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題.
    5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過(guò)程,然后閱讀教材中的相交內(nèi)容,寫(xiě)出常用數(shù)集的記號(hào).并讓學(xué)生完成習(xí)題1.1a組第1題.
    6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問(wèn)題:
    (1)要表示一個(gè)集合共有幾種方式?
    (2)試比較自然語(yǔ)言.列舉法和描述法在表示集合時(shí),各自的特點(diǎn)?適用的對(duì)象是什么?
    (3)如何根據(jù)問(wèn)題選擇適當(dāng)?shù)募媳硎痉?
    使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。
    設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。
    (四)鞏固深化,反饋矯正
    教師投影學(xué)習(xí):
    (3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題.
    設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對(duì)象
    (五)歸納小結(jié),布置作業(yè)
    小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問(wèn)題:
    1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容? 2.你認(rèn)為學(xué)習(xí)集合有什么意義?
    3.選擇集合的表示法時(shí)應(yīng)注意些什么?
    設(shè)計(jì)意圖:通過(guò)回顧,對(duì)概念的發(fā)生與發(fā)展過(guò)程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。
    作業(yè):1.課后書(shū)面作業(yè):第13頁(yè)習(xí)題1.1a組第4題.
    2.元素與集合的關(guān)系有多少種?如何表示?類(lèi)似地集合與集合間的關(guān)系又有多少種
    呢?如何表示?請(qǐng)同學(xué)們通過(guò)預(yù)習(xí)教材.
    數(shù)學(xué)說(shuō)課教案高中篇二
    在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+dx+ey+f=0表示圓的條件。
    【過(guò)程與方法】。
    通過(guò)對(duì)方程x+y+dx+ey+f=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問(wèn)題的實(shí)際能力得到提高。
    【情感態(tài)度與價(jià)值觀】。
    滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。
    二、教學(xué)重難點(diǎn)。
    【重點(diǎn)】。
    掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。
    【難點(diǎn)】。
    二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。
    三、教學(xué)過(guò)程。
    (一)復(fù)習(xí)舊知,引出課題。
    1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。
    2、提問(wèn)1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
    數(shù)學(xué)說(shuō)課教案高中篇三
    各位同仁,各位專(zhuān)家:
    教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號(hào)。
    地位和作用:任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對(duì)三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時(shí)它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過(guò)這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個(gè)內(nèi)容要認(rèn)真探討教材,精心設(shè)計(jì)過(guò)程。
    教學(xué)重點(diǎn):任意角三角函數(shù)的定義。
    學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力。
    1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見(jiàn)的知識(shí)和求法。
    2。我們南山區(qū)經(jīng)過(guò)多年的初中課改,學(xué)生已經(jīng)具備較強(qiáng)的自學(xué)能力,多數(shù)同學(xué)對(duì)數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
    針對(duì)對(duì)教材內(nèi)容重難點(diǎn)的和學(xué)生實(shí)際情況的分析我們制定教學(xué)目標(biāo)如下。
    (1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號(hào),
    (1)理解并掌握任意角的三角函數(shù)的定義;
    (2)正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù);
    (3)通過(guò)對(duì)定義域,三角函數(shù)值的符號(hào)的推導(dǎo),提高學(xué)生分析探究解決問(wèn)題的能力。
    (1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;
    針對(duì)學(xué)生實(shí)際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計(jì)教學(xué)方法。
    教法學(xué)法:溫故知新,逐步拓展。
    (2)通過(guò)例題講解分析,逐步引出新知識(shí),完善三角定義。
    運(yùn)用多媒體工具。
    (1)提高直觀性增強(qiáng)趣味性。
    教學(xué)過(guò)程分析。
    總體來(lái)說(shuō),由舊及新,由易及難,
    逐步加強(qiáng),逐步推進(jìn)。
    先由初中的直角三角形中銳角三角函數(shù)的定義。
    過(guò)度到直角坐標(biāo)系中銳角三角函數(shù)的定義。
    再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義。
    給定定義后通過(guò)應(yīng)用定義又逐步發(fā)現(xiàn)新知識(shí)拓展完善定義。
    具體教學(xué)過(guò)程安排。
    引入:復(fù)習(xí)提問(wèn):初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
    由學(xué)生回答。
    sina=對(duì)邊/斜邊=bc/ab。
    cosa=對(duì)邊/斜邊=ac/ab。
    tana=對(duì)邊/斜邊=bc/ac。
    逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系,把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。
    從而得到。
    知識(shí)點(diǎn)一:任意一個(gè)角的三角函數(shù)的定義。
    提醒學(xué)生思考:由于相似比相等,對(duì)于確定的角a,這三個(gè)比值的大小和p點(diǎn)在角的終邊上的位置無(wú)關(guān)。
    精心設(shè)計(jì)例題,引出新內(nèi)容深化概念,完善定義。
    例1已知角a的終邊經(jīng)過(guò)p(2,—3),求角a的三個(gè)三角函數(shù)值。
    (此題由學(xué)生自己分析獨(dú)立動(dòng)手完成)。
    例題變式1,已知角a的大小是30度,由定義求角a的三個(gè)三角函數(shù)值。
    提出問(wèn)題:這三個(gè)新的定義確實(shí)問(wèn)是函數(shù)嗎?為什么?
    從而引出函數(shù)極其定義域。
    由學(xué)生分析討論,得出結(jié)論。
    知識(shí)點(diǎn)二:三個(gè)三角函數(shù)的定義域。
    知識(shí)點(diǎn)三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系。
    由學(xué)生推出結(jié)論,教師總結(jié)符號(hào)記憶方法,便于學(xué)生記憶。
    例題2:已知a在第二象限且sina=0。2求cosa,tana。
    求cosa,tana。
    綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)。
    拓展,如果不限制a的象限呢,可以留作課外探討。
    小結(jié)回顧課堂內(nèi)容。
    課堂作業(yè)和課外作業(yè)以加強(qiáng)知識(shí)的記憶和理解。
    課堂作業(yè)p161,2,4。
    (學(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)。
    課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)。
    必作p231(2),5(2),6(2)(4)選作p233,4。
    板書(shū)設(shè)計(jì)(見(jiàn)ppt)。
    數(shù)學(xué)說(shuō)課教案高中篇四
    ·充分條件與必要條件·四種命題·邏輯聯(lián)結(jié)詞。
    ·等差數(shù)列的前n項(xiàng)和·等差數(shù)列·數(shù)列。
    ·函數(shù)的應(yīng)用舉例·對(duì)數(shù)函數(shù)·對(duì)數(shù)·指數(shù)函數(shù)·指數(shù)。
    ·橢圓及其標(biāo)準(zhǔn)方程1·圓的方程·曲線和方程。
    ·研究性課題與實(shí)習(xí)作業(yè):線性規(guī)劃的實(shí)際應(yīng)用·簡(jiǎn)單的線性規(guī)劃。
    (二)·簡(jiǎn)單的線性規(guī)劃。
    (一)·兩條直線的位置關(guān)系·直線的方程。
    ·直線的傾斜角和斜率·含有絕對(duì)值的不等式·不等式的解法舉例·不等式的證明。
    (三)·不等式的證明。
    (二)·不等式的證明(一)。
    ·算術(shù)平均數(shù)與幾何平均數(shù)。
    (二)·算術(shù)平均數(shù)與幾何平均數(shù)。
    (一)·不等式的性質(zhì)。
    (三)·不等式的性質(zhì)。
    (二)。
    ·不等式的性質(zhì)(一)。
    ·算術(shù)平均數(shù)與幾何平均數(shù)--探究活動(dòng)·算術(shù)平均數(shù)與幾何平均數(shù)。
    (二)·算術(shù)平均數(shù)與幾何平均數(shù)。
    (一)·不等式的性質(zhì)2·不等式的性質(zhì)1。
    ·組合·排列。
    數(shù)學(xué)說(shuō)課教案高中篇五
    三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教b版)數(shù)學(xué)必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時(shí),教學(xué)內(nèi)容是公式(三)。教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法。
    通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎(chǔ)上,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)三角函數(shù)值的關(guān)系。同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
    以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類(lèi)比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式。
    借助單位圓探究誘導(dǎo)公式。
    能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
    誘導(dǎo)公式(三)的推導(dǎo)及應(yīng)用。
    誘導(dǎo)公式的應(yīng)用。
    多媒體。
    1. 誘導(dǎo)公式(一)(二)。
    2. 角 (終邊在一條直線上)
    3. 思考:下列一組角有什么特征?( )能否用式子來(lái)表示?
    已知 由
    可知
    而 (課件演示,學(xué)生發(fā)現(xiàn))
    所以
    于是可得: (三)
    設(shè)計(jì)意圖:結(jié)合幾何畫(huà)板的演示利用同一點(diǎn)的坐標(biāo)變換,導(dǎo)出公式。
    由公式(一)(三)可以看出,角 角 相等。即:
    .
    公式(一)(二)(三)都叫誘導(dǎo)公式。利用誘導(dǎo)公式可以求三角函數(shù)式的值或化簡(jiǎn)三角函數(shù)式。
    設(shè)計(jì)意圖:結(jié)合學(xué)過(guò)的公式(一)(二),發(fā)現(xiàn)特點(diǎn),總結(jié)公式。
    1. 練習(xí)
    (1)
    設(shè)計(jì)意圖:利用公式解決問(wèn)題,發(fā)現(xiàn)新問(wèn)題,小組研究討論,得到新公式。
    (學(xué)生板演,老師點(diǎn)評(píng),用彩色粉筆強(qiáng)調(diào)重點(diǎn),引導(dǎo)學(xué)生總結(jié)公式。)
    例3:求下列各三角函數(shù)值:
    (1)
    (2)
    (3)
    (4)
    設(shè)計(jì)意圖:利用公式解決問(wèn)題。
    練習(xí):
    (1)
    (2) (學(xué)生板演,師生點(diǎn)評(píng))
    設(shè)計(jì)意圖:觀察公式特點(diǎn),選擇公式解決問(wèn)題。
    四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應(yīng)用,培養(yǎng)了學(xué)生分析問(wèn)題、解決問(wèn)題的能力,熟練應(yīng)用解決問(wèn)題。
    很榮幸大家來(lái)聽(tīng)我的課,通過(guò)這課,我學(xué)習(xí)到如下的東西:
    1.要認(rèn)真的研讀新課標(biāo),對(duì)教學(xué)的目標(biāo),重難點(diǎn)把握要到位
    2.注意板書(shū)設(shè)計(jì),注重細(xì)節(jié)的東西,語(yǔ)速需要改正
    3.進(jìn)一步的學(xué)習(xí)網(wǎng)頁(yè)制作,讓你的網(wǎng)頁(yè)更加的完善,學(xué)生更容易操作
    5.上課的生動(dòng)化,形象化需要加強(qiáng)
    1.評(píng)議者:網(wǎng)絡(luò)輔助教學(xué),起到了很好的效果;教態(tài)大方,作為新教師,開(kāi)設(shè)校際課,勇氣可嘉!建議:感覺(jué)到老師有點(diǎn)緊張,其實(shí)可以放開(kāi)點(diǎn)的,相信效果會(huì)更好的!重點(diǎn)不夠清晰,有引導(dǎo)數(shù)學(xué)時(shí),最好值有個(gè)側(cè)重點(diǎn);網(wǎng)絡(luò)設(shè)計(jì)上,網(wǎng)頁(yè)上公開(kāi)的推導(dǎo)公式為上,留有更大的空間讓學(xué)生來(lái)思考。
    2.評(píng)議者:網(wǎng)絡(luò)教學(xué)效果良好,給學(xué)生自主思考,學(xué)習(xí)的空間發(fā)揮,教學(xué)設(shè)計(jì)得好;建議:課堂講課聲音,語(yǔ)調(diào)可以更有節(jié)奏感一些,抑揚(yáng)頓挫應(yīng)注意課堂例題練習(xí)可以多兩題。
    3.評(píng)議者:學(xué)科網(wǎng)絡(luò)平臺(tái)的使用;建議:應(yīng)重視引導(dǎo)學(xué)生將一些唾手可得的有用結(jié)論總結(jié)出來(lái),并形成自我的經(jīng)驗(yàn)。
    4.評(píng)議者:引導(dǎo)學(xué)生通過(guò)網(wǎng)絡(luò)進(jìn)行探究。
    建議:課件制作在線測(cè)評(píng)部分,建議不能重復(fù)選擇,應(yīng)全部做完后,顯示結(jié)果,再重復(fù)測(cè)試;多提問(wèn)學(xué)生。
    ( 1)給學(xué)生思考的時(shí)間較長(zhǎng),語(yǔ)調(diào)相對(duì)平緩,總結(jié)時(shí),給學(xué)生一些激勵(lì)的語(yǔ)言更好
    ( 2)這樣子的教學(xué)可以提高上課效率,讓學(xué)生更多的時(shí)間思考
    ( 4)給學(xué)生答案,這個(gè)網(wǎng)頁(yè)要進(jìn)一步的修正,答案能否不要一點(diǎn)就出來(lái)
    ( 5)1.板書(shū)設(shè)計(jì)要進(jìn)一步的加強(qiáng),2.語(yǔ)速相對(duì)是比較快的3.練習(xí)量比較少
    ( 6)讓學(xué)生多探究,課堂會(huì)更熱鬧
    ( 7)注意引入的過(guò)程要帶有目的,帶著問(wèn)題來(lái)教學(xué),學(xué)生帶著問(wèn)題來(lái)學(xué)習(xí)
    ( 8)教學(xué)模式相對(duì)簡(jiǎn)單重復(fù)
    ( 9)思路較為清晰,規(guī)范化的推理
    數(shù)學(xué)說(shuō)課教案高中篇六
    熟悉兩角和與差的正、余公式的推導(dǎo)過(guò)程,提高邏輯推理能力。
    掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問(wèn)題。
    教學(xué)重難點(diǎn)。
    熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
    兩角差的余弦公式。
    用-b代替b看看有什么結(jié)果?
    數(shù)學(xué)說(shuō)課教案高中篇七
    :計(jì)算機(jī)
    :?jiǎn)l(fā)引導(dǎo)法,討論法
    下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:
    (一)引入的設(shè)計(jì)
    前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:
    問(wèn):說(shuō)出過(guò)點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類(lèi),為什么?
    答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.
    肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:
    問(wèn):求出過(guò)點(diǎn) , 的直線的方程,并觀察方程屬于哪一類(lèi),為什么?
    啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)??各小組可以討論討論.
    學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:
    【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”
    (二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)
    學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
    經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
    思路一:…
    思路二:…
    ……
    教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:
    按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
    當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
    當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
    學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:
    綜合兩種情況,我們得出如下結(jié)論:
    同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?
    學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
    這樣上邊的結(jié)論可以表述如下:
    啟發(fā):任何一條直線都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?
    【問(wèn)題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?
    師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):
    (1)當(dāng) 時(shí),方程可化為
    這是表示斜率為 、在 軸上的截距為 的直線.
    (2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為
    這表示一條與 軸垂直的直線.
    因此,得到結(jié)論:
    為方便,我們把 (其中 、 不同時(shí)為0)稱(chēng)作直線方程的一般式是合理的.
    【動(dòng)畫(huà)演示】
    演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.
    (三)練習(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)
    略
    數(shù)學(xué)說(shuō)課教案高中篇八
    集合概念及其基本理論,稱(chēng)為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來(lái)越廣泛的領(lǐng)域種得到應(yīng)用。
    教學(xué)重點(diǎn).難點(diǎn)。
    重點(diǎn):集合的含義與表示方法.
    難點(diǎn):表示法的恰當(dāng)選擇.
    教學(xué)目標(biāo)。
    1.知識(shí)與技能。
    (1)通過(guò)實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;
    (2)知道常用數(shù)集及其專(zhuān)用記號(hào);
    (3)了解集合中元素的確定性.互異性.無(wú)序性;
    (4)會(huì)用集合語(yǔ)言表示有關(guān)數(shù)學(xué)對(duì)象;
    2.過(guò)程與方法。
    (1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義.
    (2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí).
    3.情感.態(tài)度與價(jià)值觀。
    使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.
    1.教學(xué)方法:學(xué)生通過(guò)閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。
    2.教學(xué)手段:在教學(xué)中使用投影儀來(lái)輔助教學(xué)。
    (一)創(chuàng)設(shè)情景,揭示課題。
    1.教師首先提出問(wèn)題:
    (1)介紹自己的家庭、原來(lái)就讀的學(xué)校、現(xiàn)在的班級(jí)。
    (2)問(wèn)題:像“家庭”、“學(xué)校”、“班級(jí)”等,有什么共同特征?
    引導(dǎo)學(xué)生互相交流.與此同時(shí),教師對(duì)學(xué)生的活動(dòng)給予評(píng)價(jià)。
    2.活動(dòng):
    (1)列舉生活中的集合的例子;
    (2)分析、概括各實(shí)例的共同特征。
    由此引出這節(jié)要學(xué)的內(nèi)容。
    設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊。
    (二)研探新知,建構(gòu)概念。
    1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:
    (1)1—20以?xún)?nèi)的所有質(zhì)數(shù);
    (2)我國(guó)古代的四大發(fā)明;
    (3)所有的安理會(huì)常任理事國(guó);
    (4)所有的正方形;
    (5)海南省在2004年9月之前建成的所有立交橋;
    (6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);
    (7)國(guó)興中學(xué)2004年9月入學(xué)的高一學(xué)生的全體.
    2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?
    3.每個(gè)小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義。一般地,指定的某些對(duì)象的全體稱(chēng)為集合(簡(jiǎn)稱(chēng)為集).集合中的每個(gè)對(duì)象叫作這個(gè)集合的元素.
    4.教師指出:集合常用大寫(xiě)字母a,b,c,d表示,元素常用小寫(xiě)字母a,b,c,d表示.
    設(shè)計(jì)意圖:通過(guò)實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂(lè)于求索的精神。
    (三)質(zhì)疑答辯,發(fā)展思維。
    1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性、互異性和無(wú)序性。只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱(chēng)這兩個(gè)集合相等。
    2.教師組織引導(dǎo)學(xué)生思考以下問(wèn)題:
    判斷以下元素的全體是否組成集合,并說(shuō)明理由:
    (1)大于3小于11的偶數(shù);
    (2)我國(guó)的小河流.讓學(xué)生充分發(fā)表自己的建解。
    3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說(shuō)明理由.教師對(duì)學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評(píng)價(jià)。
    4.教師提出問(wèn)題,讓學(xué)生思考。
    b是(1)如果用a表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),高一(4)班的一位同學(xué),那么a,b與集合a分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。
    如果a是集合a的元素,就說(shuō)a屬于集合a。
    如果a不是集合a的元素,就說(shuō)a不屬于集合a。
    (2)如果用a表示“所有的安理會(huì)常任理事國(guó)”組成的集合,則中國(guó).日本與集合a的關(guān)系分別是什么?請(qǐng)用數(shù)學(xué)符號(hào)分別表示.
    (3)讓學(xué)生完成教材第6頁(yè)練習(xí)第1題.
    5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過(guò)程,然后閱讀教材中的相交內(nèi)容,寫(xiě)出常用數(shù)集的記號(hào).并讓學(xué)生完成習(xí)題1.1a組第1題.
    6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問(wèn)題:
    (1)要表示一個(gè)集合共有幾種方式?
    (2)試比較自然語(yǔ)言.列舉法和描述法在表示集合時(shí),各自的特點(diǎn)?適用的對(duì)象是什么?
    (3)如何根據(jù)問(wèn)題選擇適當(dāng)?shù)募媳硎痉ǎ?BR>    使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對(duì)象。
    設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。
    (四)鞏固深化,反饋矯正。
    教師投影學(xué)習(xí)。
    (1)用自然語(yǔ)言描述集合{1,3,5,7,9};
    (2)用例舉法表示集合a。
    (3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁(yè)練習(xí)第2題.
    設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對(duì)象。
    (五)歸納小結(jié),布置作業(yè)。
    1.小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問(wèn)題:
    本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?
    2.你認(rèn)為學(xué)習(xí)集合有什么意義?
    3.選擇集合的表示法時(shí)應(yīng)注意些什么?
    設(shè)計(jì)意圖:通過(guò)回顧,對(duì)概念的發(fā)生與發(fā)展過(guò)程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。
    作業(yè):
    1.課后書(shū)面作業(yè):第13頁(yè)習(xí)題1.1a組第4題。
    數(shù)學(xué)說(shuō)課教案高中篇九
    掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
    【過(guò)程與方法】
    經(jīng)歷三角函數(shù)的單調(diào)性的探索過(guò)程,提升邏輯推理能力。
    【情感態(tài)度價(jià)值觀】
    在猜想計(jì)算的過(guò)程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。
    【教學(xué)重點(diǎn)】
    三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
    【教學(xué)難點(diǎn)】
    探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過(guò)程。
    (一)引入新課
    提出問(wèn)題:如何研究三角函數(shù)的單調(diào)性
    (四)小結(jié)作業(yè)
    提問(wèn):今天學(xué)習(xí)了什么?
    引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過(guò)程。
    課后作業(yè):
    思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
    數(shù)學(xué)說(shuō)課教案高中篇十
    3.進(jìn)一步提高問(wèn)題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。
    問(wèn)題的提出與解決。
    如何進(jìn)行問(wèn)題的探究。
    啟發(fā)探究式。
    研究方向提示:
    1.?dāng)?shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來(lái)進(jìn)行研究;
    2.研究所給數(shù)列的項(xiàng)之間的關(guān)系;
    3.研究所給數(shù)列的子數(shù)列;
    4.研究所給數(shù)列能構(gòu)造的新數(shù)列;
    5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來(lái)進(jìn)行研究;
    6.研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。
    針對(duì)學(xué)生的研究情況,對(duì)所提問(wèn)題進(jìn)行歸類(lèi),選擇部分類(lèi)型問(wèn)題共同進(jìn)行研究、分析與解決。
    課堂小結(jié):
    1.研究一個(gè)數(shù)列可以從哪些方面提出問(wèn)題并進(jìn)行研究?
    2.你最喜歡哪位同學(xué)的研究?為什么?
    開(kāi)展研究性學(xué)習(xí),培養(yǎng)問(wèn)題解決能力。
    一、對(duì)“研究性學(xué)習(xí)”和“問(wèn)題解決”的認(rèn)識(shí)研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對(duì)應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動(dòng)探究問(wèn)題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說(shuō)是一種學(xué)習(xí)活動(dòng):學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會(huì)生活中選擇課題,以類(lèi)似科學(xué)研究的方式去主動(dòng)地獲取知識(shí)、應(yīng)用知識(shí)、解決問(wèn)題。
    “問(wèn)題解決”(problemsolving)是美國(guó)數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號(hào),即認(rèn)為應(yīng)當(dāng)以“問(wèn)題解決”作為學(xué)校數(shù)學(xué)教育的中心。
    問(wèn)題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實(shí)踐能力”。在數(shù)學(xué)教學(xué)活動(dòng)中開(kāi)展研究性學(xué)習(xí)是培養(yǎng)問(wèn)題解決能力的主要途徑。
    二、“問(wèn)題解決”課堂教學(xué)模式的建構(gòu)與實(shí)踐以研究性學(xué)習(xí)活動(dòng)為載體,以培養(yǎng)問(wèn)題解決能力為核心的'課堂教學(xué)模式(以下簡(jiǎn)稱(chēng)為“問(wèn)題解決”課堂教學(xué)模式)試圖通過(guò)問(wèn)題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨(dú)立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問(wèn)題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識(shí)的能力,提高合作意識(shí)、探究意識(shí)和創(chuàng)新意識(shí)。
    (一)關(guān)于“問(wèn)題解決”課堂教學(xué)模式。
    通過(guò)實(shí)施“問(wèn)題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問(wèn)題的方法,開(kāi)掘創(chuàng)造性思維潛力,培養(yǎng)主動(dòng)參與、團(tuán)結(jié)協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺(jué)運(yùn)用數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能和數(shù)學(xué)思想方法分析問(wèn)題、解決問(wèn)題的能力和意識(shí)。
    (二)數(shù)學(xué)學(xué)科中的問(wèn)題解決能力的培養(yǎng)目標(biāo)。
    數(shù)學(xué)問(wèn)題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會(huì)審題,會(huì)建模,會(huì)轉(zhuǎn)化,會(huì)歸類(lèi),會(huì)反思,會(huì)編題。
    (三)“問(wèn)題解決”課堂教學(xué)模式的教學(xué)流程。
    (四)“問(wèn)題解決”課堂教學(xué)評(píng)價(jià)標(biāo)準(zhǔn)。
    1.教學(xué)目標(biāo)的確定;
    2.教學(xué)方法的選擇;
    3.問(wèn)題的選擇;
    4.師生主體意識(shí)的體現(xiàn);
    5.教學(xué)策略的運(yùn)用。
    (五)了解學(xué)生的數(shù)學(xué)問(wèn)題解決能力的途徑。
    (六)開(kāi)展研究性學(xué)習(xí)活動(dòng)對(duì)教師的能力要求。
    數(shù)學(xué)說(shuō)課教案高中篇十一
    教學(xué)內(nèi)容:
    整十?dāng)?shù)加一位數(shù)及相應(yīng)的減法。
    教學(xué)目標(biāo):
    1、讓學(xué)生經(jīng)歷兩位數(shù)加、減一位數(shù)的口算方法的探索過(guò)程,能比較熟練的進(jìn)行口算。并了解加、減發(fā)算式中各部分的名稱(chēng)。
    2、在根據(jù)數(shù)的組成探索口算方法的過(guò)程中,體會(huì)知識(shí)間的內(nèi)在聯(lián)系,發(fā)展思維能力和口算能力。
    3、培養(yǎng)用數(shù)學(xué)的觀念看周?chē)氖挛锏囊庾R(shí),培養(yǎng)同學(xué)之間的相互合作、交流的態(tài)度。
    教學(xué)重難點(diǎn):
    兩位數(shù)加、減一位數(shù)的口算方法。
    教學(xué)準(zhǔn)備:
    課件。
    教學(xué)過(guò)程:
    2個(gè)十和5個(gè)一合起來(lái)是(),8個(gè)十和4個(gè)一合起來(lái)是()。95里面是由()個(gè)十和()個(gè)一組成。81里面有()個(gè)十和()個(gè)一。
    1、出示32頁(yè)情景圖。
    2、提問(wèn):你能從圖中獲得哪些數(shù)學(xué)信息?能提出一個(gè)數(shù)學(xué)問(wèn)題嗎?
    學(xué)生回答:梳理問(wèn)題。
    (1)一共有多少個(gè)桃?
    (2)一共有34個(gè)桃,去掉框里的30個(gè),還剩多少個(gè)桃?
    3、怎樣列式?
    (1)先想一想。
    (2)小組交流。
    小組內(nèi)交流自己的算法。
    (3)指名小組匯報(bào)。
    結(jié)合學(xué)生回答小結(jié):根據(jù)看圖,數(shù)出來(lái)的;用小棒擺出來(lái)的;根據(jù)數(shù)的組成來(lái)思考的。34+4就是把3個(gè)十和4個(gè)一合起來(lái),是34;34-30就是從34里去掉3個(gè)十,還剩4個(gè)一,是4。
    4、解答“試一試”。
    提問(wèn):4+30等于多少,你又可以怎樣算?
    (1)先想一想。
    (2)小組交流。
    小組內(nèi)交流自己的算法。
    (3)指名小組匯報(bào)。
    4個(gè)一和3個(gè)十和起來(lái)是34;因?yàn)?0+4=34,所以4+30=34。
    談話:“34-4”你會(huì)算嗎?填在書(shū)上,并輕聲地說(shuō)說(shuō)你是怎樣想的。
    指名回答,結(jié)合學(xué)生回答適當(dāng)補(bǔ)充。
    5、介紹算式中各部分的名稱(chēng)。
    (1)介紹加法算式中各部分的名稱(chēng)。
    談話:每個(gè)小朋友都有自己的名子,在每一個(gè)算式中每個(gè)部分也都有各自的名子。在加法算式30+4=34中,相加的兩個(gè)數(shù)都叫做加數(shù)。兩個(gè)加數(shù)相加的結(jié)果叫做和。
    (2)介紹減法算式各部分的名稱(chēng)。
    (3)指名說(shuō)出算式4+30=34,34-4=30中各部分的名稱(chēng)。
    1、“想想做做”第1題。
    (1)出示圖,讓學(xué)生說(shuō)圖意。
    (2)根據(jù)圖意,列出四個(gè)算式。
    (3)說(shuō)說(shuō)每道算式表達(dá)什么意思。
    2、“想想做做”第2題。
    先獨(dú)立完成,再說(shuō)說(shuō)怎樣想的?
    提問(wèn):根據(jù)60+3=63你能想到其他三個(gè)算式嗎?
    3、“想想做做”第3題。
    先獨(dú)立完成,再說(shuō)說(shuō)是怎樣想的,集體核對(duì)結(jié)果。
    4、“想想做做”第4題。
    根據(jù)表中第一行的名稱(chēng)說(shuō)說(shuō)左表用什么方法計(jì)算,右表用什么方法計(jì)算。
    5、“想想做做”第5題。
    先了解“相鄰數(shù)”是什么意思,再寫(xiě)數(shù)交流。
    6、“想想做做”第6、7題。
    先說(shuō)說(shuō)每題中的.已知條件和要求的問(wèn)題。
    再自己獨(dú)立完成。
    同桌交流并說(shuō)說(shuō)是怎樣想的。
    數(shù)學(xué)說(shuō)課教案高中篇十二
    圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。
    我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。
    由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.
    1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。
    2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。
    3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.
    教學(xué)重點(diǎn)。
    1.對(duì)圓錐曲線定義的理解。
    2.利用圓錐曲線的定義求“最值”
    3.“定義法”求軌跡方程。
    教學(xué)難點(diǎn):。
    巧用圓錐曲線定義解題。
    【設(shè)計(jì)思路】。
    (一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題。
    一上課,我就直截了當(dāng)?shù)亟o出——。
    例題1:(1)已知a(-2,0),b(2,0)動(dòng)點(diǎn)m滿(mǎn)足|ma|+|mb|=2,則點(diǎn)m的軌跡是()。
    (a)橢圓(b)雙曲線(c)線段(d)不存在。
    (2)已知?jiǎng)狱c(diǎn)m(x,y)滿(mǎn)足(x1)2(y2)2|3x4y|,則點(diǎn)m的軌跡是()。
    (a)橢圓(b)雙曲線(c)拋物線(d)兩條相交直線。
    【設(shè)計(jì)意圖】。
    定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的.認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。
    為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。
    【學(xué)情預(yù)設(shè)】。
    入手,考慮通過(guò)適當(dāng)?shù)淖冃?,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。
    在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。
    (二)理解定義、解決問(wèn)題。
    數(shù)學(xué)說(shuō)課教案高中篇十三
    數(shù)學(xué)是一門(mén)培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類(lèi)比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
    (1)、基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;。
    1、教學(xué)重點(diǎn)。
    理解并掌握誘導(dǎo)公式、
    2、教學(xué)難點(diǎn)。
    正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式、
    1、教法。
    2、學(xué)法。
    3、預(yù)期效果。
    (一)創(chuàng)設(shè)情景。
    1、復(fù)習(xí)銳角300,450,600的三角函數(shù)值;。
    2、復(fù)習(xí)任意角的三角函數(shù)定義;。
    3、問(wèn)題:由,你能否知道sin2100的值嗎?引如新課、
    數(shù)學(xué)說(shuō)課教案高中篇十四
    (1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
    (2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類(lèi)。
    (3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
    (4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類(lèi)。
    2.過(guò)程與方法。
    (1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
    (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
    3.情感態(tài)度與價(jià)值觀。
    (1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周?chē)鰪?qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
    (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
    重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
    難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
    (1)學(xué)法:觀察、思考、交流、討論、概括。
    (2)實(shí)物模型、投影儀。
    (一)創(chuàng)設(shè)情景,揭示課題。
    1.教師提出問(wèn)題:在我們生活周?chē)杏胁簧儆刑厣慕ㄖ铮隳芘e出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
    2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類(lèi)嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
    (二)、研探新知。
    1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類(lèi),分辯棱柱、圓柱、棱錐。
    3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
    4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
    6.以類(lèi)似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類(lèi)以及表示。
    7.讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
    8.引導(dǎo)學(xué)生以類(lèi)似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
    9.教師指出圓柱和棱柱統(tǒng)稱(chēng)為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱(chēng)為臺(tái)體,圓錐與棱錐統(tǒng)稱(chēng)為錐體。
    (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
    1.有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)。
    2.棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
    3.課本p8,習(xí)題1.1a組第1題。
    5.棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
    四、鞏固深化。
    練習(xí):課本p7練習(xí)1、2(1)(2)。
    課本p8習(xí)題1.1第2、3、4題。
    五、歸納整理。
    由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。
    六、布置作業(yè)。
    課本p8練習(xí)題1.1b組第1題。
    課外練習(xí)課本p8習(xí)題1.1b組第2題。
    (1)掌握畫(huà)三視圖的基本技能。
    (2)豐富學(xué)生的.空間想象力。
    2.過(guò)程與方法。
    主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
    3.情感態(tài)度與價(jià)值觀。
    (1)提高學(xué)生空間想象力。
    (2)體會(huì)三視圖的作用。
    重點(diǎn):畫(huà)出簡(jiǎn)單組合體的三視圖。
    難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
    1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類(lèi)比。
    2.教學(xué)用具:實(shí)物模型、三角板。
    (一)創(chuàng)設(shè)情景,揭開(kāi)課題。
    “橫看成嶺側(cè)看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
    (二)實(shí)踐動(dòng)手作圖。
    2.教師引導(dǎo)學(xué)生用類(lèi)比方法畫(huà)出簡(jiǎn)單組合體的三視圖。
    (1)畫(huà)出球放在長(zhǎng)方體上的三視圖。
    (2)畫(huà)出礦泉水瓶(實(shí)物放在桌面上)的三視圖。
    學(xué)生畫(huà)完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
    作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。
    3.三視圖與幾何體之間的相互轉(zhuǎn)化。
    (1)投影出示圖片(課本p10,圖1.2-3)。
    請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?
    (2)你能畫(huà)出圓臺(tái)的三視圖嗎?
    (3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?
    教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問(wèn)題的看法。
    4.請(qǐng)同學(xué)們畫(huà)出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
    (三)鞏固練習(xí)。
    課本p12練習(xí)1、2p18習(xí)題1.2a組1。
    (四)歸納整理。
    請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。
    (五)課外練習(xí)。
    1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫(huà)出它的三視圖。
    2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫(huà)出它的三視圖。
    (1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。
    (2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。
    2.過(guò)程與方法。
    學(xué)生通過(guò)觀察和類(lèi)比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。
    3.情感態(tài)度與價(jià)值觀。
    (1)提高空間想象力與直觀感受。
    (2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
    (3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
    重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。
    1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。
    2.教學(xué)用具:三角板、圓規(guī)。
    (一)創(chuàng)設(shè)情景,揭示課題。
    1.我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱。
    把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。
    2.學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
    (二)研探新知。
    1.例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。
    畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。
    根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
    2.例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖。
    教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
    教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。
    3.探求空間幾何體的直觀圖的畫(huà)法。
    (1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀圖。
    教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。
    (2)投影出示幾何體的三視圖、課本p15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
    4.平行投影與中心投影。
    投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。
    5.鞏固練習(xí),課本p16練習(xí)1(1),2,3,4。
    三、歸納整理。
    學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟。
    四、作業(yè)。
    1.書(shū)畫(huà)作業(yè),課本p17練習(xí)第5題。
    2.課外思考課本p16,探究(1)(2)。
    數(shù)學(xué)說(shuō)課教案高中篇十五
    理解數(shù)列的概念,掌握數(shù)列的運(yùn)用。
    理解數(shù)列的概念,掌握數(shù)列的運(yùn)用。
    【知識(shí)點(diǎn)精講】。
    1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))。
    2、通項(xiàng)公式:數(shù)列的.第n項(xiàng)an與n之間的函數(shù)關(guān)系用一個(gè)公式來(lái)表示an=f(n)。
    (通項(xiàng)公式不)。
    3、數(shù)列的表示:。
    (1)列舉法:如1,3,5,7,9……;。
    (2)圖解法:由(n,an)點(diǎn)構(gòu)成;。
    (3)解析法:用通項(xiàng)公式表示,如an=2n+1。
    5、任意數(shù)列{an}的前n項(xiàng)和的性質(zhì)。
    數(shù)學(xué)說(shuō)課教案高中篇十六
    掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
    向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
    (一)主要知識(shí):
    1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的`有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問(wèn)題。
    (二)例題分析:略。
    1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問(wèn)題,
    2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問(wèn)題的能力。
    數(shù)學(xué)說(shuō)課教案高中篇十七
    重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;
    難點(diǎn)是解組合的應(yīng)用題.。
    (一)導(dǎo)入新課。
    (教師活動(dòng))提出下列思考問(wèn)題,打出字幕.。
    [字幕]一條鐵路線上有6個(gè)火車(chē)站。
    (1)需準(zhǔn)備多少種不同的普通客車(chē)票?
    (學(xué)生活動(dòng))討論并回答。
    答案提示:
    (1)排列;
    (2)組合。
    [評(píng)述]問(wèn)題。
    (二)新課講授。
    [提出問(wèn)題創(chuàng)設(shè)情境]。
    (教師活動(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文。
    [字幕]。
    1.排列的定義是什么?
    2.舉例說(shuō)明一個(gè)組合是什么?
    3.一個(gè)組合與一個(gè)排列有何區(qū)別?
    (學(xué)生活動(dòng))閱讀回答.。
    (教師活動(dòng))對(duì)照課文,逐一評(píng)析.。
    設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境。
    【歸納概括建立新知】。
    (教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).。
    (學(xué)生活動(dòng))傾聽(tīng)、思索、記錄。
    (教師活動(dòng))提出思考問(wèn)題。
    [投影]與的關(guān)系如何?
    (師生活動(dòng))共同探討.求從個(gè)不同元素中取出個(gè)元素的排列數(shù),可分為以下兩步:
    第1步,先求出從這個(gè)不同元素中取出個(gè)元素的組合數(shù)為;
    第2步,求每一個(gè)組合中個(gè)元素的全排列數(shù)為。
    根據(jù)分步計(jì)數(shù)原理,得到。
    [字幕]公式1:
    公式2:
    (學(xué)生活動(dòng))驗(yàn)算,即一條鐵路上6個(gè)火車(chē)站有15種不同的票價(jià)的普通客車(chē)票。
    (三)小結(jié)。
    (師生活動(dòng))共同小結(jié)。
    本節(jié)主要內(nèi)容有。
    1.組合概念。
    2.組合數(shù)計(jì)算的兩個(gè)公式。
    (四)布置作業(yè)。
    1.課本作業(yè):習(xí)題103第1(1)、(4),3題。
    3.研究性題:
    (五)課后點(diǎn)評(píng)。
    3.能組成(注意不能用點(diǎn)為頂點(diǎn))個(gè)四邊形,個(gè)三角形.。
    探究活動(dòng)。
    解設(shè)四人分別為甲、乙、丙、丁,可從多種角度來(lái)解。