湘教版七年級數(shù)學教案全冊(模板24篇)

字號:

    教案應當具備足夠的靈活性,對于學生的反饋和教學實際情況能夠進行及時的調整和改進。如何編寫一份高效的教案是每位教師都需要思考的問題。以下是一些經(jīng)驗豐富的教師分享的精品教案,希望對你的教學有所幫助。
    湘教版七年級數(shù)學教案全冊篇一
    重點:鄰補角與對頂角的概念.對頂角性質與應用。
    難點:理解對頂角相等的性質的探索。
    一.創(chuàng)設情境激發(fā)好奇觀察剪刀剪布的過程,引入兩條相交直線所成的角。
    在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
    觀察剪刀剪布的過程,引入兩條相交直線所成的角。
    學生觀察、思考、回答問題。
    二.認識鄰補角和對頂角,探索對頂角性質。
    1.學生畫直線ab、cd相交于點o,并說出圖中4個角,兩兩相配。
    共能組成幾對角?根據(jù)不同的位置怎么將它們分類?
    學生思考并在小組內(nèi)交流,全班交流。
    當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用。
    幾何語言準確表達;。
    有公共的頂點o,而且的兩邊分別是兩邊的反向延長線。
    2.學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各類角的度數(shù)有什么關系?
    (學生得出結論:相鄰關系的兩個角互補,對頂?shù)膬蓚€角相等)。
    3學生根據(jù)觀察和度量完成下表:
    兩條直線相交所形成的角分類位置關系數(shù)量關系。
    教師提問:如果改變的大小,會改變它與其它角的位置關系和數(shù)量關系嗎?
    4.概括形成鄰補角、對頂角概念和對頂角的性質。
    三.初步應用。
    練習:
    下列說法對不對。
    (1)鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角。
    (2)鄰補角是互補的兩個角,互補的兩個角是鄰補角。
    (3)對頂角相等,相等的兩個角是對頂角。
    學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現(xiàn)象。
    四.鞏固運用例題:如圖,直線a,b相交,求的度數(shù)。
    湘教版七年級數(shù)學教案全冊篇二
    一說教材:
    (一)地位、作用:
    (二)教學目標:
    1、知識目標:使學生掌握有理數(shù)的減法法則,熟練地進行有理數(shù)的減法運算。
    2、能力目標:培養(yǎng)學生探究思維能力和分析解決問題的能力。
    3、情感目標:使學生了解加與減兩種運算的對立統(tǒng)一的關系,了解數(shù)學中轉化的數(shù)學思想方法,滲透辯證唯物主義思想,培養(yǎng)探究分析數(shù)學知識方法的興趣。
    (三)重點、難點:
    重點:有理數(shù)的減法法則,熟練地進行有理數(shù)的減法運算。
    難點:理解有理數(shù)減法的意義,正確熟練地進行有理數(shù)的減法運算。
    二、說教學方法:
    根據(jù)本節(jié)教材內(nèi)容和學生的實際水平,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,我將采用探究發(fā)現(xiàn)法、多媒體輔助教學方法等。教學中教師精心設計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考,教師并適時運用電教多媒體動畫演示,激發(fā)學生探索知識的欲望來達到對知識的發(fā)現(xiàn),并自我探索找出規(guī)律,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。
    附教學工具:溫度計、投影儀、多媒體。
    三、說學法:
    根據(jù)學法指導自主性的原則,讓學生在教師創(chuàng)設的問題情境下,通過教師的啟發(fā)點撥,學生的積極思考努力下,自主參與知識的發(fā)生、發(fā)展、發(fā)現(xiàn)的過程,使學生掌握了知識,體現(xiàn)了素質教育中學生學習能力的培養(yǎng)問題,達到教學的目的。
    四、說教學程序:
    (一)引入課題環(huán)節(jié):
    1、復習有理數(shù)的加法法則,為新課的講授作好鋪墊。
    2、(提問)用算式表示:與-3的和等于-10的數(shù)。
    (根據(jù)學過的知識,引導學生列出減法算式后提出問題:怎樣進行這里的減法運算呢?有理數(shù)的減法運算法則是什么呢?由問題的給出,激發(fā)學生探求解決問題方法的興趣,從而引出本節(jié)課的課題。
    (二)新課講解環(huán)節(jié):
    1、通過投影儀給出以下算式:
    減法加法。
    (+10)-(+3)=+7(+10)+(-3)=+7。
    讓學生比較上面這兩個算式并討論后得出:
    (+10)-(+3)=(+10)+(-3)。
    再給出以下算式:
    減法加法。
    (+5)-(+2)=+3(+5)+(-2)=+3。
    繼續(xù)讓學生比較上面這兩個算式并討論后得出:
    (+5)-(+2)=(+5)+(-2)。
    從而,它啟發(fā)我們有理數(shù)的減法可以轉化成加法進行。
    2、講解課本p80的內(nèi)容,回答復習題2提出的問題即如何求(-10)-(-3)的結果。通過分析講解,請學生自己歸納出有理數(shù)的減法法則,最后老師再完整地總結出法則。
    文字敘述:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
    字母表示:a-b=a+(-b)(說明:簡明的表示方法,體現(xiàn)字母表示數(shù)的優(yōu)越性,
    實際運算時會更加方便)。
    強調運用法則時:被減數(shù)不變,減號變加號,減數(shù)變成其相反數(shù)。
    減數(shù)變號。
    (減法============加法)。
    3、出示溫度計,用多媒體出現(xiàn)(如p81的圖2-20),并進行動畫演示,通過求15℃比5℃高多少?15℃比-5℃高多少?的實例來說明減法法則的合理性以及有理數(shù)減法的實際意義。同時進行練習反饋:課本p82的練習1,4、通過例題教學使學生鞏固方法,初步具備解決問題的能力。
    例1.計算:(1)(-3)-(-5);(2)0-7。
    例2.計算(1)7.2-(-4.8);(2)(-3-)-5。
    說明:講解時注意讓學生復述有理數(shù)法減法法則,加深學生對法則的認識,并注意歸納有理數(shù)減法的規(guī)律,而不機械地將減法轉化成加法,為今后進一步學習減法運算逐步省略化成加法的中間步驟作準備。
    (三)鞏固練習環(huán)節(jié):。
    讓學生完成課本p82的練習2、3,鞏固有理數(shù)減法法則的運用,強化學生對這節(jié)課的掌握。第2題口答,第3題請6個學生上臺板演。對回答好的同學給予表揚肯定,如果有錯誤,請其他同學糾正。
    (四)課堂小結環(huán)節(jié):(師生共同完成)。
    本節(jié)課學習了有理數(shù)的減法運算,進行有理數(shù)的減法運算時轉化成加法進行計算,即a-b=a+(-b)。
    (五)布置課后作業(yè):課本p83習題2.6的2、3、4、5的偶數(shù)題。
    通過作業(yè)反饋對學生所學知識掌握的效果,以利課后解決學生尚有疑難的地方。(六)板書設計:(略)。
    湘教版七年級數(shù)學教案全冊篇三
    2.培養(yǎng)用數(shù)學的意識,激發(fā)學習興趣。
    學習重點:理解有序數(shù)對的意義和作用。
    學習難點:用有序數(shù)對表示點的位置。
    學習過程。
    一。問題導入。
    1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案。
    2.地質部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。
    3.某人買了一張8排6號的電影票,很快找到了自己的座位。
    分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。
    你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?
    二。概念確定。
    有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)。
    利用有序數(shù)對,可以很準確地表示出一個位置。
    1.在教室里,根據(jù)座位圖,確定數(shù)學課代表的位置。
    2.教材40頁練習。
    三。方法歸類。
    常見的確定平面上的點位置常用的方法。
    (1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
    (2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數(shù)來確定目標所在的位置。
    1.如圖,a點為原點(0,0),則b點記為(3,1)。
    2.如圖,以燈塔a為觀測點,小島b在燈塔a北偏東45,距燈塔3km處。
    例2如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
    (1)北偏東方向上有哪些目標?要想確定敵艦b的位置,還需要什么數(shù)據(jù)?
    (2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
    (3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)?
    [鞏固練習]。
    1.如圖是某城市市區(qū)的一部分示意圖,對市政府來說:
    結合實際問題歸納方法。
    學生嘗試描述位置。
    2.如圖,馬所處的位置為(2,3).
    (1)你能表示出象的位置嗎?
    (2)寫出馬的下一步可以到達的位置。
    [小結]。
    1.為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?
    2.幾種常用的表示點位置的方法。
    [作業(yè)]。
    必做題:教科書44頁:1題。
    湘教版七年級數(shù)學教案全冊篇四
    1.理解加減消元法.
    2.用加減消元法解二元一次方程組.
    【過程與方法】。
    由具體的簡單的用加減消元法解二元一次方程組的例子,體驗加減消元法,在此基礎上學習加減消元法的概念,再運用加減消元法解方程組,最后使同學們認識到解二元一次方程組時,要先觀察,再選擇合適的方法解二元一次方程組.
    【情感態(tài)度】。
    體驗先觀察,再選擇合適的方法是做數(shù)學題的重要技巧,也是今后解決工作、科學問題的重要技巧.
    【教學重點】。
    加減消元法.
    【教學難點】。
    選擇合適的方法解二元一次方程組.
    問題3_________法和_________法都是二元一次方程組的兩種解法,它們都是通過消元使方程組轉化為________方程,只是消元方法不同.解二元一次方程組時,應根據(jù)方程組的具體情況選擇更________它的解法.
    【教學說明】對問題1,可鼓勵學生獨立作業(yè),但也不反對分組討論.然后交流成果,引導學生歸納加減消元法.在此基礎上可組織學生完成教材p96練習1.
    對問題2,這是本節(jié)課的重點和難點,要讓學生知道本題有兩種方法:(1)用加法消元法消去y.(2)用減法消元法消去x.
    對問題3,可指導學生在閱讀教材p97后填空,然后加以正確理解.
    二、思考探究,獲取新知。
    思考什么叫做加減消元法?
    【歸納結論】兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,把這兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程,這種方法叫做加減消元法,簡稱加減法.
    湘教版七年級數(shù)學教案全冊篇五
    1知識與技能:
    使學生理解和掌握整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。
    2過程與方法:
    通過觀察、操作、討論的活動,使學生經(jīng)歷探究口算方法的全過程。
    3情感態(tài)度與價值觀:
    讓學生感受數(shù)學與生活的聯(lián)系,培養(yǎng)學生用數(shù)學知識解決簡單實際問題的能力。
    教學重難點
    1教學重點:
    掌握用整十數(shù)除的口算方法。
    2教學難點:
    理解用整十數(shù)除的口算算理。
    教學工具
    多媒體設備
    教學過程
    1復習引入
    口算。
    20×3=7×50=6×3=
    20×5=4×9=8×60=
    24÷6=8÷2=12÷3=
    42÷6=90÷3=3000÷5=
    2新知探究
    1.教學例1
    有80面彩旗,每班分20面,可以分給幾個班?
    (1)提出問題,尋找解決問題的方法。
    師:從中你能獲取什么數(shù)學信息?
    師:怎樣解決這個問題?
    (2)列式80÷20
    (3)學生獨立探索口算的方法
    師:怎樣算80÷20呢,請同學們先自己想一想、算一算,再說給同桌聽一聽。
    學生匯報:
    預設學生可能會有以下兩種口算方法:
    a.因為20×4=80,所以80÷20=4這是想乘算除
    b.因為8÷2=4,所以80÷20=4這是根據(jù)計數(shù)單位的組成
    為什么可以不看這個“0”?(80÷20可以想“8個十里面有幾個二十?”)
    這樣我們就把除數(shù)是整十數(shù)的轉化為我們已經(jīng)學過的表內(nèi)除法。
    (4)師小結:
    同學們有的用乘法算除法的,也有用表內(nèi)除法來想的,都很好,那么你喜歡哪種方法呢?
    把你喜歡的方法說給同桌聽。
    (5)檢查正誤
    師:我們分的結果對不對?請同學們看屏幕(課件演示分的結果)
    (6)用剛學會的方法再次口算,并與同桌交流你的想法
    40÷2020÷1060÷3090÷30
    (7)探究估算的方法
    出示:83÷20≈80÷19≈
    師:你能知道題目要求我們做什么嗎?你怎么知道的?你是怎樣計算的?和同學們交流一下。
    生:求83除以20、80除以19大約得多少,從題目中的約等號看出不用精確計算。
    師:誰想把你的方法跟大家說一說。
    預設:83接近于80,80除以20等于4,所以83除以20約等于4。
    19接近于20,80除以20等于4,所以80除以19約等于4。
    2.教學例2
    (1)創(chuàng)設情境引出問題
    師:誰會解決這個問題?
    150÷50
    (2)小組討論口算方法
    (3)你是怎么這樣快就算出的呢?
    a.因為15÷5=3,所以150÷50=3。
    b.因為3個50是150,所以150÷50=3。
    這一題跟剛才分彩旗的口算方法有不同嗎?
    都是運用想乘算除和表內(nèi)除法這兩種方法來口算的。
    師:在解決分彩旗和剛才的問題中,我們共同探討了除法的口算方法,(板題:口算除法)口算時,可以用自己喜歡的方法來口算。
    口算練習:150÷30240÷80300÷50540÷90
    3.估算
    (1)探計估算的方法
    師:你能知道題目要求我們做什么嗎?
    你能估嗎?請先估算,再把你的估算方法與同伴交流,看看能否互相借鑒。
    (2)誰想把你的方法跟大家說一說。
    (3)總結方法:把被除數(shù)和除數(shù)都看作與原數(shù)比較接近的整十數(shù)再用口算方法算。
    (4)判斷估算是否正確:122÷60=2349÷50≈8為什么不正確?
    3鞏固提升
    1.獨立口算
    觀察每道題,怎樣很快說出下面除法算式的商?
    如果估算的話把誰估成多少。
    2.算一算、說一說。
    (1)除數(shù)不變,被除數(shù)乘幾,商也乘幾。
    (2)被除數(shù)不變,除數(shù)乘幾,商反而除以幾。
    3.解決問題
    (1)一共要寄240本書,每包40本。要捆多少包?
    你能找到什么條件、問題。你會解決嗎?
    240÷40=6(包)
    答:要捆6包。
    (2)這個小朋友也是一個愛看書的好孩子,她在看一本故事書。
    出示條件:一共有120個小故事,每天看1個故事。
    問題:看完這本書大約需要幾個月?
    問:要求看完這本書大約需要幾個月?必須要知道哪些條件,你會求嗎?
    120÷30=4(個)
    答:看完這本書大約需要4個月。
    課后小結
    這節(jié)課你有什么收獲?還有什么問題?
    本節(jié)課學習了整十數(shù)除整十數(shù)、幾百幾十數(shù)(商一位數(shù))的口算方法,能正確地進行計算。
    板書
    口算除法
    有80面彩旗,每班分20面,可以分給幾個班?
    80÷20=
    湘教版七年級數(shù)學教案全冊篇六
    教學設計是根據(jù)課程標準的要求和教學對象的特點,將教學諸要素有序安排,確定合適的教學方案的設想和計劃。下面小編為大家分享初中數(shù)學教案設計,歡迎大家參考借鑒。
    教學目標。
    1.理解二元一次方程及二元一次方程的解的概念;。
    2.學會求出某二元一次方程的幾個解和檢驗某對數(shù)值是否為二元一次方程的解;。
    3.學會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;。
    4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
    教學重點、難點。
    重點:二元一次方程的意義及二元一次方程的解的概念.
    難點:把一個二元一次方程變形成用關于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質是解一個含有字母系數(shù)的方程.
    教學過程。
    1.情景導入:
    新聞鏈接:桐鄉(xiāng)70歲以上老人可領取生活補助,得到方程:80a+150b=902880.2.
    2.新課教學:
    引導學生觀察方程80a+150b=902880與一元一次方程有異同?
    得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
    3.合作學習:
    4.課堂練習:
    1)已知:5xm-2yn=4是二元一次方程,則m+n=;。
    2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=_。
    5.課堂總結:
    (1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);。
    (2)二元一次方程解的不定性和相關性;。
    (3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
    作業(yè)布置。
    本章的課后的方程式鞏固提高練習。
    湘教版七年級數(shù)學教案全冊篇七
    1、讓學生生自主探索小數(shù)的加、減法的計算方法,理解計算的算理并能正確地進行加、減法。
    2、使學生體會小數(shù)加減運算在生活、學習中的廣泛應用,體會數(shù)學的工具性作用。
    3、激發(fā)學生學習小數(shù)加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。
    教學重難點。
    教學重點:用豎式計算小數(shù)加減法。
    教學難點:理解小數(shù)點對齊的算理。
    教學工具。
    多媒體課件。
    教學過程。
    (一)情景引入。
    師:同學們,你們還記得嗎?整數(shù)的加減法是怎樣計算的?讓我們用一道習題回顧一下。
    (呈現(xiàn)多媒體,學生自主完成習題并總結計算算理)。
    師:同學們你們可真棒,那么今天我們學習小數(shù)的加減法(引出課題并板書)。
    (二)例題講解。
    (1)小麗買了下面兩本書,一共花了多少錢?
    (2)《數(shù)學家的故事》比《童話選》貴多少錢?
    生:好的。
    (展示小麗遇到的問題(1),并讓學生列出算式)。
    師:根據(jù)咱們總結的整數(shù)加減法的算理,想一想這個式子怎么計算呢?
    (讓學生大膽的去嘗試,小組討論,并列出豎式)。
    師:你們發(fā)現(xiàn)小數(shù)加減法計算時需要注意什么?
    生1:注意數(shù)位對齊。
    生2:注意小數(shù)點要對齊。
    生3:……。
    老師小結:小數(shù)點要對齊,得數(shù)的小數(shù)點也要對齊。
    師:小麗啊還有一個問題讓我們看一看(展示問題(2))。
    (讓學生自主解決,并再回憶需要注意什么?)。
    完成后學生給予總結,完成小數(shù)加減法的時候需要注意什么?
    (三)習題鞏固。
    課本72頁做一做。
    課后小結。
    學生談一談本節(jié)課你學到了什么?
    給出總結:計算小數(shù)加、減法,先把各數(shù)的小數(shù)點對齊(也就是把相同數(shù)位上的數(shù)對齊),再按照整數(shù)加、減法的法則進行計算,最后在得數(shù)里對齊橫線上的小數(shù)點點上小數(shù)點。
    課后習題。
    一、計算。
    1.5-0.5=1-0.9=2.3+0.6=0.9+0.8=。
    1.9-0.8=3.5-2.4=0.36+0.65=0.96-0.32=。
    二、豎式計算。
    20.87-3.65=3.25+1.73=。
    18.77+3.14=23.5-2.8=。
    三、解決問題。
    1、小紅買文具,買鋼筆用去6.7元,買文具盒用去9.8元,一共用去多少錢?
    板書。
    計算小數(shù)加、減法,先把各數(shù)的小數(shù)點對齊(也就是把相同數(shù)位上的數(shù)對齊),再按照整數(shù)加、減法的法則進行計算,最后在得數(shù)里對齊橫線上的小數(shù)點點上小數(shù)點。
    湘教版七年級數(shù)學教案全冊篇八
    2.會用上的點表示有理數(shù),會利用比較有理數(shù)的大小;。
    3.使學生初步了解數(shù)形結合的思想方法,培養(yǎng)學生相互聯(lián)系的觀點。
    教學建議。
    一、重點、難點分析。
    本節(jié)的重點是初步理解數(shù)形結合的思想方法,正確掌握畫法和用上的點表示有理數(shù),并會比較有理數(shù)的大小.難點是正確理解有理數(shù)與上點的對應關系。的概念包含兩個內(nèi)容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù)。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎.
    二、知識結構。
    有了,數(shù)和形得到了初步結合,這有利于對數(shù)學問題的研究,數(shù)形結合是理解數(shù)學、學好數(shù)學的重要思想方法,本課知識要點如下表:
    定義。
    三要素。
    應用。
    數(shù)形結合。
    規(guī)定了原點、正方向、單位長度的直線叫。
    原點。
    正方向。
    單位長度。
    幫助理解有理數(shù)的概念,每個有理數(shù)都可用上的點表示,但上的點并非都是有理數(shù)。
    比較有理數(shù)大小,上右邊的數(shù)總比左邊的數(shù)要大。
    在理解并掌握概念的基礎之上,要會畫出,能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù),要知道所有的有理數(shù)都可以用上的點表示,會利用比較有理數(shù)的大小。
    三、教法建議。
    小學里曾學過利用射線上的點來表示數(shù),為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數(shù)?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據(jù)。與它所在的位置無關,但為了教學上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。
    關于有理數(shù)與上的點的對應關系,應該明確的是有理數(shù)可以用上的點表示,但上的點與有理數(shù)并不存在一一對應的關系。根據(jù)幾個有理數(shù)在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數(shù)的對應關系及其應用,逐步滲透數(shù)形結合的思想。
    四、的相關知識點。
    1.的概念。
    (1)規(guī)定了原點、正方向和單位長度的直線叫做.
    這里包含兩個內(nèi)容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規(guī)定的.
    (2)能形象地表示數(shù),所有的有理數(shù)都可用上的點表示,但上的點所表示的數(shù)并不都是有理數(shù).
    以是理解有理數(shù)概念與運算的重要工具.有了,數(shù)和形得到初步結合,數(shù)與表示數(shù)的圖形(如)相結合的思想是學習數(shù)學的重要思想.另外,能直觀地解釋相反數(shù),幫助理解絕對值的意義,還可以比較有理數(shù)的大小.因此,應重視對的學習.
    2.的畫法。
    (1)畫直線(一般畫成水平的)、定原點,標出原點“o”.
    (2)取原點向右方向為正方向,并標出箭頭.
    (3)選適當?shù)拈L度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。
    (4)標注數(shù)字時,負數(shù)的次序不能寫錯,如下圖。
    3.用比較有理數(shù)的大小。
    (1)在上表示的兩數(shù),右邊的數(shù)總比左邊的數(shù)大。
    (2)由正、負數(shù)在上的位置可知:正數(shù)都有大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù)。
    (3)比較大小時,用不等號順次連接三個數(shù)要防止出現(xiàn)“”的寫法,正確應寫成“”。
    五、定義的理解。
    1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示.
    2.所有的有理數(shù),都可以用上的點表示.例如:在上畫出表示下列各數(shù)的點(如圖2).
    a點表示-4;b點表示-1.5;。
    o點表示0;c點表示3.5;。
    d點表示6.
    從上面的例子不難看出,在上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大,又從正數(shù)和負數(shù)在上的位置,可以知道:
    正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).
    因為正數(shù)都大于0,反過來,大于0的數(shù)都是正數(shù),所以,我們可以用,表示是正數(shù);反之,知道是正數(shù)也可以表示為。
    同理,,表示是負數(shù);反之是負數(shù)也可以表示為。
    3.正常見幾種錯誤。
    1)沒有方向。
    2)沒有原點。
    3)單位長度不統(tǒng)一。
    湘教版七年級數(shù)學教案全冊篇九
    數(shù)學是為生活服務的。本單元解決問題,就是要培養(yǎng)學生運用數(shù)學知識解決問題的能力。主要內(nèi)容包括用乘法計算解決問題和運用除法計算解決問題。是在學生已經(jīng)掌握了運用乘法和除法一步解決問題的基礎上,進一步學習和掌握需要兩、三步計算解決問題。教材通過實際生活聯(lián)系非常緊密、貼近度很高的生動例子,讓學生先從直觀的圖畫中了解信息,再運用了解的信息來解決問題,既培養(yǎng)了學生了解分析信息的能力,也提高了學生解決問題的能力。
    (1)使學生掌握運用乘法計算或除法計算來解決問題的思路和方法,
    (2)培養(yǎng)學生了解信息和分析信息的能力,提高解決問題的能力
    (3)通過生動的實例,讓學生體驗解決問題的成功感,培養(yǎng)學習數(shù)學的興趣。
    (4)結合適當?shù)慕滩膬?nèi)容對學生進行思想道德教育。
    學習數(shù)學的目的就是要能運用數(shù)學來解決日常生活中的實際問題在本單元的教學中,先讓學生自己觀察圖畫,了解和收集圖畫中的信息,再運用所學的知識,根據(jù)信息在小組中討論、合作交流,解決問題,然后讓學生解決問題后總結和歸納生活中一般性的規(guī)律,提高解決問題的能力。
    本單元建議用5課時安排教學。數(shù)學廣角(單元教案)
    本單元的知識內(nèi)容是通過解決生活中的實際問題,擴展學生的思維,開發(fā)學生的智力。主要內(nèi)容包括:統(tǒng)計中的重復問題和等式中實物代換問題兩種類型。是在學生學習了統(tǒng)計和等式的基礎上,進一步理解統(tǒng)計中出現(xiàn)的重復現(xiàn)象和等式中通過實物進行代換問題。通過運用集合的思想和等量代換思想解決實際問題。體現(xiàn)了數(shù)學與生活的聯(lián)系。
    (1)理解統(tǒng)計中出現(xiàn)的重復現(xiàn)象,運用集合圖推算事物的數(shù)量。
    (2)通過實物代換,初步理解代換思想,推算事物的數(shù)量。
    (3)擴展學生的思維,開發(fā)學生的智力。
    根據(jù)奉單元知識內(nèi)容相對比較抽象和學生的思維能力水平的特點。在教學中主要采用實物分析的方法進行教學.先讓學生能通過實物理解重復現(xiàn)象和代換思想,再通過適當?shù)木毩暭訌妼W生的思維訓練。使學生能充分理解,并能解決一些實際問題。
    湘教版七年級數(shù)學教案全冊篇十
    表達解決問題的方法;通過用絕對值或數(shù)軸對兩個負數(shù)大小的比較,讓學生學會嘗試評價兩種不同方法之間的差異。
    3、情感態(tài)度與價值觀:
    借助數(shù)軸解決數(shù)學問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結合思想。通過“做一做“議一議”“試一試”問題的思考及回答,培養(yǎng)學生積極參與數(shù)學活動,并在數(shù)學活動中體驗成功,鍛煉學生克服困難的意志,建立自信心,發(fā)展學生清晰地闡述自己觀點的能力以及培養(yǎng)學生合作探索、合作交流、合作學習的新型學習方式。
    二、教學重點和難點。
    理解絕對值的概念;求一個數(shù)的絕對值;比較兩個負數(shù)的大小。
    三、教學過程:
    1、教師檢查組長學案學習情況,組長檢查組員學案學習情況。(約5分鐘)2.在組長的組織下進行討論、交流。(約5分鐘)3、小組分任務展示。(約25分鐘)4、達標檢測。(約5分鐘)5、總結(約5分鐘)。
    四、小組對學案進行分任務展示。
    (一)、溫故知新:。
    (二)小組合作交流,探究新知。
    1、觀察下圖,回答問題:(五組完成)。
    大象距原點多遠?兩只小狗分別距原點多遠?
    歸納:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做這個數(shù)的。一個數(shù)a的絕對值記作:.
    4的絕對值記作,它表示在上與的距離,所以|4|=。
    2、做一做:
    (1)、求下列各數(shù)的絕對值:(四組完成)-1.5,0,-7,2(2)、求下列各組數(shù)的絕對值:(一組完成)。
    (1)4,-4;(2)0.8,-0.8;。
    從上面的結果你發(fā)現(xiàn)了什么?
    3、議一議:(八組完成)。
    (1)|+2|=,
    你能從中發(fā)現(xiàn)什么規(guī)律?
    小結:正數(shù)的絕對值是它,負數(shù)的絕對值是它的,0的絕對值是。
    4、試一試:(二組完成)。
    若字母a表示一個有理數(shù),你知道a的絕對值等于什么嗎?
    (通過上題例子,學生歸納總結出一個數(shù)的絕對值與這個數(shù)的關系。)。
    5:做一做:(三組完成)。
    1、(1)在數(shù)軸上表示下列各數(shù),并比較它們的大?。?BR>    -3,-1。
    (2)求出(1)中各數(shù)的絕對值,并比較它們的大小。
    (3)你發(fā)現(xiàn)了什么?
    2、比較下列每組數(shù)的大小。
    (1)-1和–5;(五組完成)(2)?
    (3)-8和-3(七組完成)。
    5和-2.7(六組完成)6五、達標檢測:
    1:填空:
    絕對值是10的數(shù)有()。
    |+15|=()|–4|=()。
    |0|=()|4|=()2:判斷(1)、絕對值最小的數(shù)是0。()(2)、一個數(shù)的絕對值一定是正數(shù)。()(3)、一個數(shù)的絕對值不可能是負數(shù)。()。
    (4)、互為相反數(shù)的兩個數(shù),它們的絕對值一定相等。()(5)、一個數(shù)的絕對值越大,表示它的點在數(shù)軸上離原點越近。()。
    六、總結:
    1絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值.
    2.絕對值的性質:正數(shù)的絕對值是它本身;。
    負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.
    3、會利用絕對值比較兩個負數(shù)的大小:兩個負數(shù)比較大小,絕對值大的反而小.
    七、布置作業(yè)。
    p50頁,知識技能第1,2題.
    湘教版七年級數(shù)學教案全冊篇十一
    1.知識與技能:了解命題、公理、定理的含義;理解證明的必要性.
    2.過程與方法:結合實例讓學生意識到證明的必要性,培養(yǎng)學生說理有據(jù),有條理地表達自己想法的良好意識.
    3.情感、態(tài)度與價值觀:初步感受公理化方法對數(shù)學發(fā)展和人類文明的價值.
    重點與難點。
    1.重點:知道什么是公理,什么是定理。
    2.難點:理解證明的必要性.
    教學過程。
    一、復習引入。
    教師講解:前一節(jié)課我們講過,要證明一個命題是假命題,只要舉出一個反例就行了.這節(jié)課,我們將探究怎樣證明一個命題是真命題.
    二、探究新知。
    (一)公理教師講解:數(shù)學中有些命題的正確性是人們在長期實踐中總結出來的,并把它們作為判斷其他命題真假的原始依據(jù),這樣的真命題叫做公理.
    我們已經(jīng)知道下列命題是真命題:
    一條直線截兩條平行直線所得的同位角相等;。
    兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;。
    全等三角形的`對應邊、對應角相等.
    在本書中我們將這些真命題均作為公理.
    (二)定理教師引導學生通過舉反例來說明下面兩題中歸納出的結論是錯誤的.從而說明證明的重要性.
    1、教師講解:請大家看下面的例子:
    當n=1時,(n2-5n+5)2=1;。
    當n=2時,(n2-5n+5)2=1;。
    當n=3時,(n2-5n+5)2=1.
    我們能不能就此下這樣的結論:對于任意的正整數(shù)(n2-5n+5)2的值都是1呢?
    實際上我們的猜測是錯誤的,因為當n=5時,(n2-5n+5)2=25.
    [答案:不正確,因為3-5,但32(-5)2]。
    教師總結:在前面的學習過程中,我們用觀察、驗證、歸納、類比等方法,發(fā)現(xiàn)了很多幾何圖形的性質.但由前面兩題我們又知道,這些方法得到的結論有時不具有一般性.也就是說,由這些方法得到的命題可能是真命題,也可能是假命題.
    教師講解:數(shù)學中有些命題可以從公理出發(fā)用邏輯推理的方法證明它們是正確的,并且可以進一步作為推斷其他命題真假的依據(jù),這樣的真命題叫做定理.
    (三)例題與證明。
    例如,有了“三角形的內(nèi)角和等于180”這條定理后,我們還可以證明刻畫直角三角形的兩個銳角之間的數(shù)量關系的命題:直角三角形的兩個銳角互余.
    教師板書證明過程.
    教師講解:此命題可以用來作為判斷其他命題真假的依據(jù),因此我們把它也作為定理.
    定理的作用不僅在于它揭示了客觀事物的本質屬性,而且可以作為進一步確認其他命題真假的依據(jù).
    三、隨堂練習。
    課本p66練習第1、2題.
    四、課時總結。
    1、在長期實踐中總結出來為真命題的命題叫做公理.
    2、用邏輯推理的方法證明它們是正確的命題叫做定理。
    湘教版七年級數(shù)學教案全冊篇十二
    1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
    2.掌握點到直線的距離的概念,并會度量點到直線的距離。
    3.掌握垂線的性質,并會利用所學知識進行簡單的推理。
    [教學重點與難點]
    1.教學重點:垂線的定義及性質。
    2.教學難點:垂線的畫法。
    [教學過程設計]
    一、復習提問:
    1、敘述鄰補角及對頂角的定義。
    2、對頂角有怎樣的.性質。
    二.新課:
    引言:
    前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
    (一)垂線的定義
    當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
    如圖,直線ab、cd互相垂直,記作,垂足為o。
    請同學舉出日常生活中,兩條直線互相垂直的實例。
    注意:
    1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
    2、掌握如下的推理過程:(如上圖)
    反之,
    (二)垂線的畫法
    探究:
    1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
    2、經(jīng)過直線l上一點a畫l的垂線,這樣的垂線能畫出幾條?
    3、經(jīng)過直線l外一點b畫l的垂線,這樣的垂線能畫出幾條?
    畫法:
    讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經(jīng)過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
    注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
    (三)垂線的性質
    經(jīng)過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
    性質1過一點有且只有一條直線與已知直線垂直。
    練習:教材第7頁
    探究:
    如圖,連接直線l外一點p與直線l上各點o,
    a,b,c,……,其中(我們稱po為點p到直線
    l的垂線段)。比較線段po、pa、pb、pc……的長短,這些線段中,哪一條最短?
    性質2連接直線外一點與直線上各點的所有線段中,垂線段最短。
    簡單說成:垂線段最短。
    (四)點到直線的距離
    直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
    如上圖,po的長度叫做點p到直線l的距離。
    湘教版七年級數(shù)學教案全冊篇十三
    本環(huán)節(jié)主要是創(chuàng)設情境,在實際問題中引出本節(jié)課題.
    【設計意圖】。
    引導學生發(fā)現(xiàn):可以借助游戲創(chuàng)設情境,導入新課.
    (二)探究新知。
    1、利用丹鳳地圖的實際情境探索點的平移與坐標變化的規(guī)律.
    2、如圖,已知a(c2,c3),根據(jù)下列條件,在相應的坐標系中分別畫出平移后的點,寫出它們的坐標,并觀察平移前后點的坐標變化.
    (1)將點a向右平移5個單位長度,得到點a1;
    (2)將點a向左平移2個單位長度,得到點a2;
    (3)將點a向上平移6個單位長度,得到點a3;
    (4)將點a向下平移4個單位長度,得到點a4;
    教學過程中注重讓學生明確:將哪個點沿著什么方向,平移幾個單位后,得到的是哪個點.
    3、在此基礎上可以歸納出:點的左右平移點的橫坐標變化,縱坐標不變。
    點的上下平移點的橫坐標不變,縱坐標變化。
    4、點的平移的應用.(見課件)。
    5、比一比看誰反應快。
    (1)點a(c4,2)先向右平移3個單位長度后得到點b,求點b的坐標.
    (2)點a(c4,2)先向左平移2個單位長度后得到點b,求點b的坐標.
    (3)點a(c4,2)先向下平移4個單位長度后得到點b,求點b的坐標.
    (4)點a(c4,2)先向上平移3個單位長度后得到點b,求點b的坐標.
    6、逆向思維:由點的變化探索點的方向和距離。
    (1)如果a,b的坐標分別為a(-4,5),b(-4,2),將點a向___平移___個單位長度得到點b;將點b向___平移___個單位長度得到點a。
    (2)如果p、q的坐標分別為p(-3,-5),q(2,-5),將點p向___平移___個單位長度得到點q;將點q向___平移___個單位長度得到點p。
    (3)點a′(6,3)是由點a(-2,3)經(jīng)過__________________得到的.點b(4,3)向______________得到b′(4,5)。
    7、應用平移解決簡單問題在平面直角坐標系中,有一點(1,3),要使它平移到點(-2,-2),應怎樣平移?說出平移的路線。
    湘教版七年級數(shù)學教案全冊篇十四
    3,體驗數(shù)形結合的思想。
    教學難點歸納相反數(shù)在數(shù)軸上表示的點的特征。
    知識重點相反數(shù)的概念。
    教學過程(師生活動)設計理念。
    設置情境。
    引入課題問題1:請將下列4個數(shù)分成兩類,并說出為什么要這樣分類。
    4,-2,-5,+2。
    允許學生有不同的分法,只要能說出道理,都要難予鼓勵,但教師要做適當?shù)囊龑?,逐漸得出5和-5,+2和-2分別歸類是具有較特征的分法。
    (引導學生觀察與原點的距離)。
    思考結論:教科書第13頁的思考。
    再換2個類似的數(shù)試一試。
    培養(yǎng)學生的觀察與歸納能力,滲透數(shù)形思想。
    深化主題提煉定義給出相反數(shù)的定義。
    學生思考討論交流,教師歸納總結。
    規(guī)律:一般地,數(shù)a的相反數(shù)可以表示為-a。
    思考:數(shù)軸上表示相反數(shù)的兩個點和原點有什么關系?
    練一練:教科書第14頁第一個練習體驗對稱的圖形的特點,為相反數(shù)在數(shù)軸上的特征做準備。
    深化相反數(shù)的概念;“零的相反數(shù)是零”是相反數(shù)定義的一部分。
    強化互為相反數(shù)的數(shù)在數(shù)軸上表示的點的幾何意義。
    給出規(guī)律。
    解決問題問題3:-(+5)和-(-5)分別表示什么意思?你能化簡它們嗎?
    學生交流。
    分別表示+5和-5的相反數(shù)是-5和+5。
    練一練:教科書第14頁第二個練習利用相反數(shù)的概念得出求一個數(shù)的相反數(shù)的方法。
    小結與作業(yè)。
    課堂小結1,相反數(shù)的定義。
    2,互為相反數(shù)的數(shù)在數(shù)軸上表示的點的特征。
    3,怎樣求一個數(shù)的相反數(shù)?怎樣表示一個數(shù)的相反數(shù)?
    本課作業(yè)1,必做題教科書第18頁習題1.2第3題。
    2,選做題教師自行安排。
    本課教育評注(課堂設計理念,實際教學效果及改進設想)。
    1,相反數(shù)的概念使有理數(shù)的各個運算法則容易表述,也揭示了兩個特殊數(shù)的特征.這兩個特殊數(shù)在數(shù)量上具有相同的絕對值,它們的和為零,在數(shù)軸上表示時,離開原點的距離相等等性質均有廣泛的應用.所以本教學設計圍繞數(shù)量和幾何意義展開,滲透數(shù)形結合的思想.
    2,教學引人以開放式的問題人手,培養(yǎng)學生的分類和發(fā)散思維的能力;把數(shù)在數(shù)軸上表示出來并觀察它們的特征,在復習數(shù)軸知識的同時,滲透了數(shù)形結合的數(shù)學方法,數(shù)與形的相互轉化也能加深對相反數(shù)概念的理解;問題2能幫助學生準確把握相反數(shù)的概念;問題3實際上給出了求一個數(shù)的相反數(shù)的方法.
    3,本教學設計體現(xiàn)了新課標的教學理念,學生在教師的引導下進行自主學習,自主探究,觀察歸納,重視學生的思維過程,并給學生留有發(fā)揮的余地.
    湘教版七年級數(shù)學教案全冊篇十五
    比較正數(shù)和負數(shù)的大小。
    1、借助數(shù)軸初步學會比較正數(shù)、0和負數(shù)之間的大小。
    2、初步體會數(shù)軸上數(shù)的順序,完成對數(shù)的結構的初步構建。
    負數(shù)與負數(shù)的比較。
    一、復習:
    1、讀數(shù),指出哪些是正數(shù),哪些是負數(shù)?
    —85。6+0。9—+0—82。
    2、如果+20%表示增加20%,那么—6%表示。
    二、新授:
    (一)教學例3:
    1、怎樣在數(shù)軸上表示數(shù)?(1、2、3、4、5、6、7)。
    2、出示例3:
    (1)提問你能在一條直線上表示他們運動后的情況嗎?
    (2)讓學生確定好起點(原點)、方向和單位長度。學生畫完交流。
    (3)教師在黑板上話好直線,在相應的點上用小圖片代表大樹和學生,在問怎樣用數(shù)表示這些學生和大樹的相對位置關系?(讓學生把直線上的點和正負數(shù)對應起來。
    (4)學生回答,教師在相應點的下方標出對應的數(shù),再讓學生說說直線上其他幾個點代表的數(shù),讓學生對數(shù)軸上的點表示的正負數(shù)形成相對完整的認識。
    (5)總結:我們可以像這樣在直線上表示出正數(shù)、0和負數(shù),像這樣的直線我們叫數(shù)軸。
    (6)引導學生觀察:
    a、從0起往右依次是?從0起往左依次是?你發(fā)現(xiàn)什么規(guī)律?
    (7)練習:做一做的第1、2題。
    (二)教學例4:
    1、出示未來一周的天氣情況,讓學生把未來一周每天的最低氣溫在數(shù)軸上表示出來,并比較他們的大小。
    2、學生交流比較的方法。
    3、通過小精靈的話,引出利用數(shù)軸比較數(shù)的大小規(guī)定:在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
    4、再讓學生進行比較,利用學生的具體比較來說明“—8在—6的左邊,所以—8〈—6”
    5、再通過讓另一學生比較“8〉6,但是—8〈—6”,使學生初步體會兩負數(shù)比較大小時,絕對值大的負數(shù)反而小。
    6、總結:負數(shù)比0小,所有的負數(shù)都在0的'左邊,也就是負數(shù)都比0小,而正數(shù)比0大,負數(shù)比正數(shù)小。
    7、練習:做一做第3題。
    三、鞏固練習。
    1、練習一第4、5題。
    2、練習一第6題。
    3、某日傍晚,黃山的氣溫由上午的零上2攝氏度下降了7攝氏度,這天傍晚黃山的氣溫是攝氏度。
    四、全課總結。
    (1)在數(shù)軸上,從左到右的順序就是數(shù)從小到大的順序。
    (2)負數(shù)比0小,正數(shù)比0大,負數(shù)比正數(shù)小。
    第二課教學反思:
    許多教師認為“負數(shù)”這個單元的內(nèi)容很簡單,不需要花過多精力學生就能基本能掌握??扇绻钊脬@研教材,其實會發(fā)現(xiàn)還有不少值得挖掘的內(nèi)容可以向學生補充介紹。
    例3——兩個不同層面的拓展:
    1、在數(shù)軸上表示數(shù)要求的拓展。
    數(shù)軸除了可以表示整數(shù),還可以表示小數(shù)和分數(shù)。教材例3只表示出正、負整數(shù),最后一個自然段要求學生表示出—1。5。建議此處教師補充要求學生表示出“+1。5”的位置,因為這樣便于對比發(fā)現(xiàn)兩個數(shù)離原點的距離相等,只不過分別在0的左右兩端,滲透+1。5和—1。5絕對值相等。同時,還應補充在數(shù)軸上表示分數(shù),如—1/3、—3/2等,提升學生數(shù)形結合能力,為例4的教學打下夯實的基礎。
    2、滲透負數(shù)加減法。
    教材中所呈現(xiàn)的數(shù)軸可以充分加以應用,如可補充提問:在“—2”位置的同學如果接著向西走1米,將會到達數(shù)軸什么位置?如果是向東走1米呢?如果他從“—2”的位置要走到“—4”,應該如何運動?如果他想從“—2”的位置到達“+3”,又該如何運動?其實,這些問題就是解決—2—1;2+1;—4—(—2);3—(—2)等于幾,這樣的設計對于學生初中進一步學習代數(shù)知識是極為有利的。
    例4——薄書讀厚、厚書讀薄。
    薄書讀厚——負數(shù)大小比較的三種類型(正數(shù)和負數(shù)、0和負數(shù)、負數(shù)和負數(shù))。
    例4教材只提出一個大的問題“比較它們的大小”,這些數(shù)的大小比較可以分為幾類?每類比較又有什么方法,教材則沒有明確標明。所以教學中,當學生明確數(shù)軸從左到右的順序就是數(shù)從小到大的順序基礎上,我還挖掘了三種不同類型,一一請學生介紹比較方法,將薄書讀厚。
    將厚書讀薄——無論哪種類型,比較方法萬變不離其宗。
    無論哪種比較方法,最終都可回歸到“數(shù)軸上左邊的數(shù)比右邊的數(shù)小?!奔词褂袑W生在比較—8和—6大小時是用“86,所以—8—6”來闡述其原因,其實也與數(shù)軸相關。因為當絕對值越大時,表示離原點的距離越遠,那么在數(shù)軸上表示的點也就在原點左邊越遠,數(shù)也就越小。所以,抓住精髓就能以不變應萬變。
    在此,我還補充了—3/7和—2/5比較大小的練習,提升學生靈活應用知識解決實際問題的能力。
    湘教版七年級數(shù)學教案全冊篇十六
    2.初步培養(yǎng)學生觀察、分析及概括的能力;。
    3.通過本節(jié)課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
    教學建議。
    一、教學重點、難點。
    重點:通過具體例子了解公式、應用公式.
    難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
    二、重點、難點分析。
    人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
    三、知識結構。
    本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
    四、教法建議。
    1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創(chuàng)設情境,引導學生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
    2.在教學過程中,應使學生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學生自己嘗試探求數(shù)量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
    3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
    教學設計示例。
    公式。
    五、教具學具準備。
    投影儀,自制膠片。
    六、師生互動活動設計。
    教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.
    湘教版七年級數(shù)學教案全冊篇十七
    1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;。
    3、體驗數(shù)學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。
    正確分析實際問題中的不等關系,列出不等式組。
    建立不等式組解實際問題的數(shù)學模型。
    出示教科書第145頁例2(略)。
    問:(1)你是怎樣理解“不能完成任務”的數(shù)量含義的?
    (2)你是怎樣理解“提前完成任務”的數(shù)量含義的?
    (3)解決這個問題,你打算怎樣設未知數(shù)?列出怎樣的不等式?
    師生一起討論解決例2.
    1、教科書146頁“歸納”(略).
    2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?
    在討論或議論的基礎上老師揭示:
    步法一致(設、列、解、答);本質有區(qū)別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。
    湘教版七年級數(shù)學教案全冊篇十八
    1、生物圈中的綠色植物類群有:藻類植物、苔蘚植物、蕨類植物、種子植物,其中前三種植物生長到一定的時期會產(chǎn)生一種叫做孢子的生殖細胞。因為通過孢子進行繁殖,所以又稱為孢子植物(沒有種子植物)。
    2、藻類植物大多數(shù)生活在水中(如淡水:水綿,衣藻海水:紫菜、海帶)。
    (1)形態(tài)結構:沒有根、莖、葉的分化。
    (2)營養(yǎng)方式:藻類植物細胞里都含有葉綠素能進行光合作用,營養(yǎng)方式為自養(yǎng)。
    (3)繁殖方式:用孢子進行繁殖。
    3、藻類植物在生物圈中作用:
    (1)生物圈中氧氣的重要來源。
    (2)水生生物的食物來源。(如魚類餌料)。
    (3)供食用。(如海帶紫菜)。
    (4)藥用。
    4、苔蘚植物大多數(shù)生活在陸地上的潮濕環(huán)境(葫蘆蘚、地錢、樹干苔蘚)。
    (1)形態(tài)結構:一般都很矮小,通常具有類似莖和葉的分化,但是莖中沒有導管,葉中也沒有葉脈,根非常簡單,稱為假根(只起固定植物體作用)。
    (2)營養(yǎng)方式:苔蘚植物細胞里都含有葉綠素,能進行光合作用。
    (3)繁殖方式:用孢子(生殖細胞)進行繁殖。苔蘚植物是監(jiān)測空氣污染程度的指示植物。
    5、蕨類植物多數(shù)生活在陰濕的環(huán)境中(如里白、貫眾、滿江紅)。
    (1)形態(tài)結構:有根、莖、葉的分化,在這些器官中有專門運輸物質的通道——輸導組織。
    (2)營養(yǎng)方式:蕨類植物細胞里都含有葉綠素能進行光合作用,營養(yǎng)方式為自養(yǎng)。
    (3)繁殖方式:用孢子(生殖細胞)進行繁殖。
    蕨類植物與人類的關系及其在生物圈中的作用:
    (1)可供食用,如蕨菜。
    (2)可供藥用,如卷柏、貫眾等。
    (3)作為綠肥和飼料,如滿江紅。
    (4)煤的來源。
    6、種子植物的分類:根據(jù)子葉數(shù)目分為:
    (1)雙子葉植物:胚里具有兩片子葉的植物(葉脈網(wǎng)狀),營養(yǎng)都儲存在子葉中。如蠶豆、大豆、花生。
    (2)單子葉植物:胚里具有一片子葉的植物(葉脈弧形),營養(yǎng)大部分儲存在胚乳中。如水稻、小麥、高粱。
    7、種子的結構:
    (1)種皮:保護作用。
    (2)胚(包含胚芽、胚軸、胚根、子葉)是新植物的幼體,將來能發(fā)育成一個植物體。
    (3)只有單子葉植物有胚乳。子葉、胚乳中儲藏的營養(yǎng)物質是胚發(fā)育成幼苗時養(yǎng)料的來源。
    8、種子和孢子的比較:種子中含有豐富的營養(yǎng)物質,具有適應環(huán)境的結構特點,如果環(huán)境過于干燥或寒冷,它可以處于休眠狀態(tài)。孢子只是一個細胞,只有散落在溫暖潮濕的環(huán)境中才能萌發(fā)。
    10、被子植物成為地球上分布最廣泛的植物原因:被子植物一般都具有非常發(fā)達的輸導組織,從而保證了體內(nèi)水分和營養(yǎng)物質高效率地運輸;它們一般都能開花和結果,所結的果實能夠保護里面的種子,不少果實還能幫助種子傳播。
    生物實驗題解題技巧。
    深刻領會生物教材實驗的設計思想。做好探究性實驗大題,就要認真分析教材涉及的實驗,理解每一個實驗的原理與目的要求,弄清材料用具的選擇方法與原則。
    掌握生物實驗方法和實驗步驟,深入分析實驗條件、過程、現(xiàn)象或結果的科學性、正確性、嚴謹性和可變性,能夠描述教材中經(jīng)典實驗的原理、目的、方法步驟、現(xiàn)象與結果預測及結論,為實驗設計提供科學的實驗依據(jù),搭建基本框架。
    生物的學習方法和技巧。
    掌握基本知識要點。
    與學習其它理科一樣,生物學的知識也要在理解的基礎上進行記憶,但是初中階段的生物學還有著與其它學科不一樣的特點:面對生物學,同學們要思考的對象是陌生的細胞、組織、各種有機物、無機物以及他們之間奇特的邏輯關系。
    因此只有在記住了這些名詞、術語之后才有可能理解生物學的邏輯規(guī)律,既所謂“先記憶,后理解”。在記住了基本的名詞、術語和概念之后,把主要精力放在學習生物學規(guī)律上。這時要著重理解生物體各種結構、群體之間的聯(lián)系(因為生物個體或群體都是內(nèi)部相互聯(lián)系,相互統(tǒng)一的整體),也就是注意知識體系中縱向和橫向兩個方面的線索。
    用生物學的基本觀點統(tǒng)領生物學的學習。
    樹立正確的生物學觀點,可以更迅速更準確地學習生物學知識。所以在生物學學習中,要注意樹立以下生物學觀點:
    1.生命物質性觀點生物體由物質組成,一切生命活動都有其物質基礎。
    2.結構與功能相統(tǒng)一的觀點包括兩層意思:一是有一定的結構就必然有與之相對應功能的存在;二是任何功能都需要一定的結構來完成。
    3.生物的整體性觀點系統(tǒng)論有一個重要的思想,就是整體大于各部分之和,這一思想完全適合生物領域。不論是細胞水平、組織水平、器官水平,還是個體水平,甚至包括種群水平和群落水平,都體現(xiàn)出整體性的特點。
    4.生命活動對立統(tǒng)一的觀點生物的諸多生命活動之間,都有一定的關系,有的甚至具有對立統(tǒng)一的關系,例如,植物的光合作用和呼吸作用就是對立統(tǒng)一的一對生命活動。
    5.生物進化的觀點生物界有一個產(chǎn)生和發(fā)展的過程,所謂產(chǎn)生就是生命的起源,所謂發(fā)展就是生物的進化。生物的進化遵循從簡單到復雜,從水生到陸生、從低等到高等的規(guī)律。
    6.生態(tài)學觀點基本內(nèi)容是生物與環(huán)境之間是相互影響、相互作用的,也是相互依賴、相互制約的。生物與環(huán)境是一個不可分割的統(tǒng)一整體。
    系統(tǒng)化和具體化的方法。
    系統(tǒng)化就是把各種有關知識納入一定順序或體系的思維方法。系統(tǒng)化不單純是知識的分門別類,而且是把知識加以系統(tǒng)整理,使其構成一個比較完整的體系。在生物學學習過程中,經(jīng)常采用編寫提綱、列出表解、繪制圖表等方式,把學過的知識加以系統(tǒng)地整理。
    具體化是把理論知識用于具體、個別場合的思維方法。在生物學學習中,適用具體化的方式有兩種:一是用所學知識應用于生活和生產(chǎn)實踐,分析和解釋一些生命現(xiàn)象;二是用一些生活中的具體事例來說明生物學理論知識。
    湘教版七年級數(shù)學教案全冊篇十九
    2.使學生掌握求一個已知數(shù)的;。
    3.培養(yǎng)學生的觀察、歸納與概括的能力.
    重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.
    難點:多重符號的化簡.
    一、從學生原有的認知結構提出問題。
    二、師生共同研究的定義。
    特點?
    引導學生回答:符號不同,一正一負;數(shù)字相同.
    像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與。
    應點有什么特點?
    引導學生回答:分別在原點的兩側;到原點的距離相等.
    這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.
    3.0的是0.
    這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).
    三、運用舉例變式練習。
    例1(1)分別寫出9與-7的;。
    例1由學生完成.
    在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?
    引導學生觀察例1,自己得出結論:
    數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的。
    1.當a=7時,-a=-7,7的是-7;。
    2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.
    3.當a=0時,-a=-0,0的是0,因此,-0=0.
    么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的`;。
    例2簡化-(+3),-(-4),+(-6),+(+5)的符號.
    能自己總結出簡化符號的規(guī)律嗎?
    括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的數(shù)是負數(shù).
    課堂練習。
    1.填空:
    (1)+1.3的是______;(2)-3的是______;。
    (5)-(+4)是______的;(6)-(-7)是______的。
    2.簡化下列各數(shù)的符號:
    -(+8),+(-9),-(-6),-(+7),+(+5).
    3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?
    -(-8)與+(-8);-(+8)與+(-8).
    四、小結。
    指導學生閱讀教材,并總結本節(jié)課學習的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.
    五、作業(yè)。
    1.分別寫出下列各數(shù)的:
    2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的。
    3.填空:
    (1)-1.6是______的,______的是-0.2.
    4.化簡下列各數(shù):
    5.填空:
    (3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.
    教學過程是以《教學大綱》中“重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng)”,“數(shù)學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結合教材特點,以及學生的學習基礎和學習特征而設計的由于內(nèi)容較為簡單,經(jīng)過教師適當引導,便可使學生充分參與認知過程.由于“新”知識與有關的“舊”知識的聯(lián)系較為直接,在教學中則著力引導觀察、歸納和概括的過程.
    探究活動。
    有理數(shù)a、b在數(shù)軸上的位置如圖:
    將a,-a,b,-b,1,-1用“”號排列出來.
    分析:由圖看出,a1,-1。
    解:在數(shù)軸上畫出表示-a、-b的點:
    由圖看出:-a-1。
    點評:通過數(shù)軸,運用數(shù)形結合的方法排列三個以上數(shù)的大小順序,經(jīng)常是解這一類問題的最快捷,準確的方法.
    湘教版七年級數(shù)學教案全冊篇二十
    教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據(jù)學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發(fā)學生的思維,針對疑點積極引導。
    非常高興,能有機會和同學們共同學習
    昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現(xiàn)情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)
    我們已得出了每個小組的最后分數(shù),那么哪個小組是優(yōu)勝小組?(第一小組),回去以后,老師就把小獎品發(fā)給他們,相信他們一定會很高興。
    同學們,這節(jié)課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現(xiàn)得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。
    希望各組同學積極思考、踴躍發(fā)言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!
    我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)
    以上這些算是都是什么運算?(加法),兩個加數(shù)都是什么數(shù)?(有理數(shù)),這就是我們這節(jié)課要學習的有理數(shù)的加法(板書課題)。
    剛才老師說要給七年級三班的優(yōu)勝組發(fā)獎品,老師手里有12本作業(yè)本,優(yōu)勝組共6人,老師將送出的作業(yè)本數(shù)占總數(shù)的幾分之幾?(二分之一)分數(shù)最低的一組共7人,他們每人交給老師一個作業(yè)本,占總數(shù)的幾分之幾?(十二分之七)如果,老師得到的作業(yè)本記為正數(shù),送出的作業(yè)本記為負數(shù),則老師手里的作業(yè)本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)
    對于有理數(shù)的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規(guī)律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數(shù)相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數(shù)加法的不同情況。
    前兩個算式的加數(shù)在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數(shù)相加?(同號兩數(shù)相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數(shù)相加,6、7一個數(shù)同0相加)
    同學們已把這7個算式分成了三種情況,下面我們分別探討規(guī)律。
    (2) 異號兩數(shù)相加,其和有何規(guī)律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規(guī)律?(引導學生得出)
    (3) 一個數(shù)同0相加,其和有什么規(guī)律呢?(易得出結論)
    同學們經(jīng)過積極思考,探索出了解決有理數(shù)加法的規(guī)律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規(guī)律稱為有理數(shù)的加法法則。
    同學們都很聰明,積極參與探索規(guī)律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續(xù)努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)
    (活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)
    同學們已經(jīng)基本掌握了有理數(shù)的加法法則,并會運用它,但七年級三班有幾位同學對這一內(nèi)容掌握的不是太好,以致在作業(yè)中出了毛病,他們?yōu)榇撕芸鄲馈OM蹅兺瑢W能幫幫他們,看哪位同學能像妙手回春的神醫(yī)華佗一樣藥到病 除!(師生共同治病)
    看來同學們對有理數(shù)的加法已經(jīng)掌握得很好了,大家還記得前面那個難倒我們的有理數(shù)的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。
    通過這節(jié)課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優(yōu)勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優(yōu)勝組上臺領獎,大家掌聲鼓勵!
    同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。
    湘教版七年級數(shù)學教案全冊篇二十一
    掌握多種數(shù)學解題方法,比如:換元、待定系數(shù)、數(shù)學歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。
    逐步形成“以我為主”的學習模式
    數(shù)學不是靠老師教會的,而是在老師的引導下,靠自己主動的思維活動去獲取的。學習數(shù)學一定要講究“活”,只看書不做題不行,只埋頭做題不總結積累也不行。記數(shù)學筆記,特別是對概念理解的不同側面和數(shù)學規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
    湘教版七年級數(shù)學教案全冊篇二十二
    師:以前學過的數(shù),實際上主要有兩大類,分別是整數(shù)和分數(shù)(包括小數(shù)).
    問題2:在生活中,僅有整數(shù)和分數(shù)夠用了嗎?
    請同學們看書(觀察本節(jié)前面的幾幅圖中用到了什么數(shù),讓學生感受引入負數(shù)的必要性)并思考討論,然后進行交流。
    (也可以出示氣象預報中的氣溫圖,地圖中表示地形高低地形圖,工資卡中存取錢的記錄頁面等)。
    學生交流后,教師歸納:以前學過的數(shù)已經(jīng)不夠用了,有時候需要一種前面帶有-的新數(shù)。
    湘教版七年級數(shù)學教案全冊篇二十三
    多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數(shù)學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學習數(shù)學習慣包括課前自學、專心上課、及時復習、獨立作業(yè)、解決疑難、系統(tǒng)小結和課外學習幾個方面。
    及時了解、掌握常用的數(shù)學思想和方法
    中學數(shù)學學習要重點掌握的的數(shù)學思想有以上幾個:集合與對應思想,分類討論思想,數(shù)形結合思想,運動思想,轉化思想,變換思想。
    湘教版七年級數(shù)學教案全冊篇二十四
    幾何圖形大?。洪L度、面積、體積等。
    位置:相交、垂直、平行等。
    2幾何體也簡稱體。包圍著體的是面。
    3常見的立體圖形:柱體、椎體、球體等各部分不都在一個平面內(nèi)。
    4平面圖形:在一個平面內(nèi)的圖形就是平面圖形。
    5展開圖:識記一些常用的展開圖。圓柱/圓錐的側面展開圖;。
    6點線面體:是組成幾何圖形的基本元素。
    7直線、射線、線段。
    線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
    連接兩點間的線段的長度,叫做這兩點的距離。
    經(jīng)過兩點有一條直線,并且只有一條直線。兩點確定一條直線。
    8角。
    9角的比較與運算。
    角的平分線:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。
    余角:如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角。
    補角:如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。
    性質:等角(同角)的補角相等。等角(同角)的余角相等。