通過編寫教案,教師可以提前預(yù)習(xí)、準(zhǔn)備教學(xué)資源、調(diào)整教學(xué)策略,提高教學(xué)效果。教師在編寫教案時(shí)應(yīng)該把握好教學(xué)方法的選擇,符合學(xué)生的認(rèn)知規(guī)律。以下是小編為大家搜集的一些教案參考,供大家借鑒和學(xué)習(xí)。
職業(yè)中專高一數(shù)學(xué)教案篇一
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對(duì)一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
職業(yè)中專高一數(shù)學(xué)教案篇二
本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類討論.
本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
(1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類型不同的題進(jìn)行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
(第1課時(shí))
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式
3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
對(duì)比、歸納、總結(jié)
1.重點(diǎn):理解并掌握二次根式的性質(zhì)
2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.
1課時(shí)
五、教b具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
一、導(dǎo)入新課
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
二、新課
計(jì)算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
職業(yè)中專高一數(shù)學(xué)教案篇三
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印。
職業(yè)中專高一數(shù)學(xué)教案篇四
所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡(jiǎn)單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國(guó)傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會(huì)。
三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
職業(yè)中專高一數(shù)學(xué)教案篇五
突出重點(diǎn).培養(yǎng)能力.。
三、課堂練習(xí)。
教材第13頁練習(xí)1、2、3、4.。
【助練習(xí)】第13頁練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.。
四、小結(jié)。
提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.。
五、作業(yè)。
習(xí)題1至8.。
筆練結(jié)合板書.。
傾聽.修改練習(xí).掌握方法.。
觀察.思考.傾聽.理解.記憶.。
傾聽.理解.記憶.。
回憶、再現(xiàn)內(nèi)容.。
落實(shí)。
介紹解題技能技巧.。
內(nèi)容條理化.。
課堂教學(xué)設(shè)計(jì)說明。
2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.。
職業(yè)中專高一數(shù)學(xué)教案篇六
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
(一)主要知識(shí):
1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
四、小結(jié):
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的`知識(shí)解決有關(guān)應(yīng)用問題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
職業(yè)中專高一數(shù)學(xué)教案篇七
解決集合元素的問題時(shí),我們一定要注意集合中的元素要滿足互異性,以免產(chǎn)生增根。
3、注意特殊集合——空集。
空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關(guān)系的問題時(shí)要特別注意空集。
4、利用特殊工具——韋恩圖和數(shù)軸。
集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無限集,用于書寫最終結(jié)果。在運(yùn)算過程中,一般用數(shù)軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語言可以幫我們快捷而直觀的找出答案,提高解題速度。
職業(yè)中專高一數(shù)學(xué)教案篇八
3.能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問題。
一、預(yù)習(xí)檢查。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
3、雙曲線的漸進(jìn)線方程為.
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
二、問題探究。
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
(1)過點(diǎn),離心率.
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長(zhǎng)的,求雙曲線的離心率.
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
三、思維訓(xùn)練。
1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
2、橢圓的離心率為,則雙曲線的離心率為.
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
四、知識(shí)鞏固。
1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.
2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.
3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
職業(yè)中專高一數(shù)學(xué)教案篇九
各位評(píng)委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說課。
一、教材分析。
(一)教材的地位和作用。
“一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。
(二)教學(xué)內(nèi)容。
本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。
二、教學(xué)目標(biāo)分析。
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。
三、重難點(diǎn)分析。
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析。
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析。
本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
職業(yè)中專高一數(shù)學(xué)教案篇十
復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。
方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問題的關(guān)鍵是通過對(duì)實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。
一、基礎(chǔ)訓(xùn)練。
a、511b、512c、1023d、1024。
2、若一工廠的生產(chǎn)總值的月平均增長(zhǎng)率為p,則年平均增長(zhǎng)率為。
a、b、
c、d、
二、典型例題。
例4、流行性感冒簡(jiǎn)稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
職業(yè)中專高一數(shù)學(xué)教案篇十一
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系。
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
3、了解集合元素個(gè)數(shù)問題的討論說明。
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀。
[教學(xué)方法]:講練結(jié)合法。
[授課類型]:復(fù)習(xí)課。
[課時(shí)安排]:1課時(shí)。
[教學(xué)過程]:集合部分匯總。
本單元主要介紹了以下三個(gè)問題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運(yùn)算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對(duì)象的全體,稱一個(gè)集合。
2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類。
職業(yè)中專高一數(shù)學(xué)教案篇十二
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。
2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知。
1.例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。
練習(xí)反饋。
根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2.例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖。
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
3.探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測(cè)畫法畫長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖。
請(qǐng)說出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4.平行投影與中心投影。
投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
5.鞏固練習(xí),課本p25練習(xí)1,2,3。
三、歸納整理。
學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟。
四、作業(yè)。
1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。
職業(yè)中專高一數(shù)學(xué)教案篇十三
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對(duì)您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
2.通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
職業(yè)中專高一數(shù)學(xué)教案篇十四
(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)。
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào)。最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn)。過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解。
本節(jié)利用單位圓上點(diǎn)的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系。
教學(xué)重難點(diǎn)。
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解。
職業(yè)中專高一數(shù)學(xué)教案篇十五
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對(duì)于能夠很快做出來的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時(shí)間。
1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒有做出來的題目。對(duì)于這類題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。
2、考試時(shí)花了過多的時(shí)間才做出來的題目。對(duì)于這類題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來。
三、碰到難題時(shí)。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測(cè)一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。
4、對(duì)于花了一定時(shí)間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
職業(yè)中專高一數(shù)學(xué)教案篇十六
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點(diǎn)。
4)今年本校高一(1)(或(2))班的全體學(xué)生。
5)本校實(shí)驗(yàn)室的所有天平。
6)本班級(jí)全體高個(gè)子同學(xué)。
7)著名的科學(xué)家。
上述每組語句所描述的對(duì)象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________。
三、集合中元素的'三個(gè)性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________。
五、特殊數(shù)集專用記號(hào):
4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____。
六、集合的表示方法:
1)。
2)。
3)。
七、例題講解:
例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長(zhǎng),那么此三角形一定不是()。
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;。
2)函數(shù)的全體值的集合;。
3)函數(shù)的全體自變量的集合;。
4)方程組解的集合;。
5)方程解的集合;。
6)不等式的解的集合;。
7)所有大于0且小于10的奇數(shù)組成的集合;。
8)所有正偶數(shù)組成的集合;。
例3、用符號(hào)或填空:
1)______q,0_____n,_____z,0_____。
2)______,_____。
3)3_____,
4)設(shè),,則。
例4、用列舉法表示下列集合;。
1.
2.
3.
4.
例5、用描述法表示下列集合。
1.所有被3整除的數(shù)。
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合。
課堂練習(xí):。
例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級(jí)姓名學(xué)號(hào)。
1.下列集合中,表示同一個(gè)集合的是()。
a.m=,n=b.m=,n=。
c.m=,n=d.m=,n=。
2.m=,x=,y=,,.則()。
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個(gè)數(shù)是____________.
6.設(shè),則集合中所有元素的和為。
7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為。
8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
若a=,試用列舉法表示集合b=。
9.把下列集合用另一種方法表示出來:
(1)(2)。
(3)(4)。
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=。
(1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;。
(2)若a中至多只有一個(gè)元素,求a的取值集合。
12.若-3,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
職業(yè)中專高一數(shù)學(xué)教案篇十七
“解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。
二、學(xué)情分析。
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。
四、教學(xué)方法與手段。
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:
(一)創(chuàng)設(shè)情景,揭示課題。
問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)。
[設(shè)計(jì)說明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律。
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
(三)類比歸納,嚴(yán)格證明。
職業(yè)中專高一數(shù)學(xué)教案篇一
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對(duì)一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
職業(yè)中專高一數(shù)學(xué)教案篇二
本節(jié)的重點(diǎn)是二次根式的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而二次根式的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類討論.
本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對(duì)學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
教法建議
1.性質(zhì)的引入方法很多,以下2種比較常用:
(1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
1)、、各等于什么?
2)、、各等于什么?
啟發(fā)、引導(dǎo)學(xué)生猜想出
(2)從算術(shù)平方根的意義引入.
2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
(1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類型不同的題進(jìn)行比較;
(2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
(第1課時(shí))
1.掌握二次根式的性質(zhì)
2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式
3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
對(duì)比、歸納、總結(jié)
1.重點(diǎn):理解并掌握二次根式的性質(zhì)
2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.
1課時(shí)
五、教b具學(xué)具準(zhǔn)備
投影儀、膠片、多媒體
復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
一、導(dǎo)入新課
我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
二、新課
計(jì)算下列各題,并回答以下問題:
(1);(2);(3);
1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
職業(yè)中專高一數(shù)學(xué)教案篇三
2、掌握標(biāo)準(zhǔn)方程中的幾何意義。
3、能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問題。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為、
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為、
3、雙曲線的漸進(jìn)線方程為、
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關(guān)系、
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是、
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程、
(1)過點(diǎn),離心率、
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為、
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=、
4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印。
職業(yè)中專高一數(shù)學(xué)教案篇四
所謂三維目標(biāo)是是指:“知識(shí)與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
知識(shí)與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們?cè)诮虒W(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡(jiǎn)單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測(cè)性,大都采用定量分析與評(píng)價(jià)、知識(shí)與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國(guó)傳統(tǒng)教育教學(xué)的優(yōu)勢(shì),應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識(shí)與能力目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對(duì)學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識(shí)與能力、過程與方法目標(biāo)基礎(chǔ)上對(duì)教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識(shí)到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會(huì)。
三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
職業(yè)中專高一數(shù)學(xué)教案篇五
突出重點(diǎn).培養(yǎng)能力.。
三、課堂練習(xí)。
教材第13頁練習(xí)1、2、3、4.。
【助練習(xí)】第13頁練習(xí)4(1)中用一個(gè)方向的斜平行線段表示,用另一方向的平行線段表示如圖:
凡有陰影部分即為所求.。
四、小結(jié)。
提綱式(略).再一次突出交集和并集兩個(gè)概念中“且”,“或”的含義的不同.。
五、作業(yè)。
習(xí)題1至8.。
筆練結(jié)合板書.。
傾聽.修改練習(xí).掌握方法.。
觀察.思考.傾聽.理解.記憶.。
傾聽.理解.記憶.。
回憶、再現(xiàn)內(nèi)容.。
落實(shí)。
介紹解題技能技巧.。
內(nèi)容條理化.。
課堂教學(xué)設(shè)計(jì)說明。
2.反演律可根據(jù)學(xué)生實(shí)際酌情使用.。
職業(yè)中專高一數(shù)學(xué)教案篇六
掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。
(一)主要知識(shí):
1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略。
四、小結(jié):
1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的`知識(shí)解決有關(guān)應(yīng)用問題,
2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。
職業(yè)中專高一數(shù)學(xué)教案篇七
解決集合元素的問題時(shí),我們一定要注意集合中的元素要滿足互異性,以免產(chǎn)生增根。
3、注意特殊集合——空集。
空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關(guān)系的問題時(shí)要特別注意空集。
4、利用特殊工具——韋恩圖和數(shù)軸。
集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無限集,用于書寫最終結(jié)果。在運(yùn)算過程中,一般用數(shù)軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語言可以幫我們快捷而直觀的找出答案,提高解題速度。
職業(yè)中專高一數(shù)學(xué)教案篇八
3.能利用上述知識(shí)進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡(jiǎn)單的實(shí)際問題。
一、預(yù)習(xí)檢查。
1、焦點(diǎn)在x軸上,虛軸長(zhǎng)為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
3、雙曲線的漸進(jìn)線方程為.
4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
二、問題探究。
探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
(1)過點(diǎn),離心率.
(2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長(zhǎng)的,求雙曲線的離心率.
例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
三、思維訓(xùn)練。
1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
2、橢圓的離心率為,則雙曲線的離心率為.
3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
四、知識(shí)鞏固。
1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.
2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.
3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
職業(yè)中專高一數(shù)學(xué)教案篇九
各位評(píng)委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說課。
一、教材分析。
(一)教材的地位和作用。
“一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。
(二)教學(xué)內(nèi)容。
本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。
二、教學(xué)目標(biāo)分析。
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。
三、重難點(diǎn)分析。
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析。
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析。
本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
職業(yè)中專高一數(shù)學(xué)教案篇十
復(fù)習(xí)要求】熟悉與數(shù)列知識(shí)相關(guān)的背景,如增長(zhǎng)率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。
方法規(guī)律】應(yīng)用數(shù)列知識(shí)界實(shí)際應(yīng)用問題的關(guān)鍵是通過對(duì)實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。
一、基礎(chǔ)訓(xùn)練。
a、511b、512c、1023d、1024。
2、若一工廠的生產(chǎn)總值的月平均增長(zhǎng)率為p,則年平均增長(zhǎng)率為。
a、b、
c、d、
二、典型例題。
例4、流行性感冒簡(jiǎn)稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
職業(yè)中專高一數(shù)學(xué)教案篇十一
1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系。
2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
3、了解集合元素個(gè)數(shù)問題的討論說明。
通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。
培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀。
[教學(xué)方法]:講練結(jié)合法。
[授課類型]:復(fù)習(xí)課。
[課時(shí)安排]:1課時(shí)。
[教學(xué)過程]:集合部分匯總。
本單元主要介紹了以下三個(gè)問題:
1,集合的含義與特征。
2,集合的表示與轉(zhuǎn)化。
3,集合的基本運(yùn)算。
一,集合的含義與表示(含分類)。
1,具有共同特征的對(duì)象的全體,稱一個(gè)集合。
2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類。
職業(yè)中專高一數(shù)學(xué)教案篇十二
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。
2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知。
1.例1,用斜二測(cè)畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評(píng)。
畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測(cè)畫法的步驟。
練習(xí)反饋。
根據(jù)斜二測(cè)畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2.例2,用斜二測(cè)畫法畫水平放置的圓的直觀圖。
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
3.探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測(cè)畫法畫長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖。
請(qǐng)說出三視圖表示的幾何體?并用斜二測(cè)畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4.平行投影與中心投影。
投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
5.鞏固練習(xí),課本p25練習(xí)1,2,3。
三、歸納整理。
學(xué)生回顧斜二測(cè)畫法的關(guān)鍵與步驟。
四、作業(yè)。
1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。
職業(yè)中專高一數(shù)學(xué)教案篇十三
學(xué)習(xí)是一個(gè)潛移默化、厚積薄發(fā)的過程。編輯老師編輯了:數(shù)列,希望對(duì)您有所幫助!
1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).
(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.
(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第項(xiàng)與項(xiàng)數(shù)的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.
(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).
2.通過對(duì)一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.
3.通過由求的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.
(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會(huì)數(shù)列知識(shí)在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對(duì)所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的.計(jì)算等.
(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.
(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡(jiǎn)單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對(duì)程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.
(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動(dòng)等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.
(5)對(duì)每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前項(xiàng)和的概念,用表示的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析與的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào)的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.
(6)給出一些簡(jiǎn)單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對(duì)程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識(shí)是可以解決的.
上述提供的:數(shù)列希望能夠符合大家的實(shí)際需要!
職業(yè)中專高一數(shù)學(xué)教案篇十四
(5)樹立映射觀點(diǎn),正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)。
初中學(xué)過:銳角三角函數(shù)就是以銳角為自變量,以比值為函數(shù)值的函數(shù)。引導(dǎo)學(xué)生把這個(gè)定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義。根據(jù)角終邊所在位置不同,分別探討各三角函數(shù)的定義域以及這三種函數(shù)的值在各象限的符號(hào)。最后主要是借助有向線段進(jìn)一步認(rèn)識(shí)三角函數(shù)。講解例題,總結(jié)方法,鞏固練習(xí)。
任意角的三角函數(shù)可以有不同的定義方法,而且各種定義都有自己的特點(diǎn)。過去習(xí)慣于用角的終邊上點(diǎn)的坐標(biāo)的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數(shù)到任意角的三角函數(shù)的推廣,有利于引導(dǎo)學(xué)生從自己已有認(rèn)知基礎(chǔ)出發(fā)學(xué)習(xí)三角函數(shù),但它對(duì)準(zhǔn)確把握三角函數(shù)的本質(zhì)有一定的不利影響,“從角的集合到比值的集合”的對(duì)應(yīng)關(guān)系與學(xué)生熟悉的一般函數(shù)概念中的“數(shù)集到數(shù)集”的對(duì)應(yīng)關(guān)系有沖突,而且“比值”需要通過運(yùn)算才能得到,這與函數(shù)值是一個(gè)確定的實(shí)數(shù)也有不同,這些都會(huì)影響學(xué)生對(duì)三角函數(shù)概念的理解。
本節(jié)利用單位圓上點(diǎn)的坐標(biāo)定義任意角的正弦函數(shù)、余弦函數(shù)。這個(gè)定義清楚地表明了正弦、余弦函數(shù)中從自變量到函數(shù)值之間的對(duì)應(yīng)關(guān)系,也表明了這兩個(gè)函數(shù)之間的關(guān)系。
教學(xué)重難點(diǎn)。
重點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));終邊相同的角的同一三角函數(shù)值相等(公式一).
難點(diǎn):任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));三角函數(shù)線的正確理解。
職業(yè)中專高一數(shù)學(xué)教案篇十五
拿到試卷后可以先快速瀏覽一下所有題目,根據(jù)積累的考試經(jīng)驗(yàn),大致估計(jì)一下每部分應(yīng)該分配的時(shí)間。對(duì)于能夠很快做出來的.題目,一定要拿到應(yīng)得的分?jǐn)?shù)。
二、確定每部分的答題時(shí)間。
1、考試時(shí)占用了很多時(shí)間卻一點(diǎn)也沒有做出來的題目。對(duì)于這類題目,你以后考試時(shí)就應(yīng)該盡量減少時(shí)間,或者放棄,等以后學(xué)習(xí)進(jìn)階了再嘗試著做。
2、考試時(shí)花了過多的時(shí)間才做出來的題目。對(duì)于這類題目,你以后平時(shí)做題時(shí)要盡量加快速度,或者通過“反復(fù)訓(xùn)練”等提高反應(yīng)速度,這樣,你下次考試時(shí)能用較少的時(shí)間做出來。
三、碰到難題時(shí)。
1、你可以先用“直覺”最快的找到解題思路;。
2、如果“直覺”不管用,你可以聯(lián)想以前做過的類似的題目,從而找到解題思路;。
3、如果這樣也不行,你可以猜測(cè)一下這道題目可能涉及到的知識(shí)點(diǎn)和解題技巧。
4、對(duì)于花了一定時(shí)間仍然不能做出來的題目,要勇于放棄。
四、卷面整潔、字跡清楚、注意小節(jié)。
做到卷面整潔、字跡清楚,把標(biāo)點(diǎn)、符號(hào)、解題步驟等小的地方盡量做好,不要丟掉應(yīng)得的每一分。
職業(yè)中專高一數(shù)學(xué)教案篇十六
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號(hào)及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式.
3)拋物線上所有的點(diǎn)。
4)今年本校高一(1)(或(2))班的全體學(xué)生。
5)本校實(shí)驗(yàn)室的所有天平。
6)本班級(jí)全體高個(gè)子同學(xué)。
7)著名的科學(xué)家。
上述每組語句所描述的對(duì)象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________。
三、集合中元素的'三個(gè)性質(zhì):
四、元素與集合的關(guān)系:1)____________2)____________。
五、特殊數(shù)集專用記號(hào):
4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____。
六、集合的表示方法:
1)。
2)。
3)。
七、例題講解:
例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長(zhǎng),那么此三角形一定不是()。
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;。
2)函數(shù)的全體值的集合;。
3)函數(shù)的全體自變量的集合;。
4)方程組解的集合;。
5)方程解的集合;。
6)不等式的解的集合;。
7)所有大于0且小于10的奇數(shù)組成的集合;。
8)所有正偶數(shù)組成的集合;。
例3、用符號(hào)或填空:
1)______q,0_____n,_____z,0_____。
2)______,_____。
3)3_____,
4)設(shè),,則。
例4、用列舉法表示下列集合;。
1.
2.
3.
4.
例5、用描述法表示下列集合。
1.所有被3整除的數(shù)。
2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合。
課堂練習(xí):。
例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級(jí)姓名學(xué)號(hào)。
1.下列集合中,表示同一個(gè)集合的是()。
a.m=,n=b.m=,n=。
c.m=,n=d.m=,n=。
2.m=,x=,y=,,.則()。
a.b.c.d.
3.方程組的解集是____________________.
4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號(hào)是________________.
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個(gè)數(shù)是____________.
6.設(shè),則集合中所有元素的和為。
7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為。
8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
若a=,試用列舉法表示集合b=。
9.把下列集合用另一種方法表示出來:
(1)(2)。
(3)(4)。
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=。
(1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;。
(2)若a中至多只有一個(gè)元素,求a的取值集合。
12.若-3,求實(shí)數(shù)a的值。
【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
職業(yè)中專高一數(shù)學(xué)教案篇十七
“解三角形”既是高中數(shù)學(xué)的.基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識(shí)體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識(shí)的基礎(chǔ)上,通過對(duì)三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn)“觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識(shí)。
二、學(xué)情分析。
我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對(duì)“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識(shí)和技能還不高。但是,大多數(shù)學(xué)生對(duì)數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯(cuò)的表現(xiàn)。
1、知識(shí)和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理解決一些簡(jiǎn)單的解三角形問題。
過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對(duì)現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。
情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動(dòng)性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。
2、教學(xué)重點(diǎn)、難點(diǎn)。
教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡(jiǎn)單應(yīng)用。
教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。
四、教學(xué)方法與手段。
為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。
為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:
(一)創(chuàng)設(shè)情景,揭示課題。
問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測(cè)出,你知道這是為什么嗎?還有,交通警察是怎樣測(cè)出正在公路上行駛的汽車的速度呢?要想解決這些問題,其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)。
[設(shè)計(jì)說明]引用教材本章引言,制造知識(shí)與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識(shí)的興趣。
(二)特殊入手,發(fā)現(xiàn)規(guī)律。
引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理。
(三)類比歸納,嚴(yán)格證明。