在撰寫心得體會(huì)的過(guò)程中,我們可以將瑣碎的日常經(jīng)驗(yàn)轉(zhuǎn)化為有價(jià)值的思考和啟示。在寫心得體會(huì)時(shí),要注重語(yǔ)言的表達(dá)能力和表達(dá)方式的多樣性。經(jīng)過(guò)整理,我們收集了一些精彩的心得體會(huì)范文,希望可以給大家提供一些啟發(fā)。
數(shù)學(xué)建模心得體會(huì)論文篇一
數(shù)學(xué)建模是利用數(shù)學(xué)方法解決實(shí)際問(wèn)題的一種實(shí)踐應(yīng)用。即通過(guò)抽象、簡(jiǎn)化、假設(shè)、引進(jìn)變量等處理過(guò)程后,將實(shí)際問(wèn)題用數(shù)學(xué)方式來(lái)表達(dá),建立起數(shù)學(xué)模型,然后運(yùn)用先進(jìn)的數(shù)學(xué)方法和計(jì)算機(jī)技術(shù)進(jìn)行求解。數(shù)學(xué)建模將各種知識(shí)綜合應(yīng)用于解決實(shí)際問(wèn)題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力的必備手段之一。
數(shù)學(xué)建模是在上世紀(jì)六七十年代進(jìn)入一些西方國(guó)家大學(xué)的,我國(guó)的幾所大學(xué)也在80年代初將數(shù)學(xué)建模引入課堂。經(jīng)過(guò)30多年的發(fā)展,現(xiàn)在,絕大多數(shù)本科院校和許多??茖W(xué)校都開(kāi)設(shè)了各種形式的數(shù)學(xué)建模課程和講座,為培養(yǎng)學(xué)生利用數(shù)學(xué)方法分析、解決實(shí)際問(wèn)題的能力開(kāi)辟了一條有效的途徑。
大學(xué)生數(shù)學(xué)建模競(jìng)賽最早是1985年在美國(guó)出現(xiàn)的,1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動(dòng)下,我國(guó)幾所大學(xué)的學(xué)生開(kāi)始參加美國(guó)的競(jìng)賽,而且積極性越來(lái)越高,近幾年參賽校數(shù)、隊(duì)數(shù)占到相當(dāng)大的比例。可以說(shuō),數(shù)學(xué)建模競(jìng)賽是在美國(guó)誕生、在中國(guó)開(kāi)花、結(jié)果的。
全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽已成為全國(guó)高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,創(chuàng)辦于1992年,每年一屆,目前也是世界上規(guī)模最大的數(shù)學(xué)建模競(jìng)賽。20xx年,來(lái)自全國(guó)33個(gè)省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國(guó)的1338所院校、25347個(gè)隊(duì)(其中本科組22233隊(duì)、??平M3114隊(duì))、7萬(wàn)多名大學(xué)生報(bào)名參加本項(xiàng)競(jìng)賽。
數(shù)學(xué)建模是一種數(shù)學(xué)的思想方法,是運(yùn)用數(shù)學(xué)的語(yǔ)言和方法,通過(guò)抽象、簡(jiǎn)化建立能近似刻畫并“解決”實(shí)際問(wèn)題的一種強(qiáng)有力的數(shù)學(xué)手段。其過(guò)程主要包括以下六個(gè)階段:
1.模型準(zhǔn)備:了解問(wèn)題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)象的各種信息。用數(shù)學(xué)語(yǔ)言來(lái)描述問(wèn)題。
2.模型假設(shè):根據(jù)實(shí)際對(duì)象的特征和建模的目的,對(duì)問(wèn)題進(jìn)行必要的簡(jiǎn)化,并用精確的語(yǔ)言提出一些恰當(dāng)?shù)募僭O(shè)。
3.模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來(lái)刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
4.模型求解:利用獲取的數(shù)據(jù)資料,對(duì)模型的所有參數(shù)做出計(jì)算。
5.模型分析:對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
6.模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來(lái)驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次重復(fù)建模過(guò)程。
7.模型應(yīng)用:應(yīng)用方式因問(wèn)題的性質(zhì)和建模的目的而異。
數(shù)學(xué)建模心得體會(huì)論文篇二
通過(guò)一個(gè)月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識(shí)到數(shù)學(xué)建模的實(shí)質(zhì)和對(duì)參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識(shí)。在一個(gè)月里,我們學(xué)了許多知識(shí)放方法,可以說(shuō)數(shù)學(xué)建模需要的`知識(shí)我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識(shí)。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對(duì)建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對(duì)我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來(lái)的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過(guò)的東西,連一點(diǎn)改進(jìn)也沒(méi)有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個(gè)觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無(wú)論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒(méi)有創(chuàng)新,模型就失去了靈魂;沒(méi)有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個(gè)隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無(wú)論正確與否,他總是會(huì)反對(duì)一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模心得體會(huì)論文篇三
數(shù)學(xué)建模是一個(gè)經(jīng)歷觀察、思考、歸類、抽象與的過(guò)程,也是一個(gè)信息捕捉、篩選、整理的過(guò)程,更是一個(gè)思想與方法的產(chǎn)生與選擇的過(guò)程。它給學(xué)生再現(xiàn)了一種“微型科研”的過(guò)程。數(shù)學(xué)建模教學(xué)有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,豐富學(xué)生數(shù)學(xué)探索的情感體驗(yàn);有利于學(xué)生自覺(jué)檢驗(yàn)、鞏固所學(xué)的數(shù)學(xué)知識(shí),促進(jìn)知識(shí)的深化、發(fā)展;有利于學(xué)生體會(huì)和感悟數(shù)學(xué)思想方法。同時(shí)教師自身具備數(shù)學(xué)模型的構(gòu)建意識(shí)與能力,才能指導(dǎo)和要求學(xué)生通過(guò)主動(dòng)思維,自主構(gòu)建有效的數(shù)學(xué)模型,從而使數(shù)學(xué)課堂彰顯科學(xué)的魅力。
為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。使用數(shù)學(xué)語(yǔ)言描述的事物就稱為數(shù)學(xué)模型。有時(shí)候我們需要做一些實(shí)驗(yàn),但這些實(shí)驗(yàn)往往用抽象出來(lái)了的數(shù)學(xué)模型作為實(shí)際物體的代替而進(jìn)行相應(yīng)的實(shí)驗(yàn),實(shí)驗(yàn)本身也是實(shí)際操作的一種理論替代。1.只有經(jīng)歷這樣的探索過(guò)程,數(shù)學(xué)的思想、方法才能沉積、凝聚,從而使知識(shí)具有更大的智慧價(jià)值。動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)應(yīng)當(dāng)是一個(gè)主動(dòng)、活潑的、生動(dòng)和富有個(gè)性的過(guò)程。因此,在教學(xué)時(shí)我們要善于引導(dǎo)學(xué)生自主探索、合作交流,對(duì)學(xué)習(xí)過(guò)程、學(xué)習(xí)材料、學(xué)習(xí)發(fā)現(xiàn)主動(dòng)歸納、提升,力求建構(gòu)出人人都能理解的數(shù)學(xué)模型。
教師不應(yīng)只是“講演者”,而應(yīng)不時(shí)扮演下列角色:參謀——提一些求解的建議,提供可參考的信息,但并不代替學(xué)生做出決斷。詢問(wèn)者——故作不知,問(wèn)原因、找漏洞,督促學(xué)生弄清楚、說(shuō)明白,完成進(jìn)度。仲裁者和鑒賞者——評(píng)判學(xué)生工作成果的價(jià)值、意義、優(yōu)劣,鼓勵(lì)學(xué)生有創(chuàng)造性的想法和作法。
為了讓更多的同學(xué)了解數(shù)學(xué)建模,以便于本協(xié)會(huì)其他活動(dòng)的順利開(kāi)展,在新生報(bào)到后,我們以高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽為契機(jī),通過(guò)宣傳和組織,展開(kāi)數(shù)學(xué)建模推廣活動(dòng),向廣大同學(xué)介紹數(shù)學(xué)建模相關(guān)知識(shí),推廣月的主要內(nèi)容有:數(shù)學(xué)建模競(jìng)賽的介紹,數(shù)學(xué)建模所涉及的數(shù)學(xué)知識(shí)的介紹,數(shù)學(xué)建模相關(guān)軟件的推廣等。推廣月活動(dòng)的主要形式是:橫幅、宣傳材料、人工咨詢等。
二、組織學(xué)生參加每年高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。
一年一度的高教社杯大學(xué)生數(shù)學(xué)建模競(jìng)賽將于9月15日左右如期舉行,屆時(shí)本協(xié)會(huì)將在相關(guān)指導(dǎo)老師的統(tǒng)一安排下,組織參賽隊(duì)伍參加此次大賽,力爭(zhēng)為我校爭(zhēng)取榮譽(yù)。
三、年度會(huì)員招收工作。
在校社團(tuán)管理部統(tǒng)一安排的時(shí)間,展開(kāi)新會(huì)員招收工作,主要針對(duì)大一新生,并適量吸收大二學(xué)生,為協(xié)會(huì)增加一些新鮮力量,為協(xié)會(huì)的長(zhǎng)足發(fā)展注入新的活力,招新活動(dòng)將持續(xù)兩到三天,在兩校區(qū)同時(shí)進(jìn)行。
四、干事招聘會(huì)。
在招新活動(dòng)結(jié)束后,我們將在全校范圍內(nèi)的,由協(xié)會(huì)內(nèi)部主要負(fù)責(zé)人組成評(píng)審團(tuán),通過(guò)公開(kāi)招聘的形式,招收一批具有突出能力的新干事,組成一支新的工作人員隊(duì)伍,為更好的開(kāi)展協(xié)會(huì)活動(dòng)和服務(wù)會(huì)員打下基礎(chǔ)。招收新干事部門有:辦公室、外聯(lián)部、實(shí)踐部、宣傳部、科研部、網(wǎng)絡(luò)信息部。
邀請(qǐng)本協(xié)會(huì)指導(dǎo)老師廖虎教授、余慶紅、吳文海等,舉辦三到四次數(shù)學(xué)建模專題講座,為廣大同學(xué)提供一個(gè)了解數(shù)學(xué)建模、學(xué)習(xí)建模知識(shí)的平臺(tái)。
六、會(huì)員大會(huì)。
擬于每年10月下旬和12月上旬,召開(kāi)兩次西安電力高等??茖W(xué)校數(shù)學(xué)建模協(xié)會(huì)會(huì)員大會(huì);會(huì)間將有請(qǐng)協(xié)會(huì)的輔導(dǎo)老師:廖虎教授、余慶紅、吳文海等和其他兄弟協(xié)會(huì)。屆時(shí)幾位輔導(dǎo)老師將介紹數(shù)學(xué)建模的意義和魅力,并講述大學(xué)生數(shù)學(xué)建模大賽的來(lái)歷、發(fā)展、參賽形式和我校每屆參與大賽的獲獎(jiǎng)情況等,讓新會(huì)員更快的認(rèn)識(shí)數(shù)學(xué)建模,并激發(fā)其學(xué)習(xí)數(shù)學(xué)的積極性,讓其更好的參與以后協(xié)會(huì)的活動(dòng)。
七、西安電力高等??茖W(xué)校第二屆大學(xué)生數(shù)學(xué)建模競(jìng)賽。
為進(jìn)一步提升我校學(xué)生參與數(shù)學(xué)建模的積極性,提高數(shù)學(xué)建模的廣泛參與性,我們擬于每年11月中旬舉辦西安電力高等專科學(xué)校第二屆大學(xué)生數(shù)學(xué)建模競(jìng)賽;大賽將分為4組,針對(duì)不同層次的大學(xué)生評(píng)選出獲獎(jiǎng)作品。比賽結(jié)束之后將舉行頒獎(jiǎng)大會(huì),為各個(gè)參賽組獲獎(jiǎng)選手頒發(fā)獎(jiǎng)品。
為加深我校學(xué)生對(duì)數(shù)學(xué)建模知識(shí)的了解,幫助同學(xué)們參與到數(shù)學(xué)建模事業(yè)中去,我們擬邀請(qǐng)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽獲獎(jiǎng)選手與協(xié)會(huì)會(huì)員一起交流比賽經(jīng)驗(yàn),并由獲獎(jiǎng)選手回答提問(wèn)。
九、大學(xué)生數(shù)學(xué)建模協(xié)會(huì)網(wǎng)站的建設(shè)與信息服務(wù)。
在有關(guān)領(lǐng)導(dǎo)的關(guān)心幫助下,本協(xié)會(huì)的網(wǎng)站本著服務(wù)會(huì)員、交流心得、學(xué)習(xí)經(jīng)驗(yàn)、傳播知識(shí)的原則,對(duì)各種數(shù)學(xué)建模相關(guān)知識(shí)(論文、軟件)進(jìn)行發(fā)布,對(duì)校園內(nèi)各種相關(guān)新聞信息進(jìn)行報(bào)道,對(duì)各種同學(xué)們關(guān)心的數(shù)學(xué)問(wèn)題進(jìn)行討論。本學(xué)期,我們將利用網(wǎng)站這一優(yōu)勢(shì),我們將充分利用網(wǎng)絡(luò)信息傳遞速度快的特點(diǎn),在發(fā)揮網(wǎng)站宣傳平臺(tái)這一作用的基礎(chǔ)上,著手舉辦一些時(shí)代性強(qiáng)、參與性強(qiáng)、靈活生動(dòng)的網(wǎng)絡(luò)活動(dòng)。
數(shù)學(xué)建模心得體會(huì)論文篇四
數(shù)學(xué)建模是當(dāng)今社會(huì)中越來(lái)越受重視的一門學(xué)科,通過(guò)數(shù)學(xué)方法解決實(shí)際問(wèn)題,對(duì)于培養(yǎng)學(xué)生的邏輯思維、創(chuàng)新能力和實(shí)踐能力起著重要的作用。在我參與數(shù)學(xué)建模的過(guò)程中,我深刻地體會(huì)到,數(shù)學(xué)建模不僅需要良好的數(shù)學(xué)基礎(chǔ),還需要堅(jiān)持、努力和合作的精神,以及對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力。
首先,數(shù)學(xué)建模需要良好的數(shù)學(xué)基礎(chǔ)。在解決實(shí)際問(wèn)題的過(guò)程中,需要運(yùn)用到多種數(shù)學(xué)方法和模型,如概率統(tǒng)計(jì)、線性規(guī)劃、微分方程等。而這些都要求我們具備扎實(shí)的數(shù)學(xué)基礎(chǔ)。因此,在參與數(shù)學(xué)建模之前,我們要加強(qiáng)對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的學(xué)習(xí),同時(shí)要注重?cái)?shù)學(xué)的實(shí)際應(yīng)用,培養(yǎng)數(shù)學(xué)思維和解決實(shí)際問(wèn)題的能力。
其次,數(shù)學(xué)建模需要堅(jiān)持、努力和合作的精神。數(shù)學(xué)建模不是一蹴而就的過(guò)程,需要耐心和毅力去面對(duì)問(wèn)題和困難。在實(shí)際操作中,往往會(huì)遇到數(shù)據(jù)收集不全、模型構(gòu)建不準(zhǔn)確等問(wèn)題,這時(shí)候我們要保持積極樂(lè)觀的心態(tài),不斷嘗試和改進(jìn)。同時(shí),在團(tuán)隊(duì)合作中,我們要尊重他人意見(jiàn),共同努力,形成優(yōu)勢(shì)互補(bǔ)的合作關(guān)系,才能最終完成一個(gè)優(yōu)秀的數(shù)學(xué)模型。
此外,數(shù)學(xué)建模需要對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力。在解決實(shí)際問(wèn)題時(shí),我們要對(duì)問(wèn)題本身有敏銳的觸覺(jué),能夠發(fā)現(xiàn)問(wèn)題背后的本質(zhì)和規(guī)律。同時(shí),我們也要具備獨(dú)立思考的能力,不僅僅依靠他人的意見(jiàn)和經(jīng)驗(yàn),而是要從自己的角度去分析和解決問(wèn)題。只有這樣才能在數(shù)學(xué)建模中取得令人滿意的結(jié)果。
最后,數(shù)學(xué)建模是一個(gè)不斷學(xué)習(xí)和提高的過(guò)程。在每一次實(shí)踐中,我們都可以從中汲取經(jīng)驗(yàn),了解到不同領(lǐng)域、不同問(wèn)題的特點(diǎn)和要點(diǎn)。同時(shí),我們也要關(guān)注前沿的數(shù)學(xué)建模成果和方法,及時(shí)補(bǔ)充自己的知識(shí)和技能。通過(guò)不斷學(xué)習(xí)和提高,我們才能在數(shù)學(xué)建模的道路上越走越遠(yuǎn),取得更出色的成就。
總之,數(shù)學(xué)建模是一門需要我們付出努力和智慧的學(xué)科。通過(guò)我自己的經(jīng)歷,我深刻地認(rèn)識(shí)到數(shù)學(xué)建模不僅僅是一種學(xué)習(xí)方法,更是一種鍛煉自己解決實(shí)際問(wèn)題能力的機(jī)會(huì)。在今后的學(xué)習(xí)和實(shí)踐中,我將繼續(xù)努力,加強(qiáng)自己的數(shù)學(xué)基礎(chǔ),培養(yǎng)堅(jiān)持、努力和合作的精神,提高對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力,不斷學(xué)習(xí)和提高,以更好地應(yīng)對(duì)數(shù)學(xué)建模所帶來(lái)的挑戰(zhàn)。
數(shù)學(xué)建模心得體會(huì)論文篇五
讀數(shù)學(xué)建模課程是我大學(xué)三年級(jí)的必修課程,這門課程讓我感受到了數(shù)學(xué)的實(shí)用性和嚴(yán)謹(jǐn)性,也讓我深刻理解到數(shù)學(xué)在現(xiàn)實(shí)生活中的重要性。在這門課程中,我學(xué)習(xí)了數(shù)學(xué)模型的構(gòu)建、求解和分析方法,我認(rèn)為,這些知識(shí)對(duì)于我以后的學(xué)習(xí)和工作都有很大的幫助。
第二段:探究
在學(xué)習(xí)數(shù)學(xué)建模的過(guò)程中,我發(fā)現(xiàn),一個(gè)好的數(shù)學(xué)模型不僅要符合現(xiàn)實(shí),還要有嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)證明。因此,我學(xué)習(xí)了多種數(shù)學(xué)知識(shí),包括微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等,這些知識(shí)讓我能夠更好地構(gòu)建數(shù)學(xué)模型,同時(shí)也能夠更好地驗(yàn)證和分析結(jié)果。
第三段:發(fā)揮
在實(shí)踐建模的過(guò)程中,我發(fā)現(xiàn),一個(gè)好的數(shù)學(xué)模型不僅需要有合適的數(shù)學(xué)公式,還需要有合理的數(shù)據(jù)支持。因此,我學(xué)習(xí)了如何獲取和分析數(shù)據(jù),并學(xué)會(huì)了使用MATLAB等計(jì)算工具對(duì)數(shù)據(jù)進(jìn)行分析和可視化。這些工具不僅方便了我對(duì)數(shù)據(jù)的理解,還能夠幫助我更好地展示數(shù)學(xué)模型的結(jié)果。
第四段:總結(jié)
通過(guò)學(xué)習(xí)數(shù)學(xué)建模,我發(fā)現(xiàn)成功的模型需要具備以下特點(diǎn):1、模型要符合現(xiàn)實(shí);2、模型的數(shù)學(xué)表達(dá)式要嚴(yán)謹(jǐn);3、模型需要有合理的數(shù)據(jù)支持;4、模型的結(jié)果需要有實(shí)際意義。這些特點(diǎn)相互為依存,缺一不可。同時(shí),我也認(rèn)識(shí)到,在數(shù)學(xué)建模中,靈活性和創(chuàng)新性同樣重要,只有掌握了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識(shí),才能更好地發(fā)揮個(gè)人思維的特點(diǎn),構(gòu)建出更為優(yōu)秀的數(shù)學(xué)模型。
第五段:?jiǎn)⑹?BR> 學(xué)習(xí)數(shù)學(xué)建模的過(guò)程中,我不僅學(xué)到了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識(shí),還學(xué)會(huì)了如何分析和解決實(shí)際問(wèn)題。在以后的學(xué)習(xí)和工作中,我將不斷運(yùn)用這些知識(shí)和技能,以更好地解決實(shí)際問(wèn)題,為社會(huì)做出自己的貢獻(xiàn)。同時(shí),我也希望更多的人能夠認(rèn)識(shí)到數(shù)學(xué)的實(shí)用性和重要性,從而更好地學(xué)習(xí)和應(yīng)用數(shù)學(xué)。
數(shù)學(xué)建模心得體會(huì)論文篇六
計(jì)算機(jī)學(xué)院、軟件學(xué)院級(jí)學(xué)生吳瑞紅(保送為我院研究生)。
大一時(shí)聽(tīng)學(xué)長(zhǎng)們講數(shù)學(xué)建模競(jìng)賽,對(duì)他們有一種敬佩,對(duì)數(shù)學(xué)建模競(jìng)賽有一種渴望。這種渴望不是一定要拿個(gè)什么獎(jiǎng)項(xiàng),而是想體驗(yàn)一下這三天三夜的競(jìng)賽,提高自身能力。意想不到的是,我們榮獲了全國(guó)一等獎(jiǎng)。我們心里充滿驚喜的同時(shí)也充滿了感激。感謝老師和同學(xué)對(duì)我們悉心指導(dǎo)和鼓勵(lì);感謝學(xué)院和學(xué)校給我們提供物質(zhì)和精神的幫助和支持。
一直以來(lái),我們都認(rèn)為我們是很平凡的一組。第一,我們都沒(méi)有深入學(xué)習(xí)過(guò)數(shù)學(xué)建模,短短的個(gè)把月的學(xué)習(xí)時(shí)間讓我們始終有點(diǎn)懷疑自己能否真正了解它。盡管,我們不是信心十足地開(kāi)始了,但我們卻沒(méi)有放棄。我們堅(jiān)持著從最基本的開(kāi)始,一點(diǎn)點(diǎn)攻破。我們抱著能提高自己,學(xué)習(xí)知識(shí)的想法去對(duì)待這場(chǎng)競(jìng)賽?;蛟S,正是我們這種平常心讓我們把自己發(fā)揮得淋漓盡致,才有了最后的結(jié)果。有心栽花花不開(kāi),無(wú)心插柳柳成蔭,這讓我們明白一個(gè)道理:遇事不可太急功近利,那樣可能會(huì)適得其反。
第二,我想說(shuō)的是我們的團(tuán)隊(duì)。我們其實(shí)僅僅是臨時(shí)組的一個(gè)隊(duì),甚至我們之間有的幾乎沒(méi)說(shuō)過(guò)幾句話,但這并不影響我們的合作。我們?cè)谝婚_(kāi)始便進(jìn)行了分工:選組長(zhǎng)也是一個(gè)很重要的問(wèn)題:他的作用就相當(dāng)于計(jì)算機(jī)中的cpu,是全隊(duì)的核心,如果一個(gè)隊(duì)的leader不得力,往往影響一個(gè)隊(duì)的正常發(fā)揮。由于身為班長(zhǎng)的我具備了一定組織、協(xié)調(diào)和較強(qiáng)的決策能力以及對(duì)matlab較濃厚的興趣,決定由我擔(dān)任小組組長(zhǎng)并負(fù)責(zé)編程。我的隊(duì)友中有對(duì)數(shù)學(xué)比較感興趣的于是由她負(fù)責(zé)進(jìn)行算法的分析,另外一個(gè)隊(duì)友負(fù)責(zé)論文。組長(zhǎng)應(yīng)該有較強(qiáng)的決策能力,在大家出現(xiàn)分歧時(shí)能果斷地拿出主意,當(dāng)隊(duì)中有人信心動(dòng)搖時(shí)(特別是第三天,人可能已經(jīng)心力交瘁了),組長(zhǎng)應(yīng)發(fā)揮其作用,讓整個(gè)隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。注意有人說(shuō),團(tuán)隊(duì)需要磨合期,這是毋庸置疑的,但是如果你真的把自己當(dāng)成其中的一員,努力融入其中,你會(huì)發(fā)現(xiàn)那原來(lái)是一件很簡(jiǎn)單的事情。記得,你們是一個(gè)團(tuán)隊(duì),要相互支持,相互鼓勵(lì),要有相容的胸襟,要有合作的意識(shí),要時(shí)刻記得你們是榮辱與共的,不要只注重個(gè)人得失。在比賽時(shí),一個(gè)人的思考是不全面的,大家要一起討論才有可能把問(wèn)題搞清楚,因此無(wú)論做任何板塊,三個(gè)人要齊心才行,只靠一個(gè)人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
數(shù)學(xué)建模心得體會(huì)論文篇七
通過(guò)一個(gè)月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識(shí)到數(shù)學(xué)建模的實(shí)質(zhì)和對(duì)參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的'靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識(shí)。在一個(gè)月里,我們學(xué)了許多知識(shí)放方法,可以說(shuō)數(shù)學(xué)建模需要的知識(shí)我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識(shí)。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對(duì)建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對(duì)我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來(lái)的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過(guò)的東西,連一點(diǎn)改進(jìn)也沒(méi)有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個(gè)觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無(wú)論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒(méi)有創(chuàng)新,模型就失去了靈魂;沒(méi)有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個(gè)隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無(wú)論正確與否,他總是會(huì)反對(duì)一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模心得體會(huì)論文篇八
數(shù)學(xué)建模作為一種綜合性的能力與技術(shù),近年來(lái)深受大眾的關(guān)注與推崇。作為一名數(shù)學(xué)愛(ài)好者,我對(duì)數(shù)學(xué)建模這個(gè)領(lǐng)域也產(chǎn)生了濃厚的興趣。在閱讀關(guān)于數(shù)學(xué)建模的相關(guān)書籍、學(xué)習(xí)課程與參加各類競(jìng)賽的過(guò)程中,我深刻地領(lǐng)悟到了數(shù)學(xué)建模的種種魅力,也匯總了一些讀數(shù)學(xué)建模的心得與體會(huì)。
第二段:學(xué)習(xí)經(jīng)驗(yàn)。
為了更好地理解數(shù)學(xué)建模,我通過(guò)網(wǎng)上課程等不斷學(xué)習(xí)。由于數(shù)學(xué)建模這個(gè)領(lǐng)域廣泛涉及到的知識(shí)面十分廣泛,所以學(xué)習(xí)的內(nèi)容也十分繁瑣。在學(xué)習(xí)的過(guò)程中,我力求將各個(gè)專業(yè)領(lǐng)域的知識(shí)以及各種方法融合在一起,取長(zhǎng)補(bǔ)短,做到融會(huì)貫通。同時(shí),也需要不斷地與比賽、挑戰(zhàn)賽等交流中,去檢驗(yàn)自己的知識(shí)水平,并不斷地提高自己的學(xué)習(xí)能力。
第三段:實(shí)踐體會(huì)。
學(xué)習(xí)歸來(lái),我開(kāi)始了自己的實(shí)踐之旅。在應(yīng)對(duì)數(shù)學(xué)建模的挑戰(zhàn)的過(guò)程中,我逐漸意識(shí)到模型的準(zhǔn)確度與應(yīng)用性是非常重要的。想要達(dá)到這點(diǎn),必須不斷地加強(qiáng)數(shù)學(xué)知識(shí)的學(xué)習(xí),提高自己的實(shí)際操作能力。另外,更加注重分析真實(shí)場(chǎng)景與數(shù)據(jù),了解不同數(shù)據(jù)之間的關(guān)系與差異,并運(yùn)用不同的數(shù)據(jù)分析方法,以保證模型的精度與可靠性。
第四段:對(duì)未來(lái)的研究目標(biāo)。
雖然我在數(shù)學(xué)建模的學(xué)習(xí)與實(shí)踐中有了一定的收獲,但我深知自己仍是一個(gè)初學(xué)者,未來(lái)的路還有很長(zhǎng)。因此,我計(jì)劃在未來(lái)的學(xué)習(xí)與實(shí)踐中,更加注重對(duì)數(shù)學(xué)建模理論的深度探究,從更加基礎(chǔ)的角度出發(fā)去分析模型,從而更好地將理論運(yùn)用于實(shí)踐。另外,我也將繼續(xù)參加各種數(shù)學(xué)建模競(jìng)賽,不斷挑戰(zhàn)自己,提高自己的技能水平。
第五段:總結(jié)。
回首自己的數(shù)學(xué)建模之路,我深深體會(huì)到數(shù)學(xué)建模的魅力與難度。在實(shí)踐過(guò)程中,我不斷地學(xué)習(xí)、嘗試與挑戰(zhàn)自己,才有了今天的成果。未來(lái),我會(huì)繼續(xù)深入學(xué)習(xí)、實(shí)踐,不斷提升自己,讓數(shù)學(xué)建模這個(gè)寶藏般的領(lǐng)域,能夠不斷地被挖掘、發(fā)現(xiàn)鏈梢,為人類社會(huì)提供更多的發(fā)展動(dòng)力。
數(shù)學(xué)建模心得體會(huì)論文篇九
計(jì)算機(jī)學(xué)院、軟件學(xué)院級(jí)學(xué)生范娜(保送為華東師大研究生)。
9月的“高教杯”全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽已經(jīng)過(guò)去一周多了,但是在我心中,計(jì)算機(jī)學(xué)院、軟件學(xué)院三樓機(jī)房的燈光依然明亮,與隊(duì)友三天三夜一起奮戰(zhàn)的記憶依然清晰。
大二下學(xué)期,我院開(kāi)設(shè)了《數(shù)學(xué)建?!愤x修課,由于每周只有一大節(jié)《數(shù)學(xué)建模》課程,再加上大二專業(yè)主干課程很多,任務(wù)重,除了老師課上的講解,平日我很少有時(shí)間去溫習(xí)和預(yù)習(xí),更別說(shuō)去結(jié)合實(shí)例進(jìn)行建模了。那時(shí)的數(shù)學(xué)建模對(duì)于我來(lái)說(shuō)就是一項(xiàng)很重要的任務(wù),想要參加但是又不知道如何去完成。但是我認(rèn)為數(shù)學(xué)建模是要求把模型用在實(shí)例中進(jìn)行求解,最重要的就是創(chuàng)建模型的思路以及用語(yǔ)言去描述建模的過(guò)程和結(jié)果。
暑假快要來(lái)臨時(shí),學(xué)院進(jìn)行參賽隊(duì)員的選拔。參賽的選手由老師選拔和筆試選拔兩部分組成。我是在筆試中被選拔出來(lái)的,現(xiàn)在想想,可能差一點(diǎn)就失去了參加數(shù)學(xué)建模的資格。我認(rèn)為選拔還是參照筆試的成績(jī)確定人選,從全方位考察學(xué)生的綜合素質(zhì)以及寫作素質(zhì),這樣才能更好的遴選出參賽選手,真正的做到給有創(chuàng)新思維的選手機(jī)會(huì)。
隨后遇到的問(wèn)題就是如何組隊(duì)。我們組是由兩個(gè)計(jì)算機(jī)專業(yè)和一個(gè)通信工程專業(yè)的學(xué)生組成,現(xiàn)在看來(lái)我們的組合有一定的偶然性,但更多的是一種合理性。首先,我們組中有兩位女生,都擅長(zhǎng)文字處理工作。應(yīng)該明確的是,數(shù)學(xué)建模比賽最后遞交給組委會(huì)的是一篇論文,也就是三天三夜的成果是以文字的形式出現(xiàn)在專家面前,文章中的文字排版、遣詞造句至關(guān)重要。女生的特點(diǎn)之一就是細(xì)心,我們平時(shí)很注意收集專業(yè)的描述性詞匯,因此論文詞匯豐富、生動(dòng);第二,我們?nèi)齻€(gè)的思維出發(fā)點(diǎn)不一樣,各有擅長(zhǎng)的數(shù)學(xué)模型和知識(shí)能力,這就使我們?cè)诜謩e思考后有更多的內(nèi)容可以討論,增加建模的創(chuàng)新點(diǎn),彌補(bǔ)彼此的不足;第三,我們?nèi)齻€(gè)的團(tuán)隊(duì)意識(shí)很強(qiáng),彼此相互鼓勵(lì)相互扶持。
同時(shí),我還發(fā)現(xiàn)這樣一個(gè)現(xiàn)象。由于時(shí)間緊張的關(guān)系,我們?cè)谂嘤?xùn)的時(shí)候還沒(méi)有完整的做過(guò)一道題目。也就是說(shuō)在賽前大家主要進(jìn)行理論上的準(zhǔn)備,很少進(jìn)行實(shí)踐,這樣就不能預(yù)見(jiàn)和發(fā)現(xiàn)小組在未來(lái)要進(jìn)行的三天三夜中,究竟會(huì)遇到什么問(wèn)題。針對(duì)這樣的現(xiàn)象,我們小組用了三天的時(shí)間來(lái)進(jìn)行比賽的模擬,每天做一道題。我們嚴(yán)格按照比賽的標(biāo)準(zhǔn)來(lái)要求自己:早上開(kāi)始審題,組員分別思考一小時(shí)進(jìn)行個(gè)人建模,其次三人一起討論,然后編寫論文,盡量把論文詳細(xì)的寫出來(lái)一部分直到一天結(jié)束。在模擬的過(guò)程中我們遇到很多的問(wèn)題,比如時(shí)常會(huì)忘記討論的初步模型和一些思路,因此我們?cè)谡嬲荣惖臅r(shí)候會(huì)對(duì)小組的的討論進(jìn)行錄音,這樣可以隨時(shí)查看建模的思路。像這樣的細(xì)節(jié)問(wèn)題只能是在模擬中才能發(fā)現(xiàn)的,因此我認(rèn)為在賽前進(jìn)行比賽的模擬也是十分重要的。
接下來(lái)的三天三夜讓我很難忘,我也有很多的感想。數(shù)學(xué)建模不是一般意義的解題,它允許你使用任何已有的東西,包括別人的'研究成果、圖書資料、網(wǎng)絡(luò)資源等等,但抄襲是不允許的。這些東西都需要證明,但要結(jié)合實(shí)例進(jìn)行求解。在賽前word文檔要熟練掌握,如果熟練程度不夠,那么在建模比賽中,在整理文檔這一項(xiàng)上就會(huì)浪費(fèi)大量的時(shí)間與精力。光有錄入速度是不夠的,還要注意符號(hào)的書寫,頁(yè)碼的插入,公式編輯器的熟練運(yùn)用。還要有熱情,要有認(rèn)真、嚴(yán)謹(jǐn)?shù)目茖W(xué)精神。當(dāng)我們遇到我們不會(huì)的問(wèn)題,需要用到新的知識(shí)時(shí),我們會(huì)毫不猶豫的去學(xué)習(xí)這些知識(shí),熱情使我們不懼怕任何困難。
總之,這次建模競(jìng)賽不論是在知識(shí)面上還是在動(dòng)手能力上都是對(duì)我的一種挑戰(zhàn),盡管一路走來(lái)十分辛苦,但是卻使我多了一種充實(shí)自我的經(jīng)歷,多了一份創(chuàng)造的經(jīng)驗(yàn),多了一份坦然面對(duì)的自信,從而在前進(jìn)的道路上走的更順暢。在這個(gè)過(guò)程中,指導(dǎo)老師和我們一起度過(guò)炎炎夏日,也陪我們熬夜修改論文,非常辛苦,也向給予我們指導(dǎo)的各位老師和建模過(guò)程中關(guān)心我們的院領(lǐng)導(dǎo)表示衷心的感謝!
數(shù)學(xué)建模心得體會(huì)論文篇十
數(shù)學(xué)建模作為一門綜合性學(xué)科,具有廣泛的應(yīng)用領(lǐng)域和深遠(yuǎn)的影響,對(duì)于提高解決實(shí)際問(wèn)題的能力和培養(yǎng)創(chuàng)新思維具有重要意義。通過(guò)參與數(shù)學(xué)建模比賽和項(xiàng)目,我深刻地認(rèn)識(shí)到數(shù)學(xué)建模的重要性,也積累了一些心得體會(huì)。下面我將結(jié)合個(gè)人經(jīng)歷,談?wù)勎以跀?shù)學(xué)建模過(guò)程中的心得體會(huì)。
一、明確問(wèn)題與方法。
在進(jìn)行數(shù)學(xué)建模之前,首先要明確問(wèn)題的面貌和要解決的目標(biāo),然后選擇適合的方法進(jìn)行分析和求解。在這個(gè)過(guò)程中,我們要善于抓住問(wèn)題的關(guān)鍵點(diǎn),理清問(wèn)題與已有知識(shí)的聯(lián)系,避免偏離主題和走入死胡同。同時(shí),我們也要善于借鑒已有的數(shù)學(xué)工具和模型,不斷開(kāi)拓創(chuàng)新。
在一次模擬城市交通擁堵的建模比賽中,我意識(shí)到對(duì)于這個(gè)復(fù)雜的問(wèn)題,單純的數(shù)學(xué)模型是遠(yuǎn)遠(yuǎn)不夠的。所以,我結(jié)合地理信息系統(tǒng)(GIS)和傳感器技術(shù),將城市道路分隔成小區(qū)域,通過(guò)收集實(shí)時(shí)的交通數(shù)據(jù),建立起更為精確和實(shí)用的交通擁堵模型。這一方法不僅使得模型具有了更高的可靠性和準(zhǔn)確度,也增加了我們對(duì)解決問(wèn)題的信心。
二、合理假設(shè)與模型構(gòu)建。
在進(jìn)行數(shù)學(xué)建模時(shí),我們往往需要根據(jù)實(shí)際情況進(jìn)行一些合理的假設(shè),以簡(jiǎn)化復(fù)雜的問(wèn)題和推動(dòng)建模的進(jìn)程。但是,這些假設(shè)必須是合理和可行的,不能過(guò)于片面或離實(shí)際太遠(yuǎn)。同時(shí),在構(gòu)建模型時(shí),我們也要盡量選用簡(jiǎn)單而有力的數(shù)學(xué)工具,以便于計(jì)算和分析。
在解決一個(gè)涉及醫(yī)學(xué)影像分析的問(wèn)題時(shí),我們需要對(duì)醫(yī)學(xué)影像進(jìn)行處理和分析,還要設(shè)計(jì)出一個(gè)能夠自動(dòng)識(shí)別和分析影像的數(shù)學(xué)模型。我所參與的團(tuán)隊(duì)深入了解醫(yī)學(xué)影像學(xué),分析了不同的影像特征,并基于傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型構(gòu)建了一個(gè)高效的醫(yī)學(xué)影像分析模型。在模型的構(gòu)建過(guò)程中,我們注意了計(jì)算和實(shí)施的可行性,將模型的復(fù)雜度降低到合理的范圍內(nèi),并采用了一些有效的算法來(lái)提高模型的精確性和準(zhǔn)確度。
三、數(shù)據(jù)分析與結(jié)果驗(yàn)證。
在數(shù)學(xué)建模中,數(shù)據(jù)的分析和結(jié)果的驗(yàn)證是非常重要的環(huán)節(jié)。通過(guò)對(duì)數(shù)據(jù)的分析,我們可以揭示問(wèn)題的本質(zhì)和規(guī)律,進(jìn)而得出解決問(wèn)題的方法和結(jié)論。而結(jié)果的驗(yàn)證則是模型可靠性和精確性的檢驗(yàn),也是對(duì)我們解決問(wèn)題的能力和方法的評(píng)判。
在一次銀行信用評(píng)估的建模過(guò)程中,我們基于大量的歷史交易數(shù)據(jù),通過(guò)建立一套信用評(píng)估模型,對(duì)客戶的信用情況進(jìn)行分析和預(yù)測(cè)。在對(duì)模型進(jìn)行驗(yàn)證時(shí),我們通過(guò)對(duì)部分客戶進(jìn)行篩選和測(cè)試,對(duì)比模型預(yù)測(cè)的結(jié)果與實(shí)際情況,發(fā)現(xiàn)模型的準(zhǔn)確度達(dá)到了90%以上。這使我們對(duì)模型的有效性和可靠性有了更加深刻的認(rèn)識(shí),并為進(jìn)一步完善和推廣模型提供了依據(jù)。
四、團(tuán)隊(duì)合作與學(xué)習(xí)。
數(shù)學(xué)建模不僅僅是一個(gè)人的事情,更是一個(gè)團(tuán)隊(duì)的合作。通過(guò)和其他隊(duì)員的合作,我們可以相互學(xué)習(xí)和借鑒彼此的經(jīng)驗(yàn)和思維模式,在解決實(shí)際問(wèn)題的過(guò)程中形成協(xié)同效應(yīng)。同時(shí),團(tuán)隊(duì)合作也是一個(gè)學(xué)習(xí)的過(guò)程,通過(guò)和隊(duì)友的交流和探討,我們可以不斷拓寬思維,并且從對(duì)方身上學(xué)到更多的知識(shí)和技能。
在一次研究森林生態(tài)系統(tǒng)的建模項(xiàng)目中,我和團(tuán)隊(duì)成員們共同制定了研究方案和實(shí)驗(yàn)設(shè)計(jì),并分工協(xié)作。通過(guò)團(tuán)隊(duì)的合作,我們不斷從實(shí)驗(yàn)數(shù)據(jù)中總結(jié)經(jīng)驗(yàn),進(jìn)行模型驗(yàn)證和修正,并最終成功地建立了一個(gè)能夠模擬和預(yù)測(cè)森林生態(tài)系統(tǒng)變化的多元模型。這個(gè)成功的案例不僅使我們對(duì)數(shù)學(xué)建模有了更深入的認(rèn)識(shí),也讓我們領(lǐng)悟到團(tuán)隊(duì)合作的重要性和價(jià)值。
五、不斷學(xué)習(xí)和總結(jié)。
在數(shù)學(xué)建模的過(guò)程中,我們要不斷學(xué)習(xí)和總結(jié),積累經(jīng)驗(yàn)和提高能力。只有不斷的學(xué)習(xí)和實(shí)踐,我們才能夠更好地適應(yīng)和解決不同領(lǐng)域的實(shí)際問(wèn)題,并在數(shù)學(xué)建模的道路上不斷成長(zhǎng)。
總的來(lái)說(shuō),參與數(shù)學(xué)建模是一次很有收獲和意義的經(jīng)歷。通過(guò)這次經(jīng)歷,我不僅提高了數(shù)學(xué)建模的能力和素養(yǎng),也深刻領(lǐng)悟到了科學(xué)研究的重要性和技術(shù)創(chuàng)新的意義。我相信,在未來(lái)的學(xué)習(xí)和工作中,我會(huì)更加努力地學(xué)習(xí)和實(shí)踐,用數(shù)學(xué)的力量為解決實(shí)際問(wèn)題做出更大的貢獻(xiàn)。
數(shù)學(xué)建模心得體會(huì)論文篇十一
讀數(shù)學(xué)建模是一項(xiàng)需要較高能力的學(xué)問(wèn),需要具備豐富的數(shù)學(xué)知識(shí)和邏輯思維能力。在我學(xué)習(xí)的過(guò)程中,我深刻認(rèn)識(shí)到了數(shù)學(xué)建模的重要性以及在實(shí)際工作和生活中的應(yīng)用價(jià)值。以下是我的讀數(shù)學(xué)建模的心得體會(huì)。
作為一個(gè)計(jì)算機(jī)科班出身的學(xué)生,我很早就開(kāi)始了接觸數(shù)學(xué)建模。但在一開(kāi)始的時(shí)候,我并沒(méi)有真正理解什么是數(shù)學(xué)建模。直到在大學(xué)的選修課中系統(tǒng)地學(xué)習(xí)了一門《數(shù)學(xué)建模及應(yīng)用》課程后,我才對(duì)數(shù)學(xué)建模有了更深入的認(rèn)知和理解。
第二段:理解“建?!?BR> “建?!钡暮诵囊馑际菍?fù)雜的實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,然后用數(shù)學(xué)語(yǔ)言描述該問(wèn)題并進(jìn)行數(shù)學(xué)分析。在實(shí)際的工作和生活中,我們要面對(duì)、研究的諸如市場(chǎng)營(yíng)銷、物流運(yùn)輸、氣象環(huán)境、圖像視頻等不同領(lǐng)域的問(wèn)題都可以通過(guò)“建模”的方式進(jìn)行求解。
第三段:掌握數(shù)學(xué)和編程技能。
數(shù)學(xué)建模需要掌握扎實(shí)的數(shù)學(xué)功底,同時(shí)也要在編程技能上有所涉獵。這是因?yàn)閿?shù)學(xué)建模過(guò)程中需要運(yùn)用到很多數(shù)據(jù)分類和篩選、數(shù)據(jù)可視化、計(jì)算機(jī)程序的實(shí)現(xiàn)等技能。只有將數(shù)學(xué)和編程技能完美結(jié)合,才能為數(shù)學(xué)建模提供最有利的條件。
第四段:關(guān)注實(shí)際問(wèn)題。
在理論知識(shí)的積累與技術(shù)能力的提升之外,數(shù)學(xué)建模中還需要關(guān)注實(shí)際問(wèn)題。我們不能將理論和技術(shù)與實(shí)際問(wèn)題劃分開(kāi)來(lái)。可行的“建?!眴?wèn)題是源于實(shí)際問(wèn)題,因此,在發(fā)現(xiàn)實(shí)際問(wèn)題的基礎(chǔ)上,我們才能夠有更清晰的目標(biāo)和向?qū)崿F(xiàn)目標(biāo)的循序漸進(jìn)的步驟。
第五段:學(xué)習(xí)和交流。
數(shù)學(xué)建模需要廣泛學(xué)習(xí)和交流。我們要閱讀相關(guān)領(lǐng)域的探討和論文,獲取更多的行業(yè)知識(shí)。同時(shí),我們還要積極參加學(xué)術(shù)會(huì)議和交流活動(dòng),與其他學(xué)者和專家協(xié)同工作和深度探討,交換經(jīng)驗(yàn)和知識(shí),并不斷提升自己的建模能力。
在讀數(shù)學(xué)建模的過(guò)程中,我也留下了許多經(jīng)典案例和優(yōu)秀論文,堅(jiān)持探索科學(xué)問(wèn)題的本質(zhì),發(fā)掘應(yīng)用數(shù)學(xué)的潛力。數(shù)學(xué)建模是一個(gè)學(xué)習(xí)與實(shí)踐并行、動(dòng)態(tài)更新的過(guò)程,它將不斷影響我們思考問(wèn)題和解決問(wèn)題的方式,讓我們更好地懂得數(shù)學(xué)對(duì)人類社會(huì)發(fā)展的重要性。
數(shù)學(xué)建模心得體會(huì)論文篇十二
一年一度的全國(guó)數(shù)學(xué)建模大賽在今年的x月x日上午8點(diǎn)拉開(kāi)戰(zhàn)幕,各隊(duì)將在3天72小時(shí)內(nèi)對(duì)一個(gè)現(xiàn)實(shí)中的實(shí)際問(wèn)題進(jìn)行模型建立,求解和分析,確定題目后,我們隊(duì)三人分頭行動(dòng),一人去圖書館查閱資料,一人在網(wǎng)上搜索相關(guān)信息,一人建立模型,通過(guò)三人的努力,在前兩天中建立出兩個(gè)模型并編程求解,經(jīng)過(guò)艱苦的奮斗,終于在第三天完成了論文的寫作,在這三天里我感觸很深,現(xiàn)將心得體會(huì)寫出,希望與大家交流。
1.團(tuán)隊(duì)精神:團(tuán)隊(duì)精神是數(shù)學(xué)建模是否取得好成績(jī)的最重要的因素,一隊(duì)三個(gè)人要相互支持,相互鼓勵(lì)。切勿自己只管自己的一部分(數(shù)學(xué)好的只管建模,計(jì)算機(jī)好的只管編程,寫作好的只管論文寫作),很多時(shí)候,一個(gè)人的思考是不全面的,只有大家一起討論才有可能把問(wèn)題搞清楚,因此無(wú)論做任何板塊,三個(gè)人要一起齊心才行,只靠一個(gè)人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
2.有影響力的leader:在比賽中,leader是很重要的,他的作用就相當(dāng)與計(jì)算機(jī)中的cpu,是全隊(duì)的核心,如果一個(gè)隊(duì)的leader不得力,往往影響一個(gè)隊(duì)的正常發(fā)揮,就拿選題來(lái)說(shuō),有人想做a題,有人想做b題,如果爭(zhēng)論一天都未確定方案的話,可能就沒(méi)有足夠時(shí)間完成一篇論文了,又比如,當(dāng)隊(duì)中有人信心動(dòng)搖時(shí)(特別是第三天,人可能已經(jīng)心力交瘁了),leader應(yīng)發(fā)揮其作用,讓整個(gè)隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。
3.合理的時(shí)間安排:做任何事情,合理的時(shí)間安排非常重要,建模也是一樣,事先要做好一個(gè)規(guī)劃,建模一共分十個(gè)板塊(摘要,問(wèn)題提出,模型假設(shè),問(wèn)題分析,模型假設(shè),模型建立,模型求解,結(jié)果分析,模型的評(píng)價(jià)與推廣,參考文獻(xiàn),附錄)。你每天要做完哪幾個(gè)板塊事先要確定好,這樣做才會(huì)使自己游刃有余,保證在規(guī)定時(shí)間內(nèi)完成論文,以避免由于時(shí)間上的不妥,以致于最后無(wú)法完成論文。
4.正確的論文格式:論文屬于科學(xué)性的文章,它有嚴(yán)格的書寫格式規(guī)范,因此一篇好的論文一定要有正確的格式,就拿摘要來(lái)說(shuō)吧,它要包括6要素(問(wèn)題,方法,模型,算法,結(jié)論,特色),它是一篇論文的概括,摘要的好壞將決定你的論文是否吸引評(píng)委的目光,但聽(tīng)閱卷老師說(shuō),這次有些論文的摘要里出現(xiàn)了大量的圖表和程序,這都是不符合論文格式的,這種論文也不會(huì)取得好成績(jī),因此我們寫論文時(shí)要端正態(tài)度,注意書寫格式。
5.論文的寫作:我個(gè)人認(rèn)為論文的寫作是至關(guān)重要的,其實(shí)大家最后的模型和結(jié)果都差不多,為什么有些隊(duì)可以送全國(guó),有些隊(duì)可以拿省獎(jiǎng),而有些隊(duì)卻什么都拿不到,這關(guān)鍵在于論文的寫作上面。一篇好的論文首先讀上去便使人感到邏輯清晰,有條例性,能打動(dòng)評(píng)委;其次,論文在語(yǔ)言上的表述也很重要,要注意用詞的準(zhǔn)確性;另外,一篇好的論文應(yīng)有閃光點(diǎn),有自己的特色,有自己的想法和思考在里面,總之,論文寫作的好壞將直接影響到成績(jī)的優(yōu)劣。
6.算法的設(shè)計(jì):算法的設(shè)計(jì)的好壞將直接影響運(yùn)算速度的快慢,建議大家多用數(shù)學(xué)軟件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),這里提供十種數(shù)學(xué)建模常用算法,僅供參考:
(1)蒙特卡羅算法(該算法又稱隨機(jī)性模擬算法,是通過(guò)計(jì)算機(jī)仿真來(lái)解決問(wèn)題的算法,同時(shí)可以通過(guò)模擬可以來(lái)檢驗(yàn)自己模型的正確性,是比賽時(shí)必用的方法)。
(2)數(shù)據(jù)擬合、參數(shù)估計(jì)、插值等數(shù)據(jù)處理算法(比賽中通常會(huì)遇到大量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用matlab作為工具)。
(3)線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問(wèn)題(建模競(jìng)賽大多數(shù)問(wèn)題屬于最優(yōu)化問(wèn)題,很多時(shí)候這些問(wèn)題可以用數(shù)學(xué)規(guī)劃算法來(lái)描述,通常使用lindo、lingo軟件實(shí)現(xiàn))。
(4)圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡(luò)流、二分圖等算法,涉及到圖論的問(wèn)題可以用這些方法解決,需要認(rèn)真準(zhǔn)備)。
(5)動(dòng)態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法(這些算法是算法設(shè)計(jì)中比較常用的方法,很多場(chǎng)合可以用到競(jìng)賽中)。
(6)最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò)、遺傳算法(這些問(wèn)題是用來(lái)解決一些較困難的最優(yōu)化問(wèn)題的算法,對(duì)于有些問(wèn)題非常有幫助,但是算法的實(shí)現(xiàn)比較困難,需慎重使用)。
(7)網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競(jìng)賽題中有應(yīng)用,當(dāng)重點(diǎn)討論模型本身而輕視算法的時(shí)候,可以使用這種暴力方案,最好使用一些高級(jí)語(yǔ)言作為編程工具)。
(8)一些連續(xù)離散化方法(很多問(wèn)題都是實(shí)際來(lái)的,數(shù)據(jù)可以是連續(xù)的,而計(jì)算機(jī)只認(rèn)的是離散的數(shù)據(jù),因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非常重要的)。
(9)數(shù)值分析算法(如果在比賽中采用高級(jí)語(yǔ)言進(jìn)行編程的話,那一些數(shù)值分析中常用的算法比如方程組求解、矩陣運(yùn)算、函數(shù)積分等算法就需要額外編寫庫(kù)函數(shù)進(jìn)行調(diào)用)。
(10)圖象處理算法(賽題中有一類問(wèn)題與圖形有關(guān),即使與圖形無(wú)關(guān),論文中也應(yīng)該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問(wèn)題,通常使用matlab進(jìn)行處理)。
數(shù)學(xué)建模心得體會(huì)論文篇十三
運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.
數(shù)學(xué)建模心得體會(huì)論文篇十四
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對(duì)大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識(shí)的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的培養(yǎng)。
數(shù)學(xué)知識(shí)來(lái)源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識(shí)中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力十分重要,在傳授知識(shí)的過(guò)程中幫助學(xué)生利用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會(huì)公式的應(yīng)用過(guò)程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識(shí)的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識(shí)應(yīng)用到實(shí)踐中來(lái)解決數(shù)學(xué)問(wèn)題是一個(gè)首要問(wèn)題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識(shí)。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識(shí)實(shí)際學(xué)習(xí)情況,有針對(duì)性地整合數(shù)學(xué)知識(shí),了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識(shí)理論性較強(qiáng),知識(shí)較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識(shí)后,可以引入椅子的穩(wěn)定問(wèn)題,創(chuàng)建數(shù)學(xué)模型,提問(wèn)學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問(wèn)題同所學(xué)知識(shí)相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問(wèn)題。學(xué)生整合所學(xué)知識(shí),通過(guò)對(duì)問(wèn)題的分析,可以了解到利用介值定理來(lái)解決問(wèn)題。通過(guò)建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識(shí)學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
(二)定積分。
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問(wèn)題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來(lái)堆放煤矸石,根據(jù)上級(jí)主管部門的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識(shí)點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開(kāi)采量來(lái)堆放煤矸石。通過(guò)數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會(huì)大大提升。
(三)最值問(wèn)題。
在高等數(shù)學(xué)中,最值問(wèn)題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識(shí)可以解決實(shí)際生活中的最值問(wèn)題,這就需要提高對(duì)導(dǎo)數(shù)知識(shí)實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識(shí)后,通過(guò)建立關(guān)于天空的采空模型,提問(wèn)學(xué)生為什么雨后太陽(yáng)出來(lái)了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問(wèn)彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對(duì)此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過(guò)分析可以得出,雨滴可以反射太陽(yáng)光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識(shí)來(lái)計(jì)算得出太陽(yáng)光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問(wèn)題,加深對(duì)知識(shí)的理解和記憶,提升數(shù)學(xué)知識(shí)學(xué)習(xí)成效。
(四)微分方程。
微分方程知識(shí)同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問(wèn)題。這就需要學(xué)生在了解微分方程知識(shí)的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來(lái)解決問(wèn)題。如,在當(dāng)前社會(huì)進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問(wèn)題之一,受到社會(huì)各界廣泛的關(guān)注和重視。通過(guò)問(wèn)題精簡(jiǎn)化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹(shù)立正確的減肥理念。
(五)矩陣。
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問(wèn)題之前,應(yīng)該根據(jù)知識(shí)點(diǎn)來(lái)創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過(guò)引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對(duì)矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識(shí)。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過(guò)數(shù)學(xué)建模思想來(lái)引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問(wèn)題的能力,將所學(xué)知識(shí)靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
數(shù)學(xué)建模心得體會(huì)論文篇十五
摘要:隨著現(xiàn)代社會(huì)的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無(wú)需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識(shí)解決日常問(wèn)題的一個(gè)重要手段。本文通過(guò)簡(jiǎn)述數(shù)學(xué)建模的方法與過(guò)程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問(wèn)題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問(wèn)題解決中的重要作用。
經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會(huì)的發(fā)展,國(guó)際間貿(mào)易往來(lái)的日趨緊密,日常經(jīng)濟(jì)形勢(shì)受到的影響因素越來(lái)越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對(duì)這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識(shí)、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。
數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡(jiǎn)稱,實(shí)際上數(shù)學(xué)建??梢苑Q之為解決問(wèn)題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過(guò)程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語(yǔ)言和方法進(jìn)行問(wèn)題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過(guò)程。數(shù)學(xué)建模的主要過(guò)程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動(dòng)態(tài)過(guò)程,很少能夠通過(guò)一次過(guò)程就建立起完美適合實(shí)際問(wèn)題的數(shù)學(xué)模型。通過(guò)上述過(guò)程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問(wèn)題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對(duì)象的特性,對(duì)復(fù)雜問(wèn)題進(jìn)行簡(jiǎn)化,提取主要因素,提煉精確的數(shù)學(xué)語(yǔ)言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問(wèn)題為數(shù)學(xué)語(yǔ)言;4.模型求解:對(duì)上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問(wèn)題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟(jì)問(wèn)題數(shù)學(xué)模型的建立。
經(jīng)濟(jì)類問(wèn)題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險(xiǎn)評(píng)估、最優(yōu)產(chǎn)量計(jì)算、庫(kù)存平衡等問(wèn)題;確定型則可以基于一定的條件與假設(shè),精確的對(duì)一種特定情況的結(jié)果做出判斷,如成本核算、損失評(píng)估等。對(duì)經(jīng)濟(jì)問(wèn)題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過(guò)程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對(duì)實(shí)際經(jīng)濟(jì)問(wèn)題和情況有一個(gè)較為深入的認(rèn)識(shí),然后通過(guò)細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問(wèn)題簡(jiǎn)化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識(shí)建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。
三、建模舉例。
四、結(jié)語(yǔ)。
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對(duì)很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤(rùn)、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開(kāi)支等各個(gè)方面。上文只提供了一個(gè)簡(jiǎn)單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
數(shù)學(xué)建模心得體會(huì)論文篇十六
高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對(duì)數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個(gè)重要課題。在高校數(shù)學(xué)教學(xué)中開(kāi)展數(shù)學(xué)建模競(jìng)賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對(duì)數(shù)學(xué)的應(yīng)用能力。本文對(duì)高校開(kāi)展數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)進(jìn)行了分析闡述,并對(duì)此進(jìn)行了一定的思考。
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過(guò)運(yùn)用抽象性的數(shù)學(xué)語(yǔ)言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問(wèn)題。當(dāng)前很多高校中開(kāi)始引入數(shù)學(xué)建模思想來(lái)加強(qiáng)學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運(yùn)用數(shù)學(xué)邏輯創(chuàng)新解決問(wèn)題的能力得到提升。數(shù)學(xué)建模競(jìng)賽起源于1985年的美國(guó),幾年后國(guó)內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開(kāi)始參與美國(guó)的數(shù)學(xué)建模大賽,促進(jìn)了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國(guó)首屆數(shù)學(xué)建模大賽召開(kāi),而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長(zhǎng),呈現(xiàn)一派繁榮景象。
2.1數(shù)學(xué)建模競(jìng)賽自主性較強(qiáng)。自主性首先體現(xiàn)在在數(shù)學(xué)建模過(guò)程中學(xué)生可以根據(jù)自己的建模需要通過(guò)一切可以利用的資源、工具來(lái)進(jìn)行資料查閱和收集,建模比賽隊(duì)員可以根據(jù)自己的意見(jiàn)和思維進(jìn)行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競(jìng)賽的組織形式呈現(xiàn)多元化特點(diǎn),組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒(méi)有標(biāo)準(zhǔn)答案可以參考分享。2.2建模隊(duì)伍呈日益燎原之勢(shì)。1992年首屆中國(guó)數(shù)學(xué)建模大賽開(kāi)展以來(lái),其影響力與日俱增,高校和社會(huì)各界對(duì)數(shù)學(xué)建模頗為重視,參賽隊(duì)伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團(tuán)隊(duì)在國(guó)際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績(jī)。2.3組織培訓(xùn)日益加強(qiáng)。數(shù)學(xué)建模競(jìng)賽對(duì)學(xué)生數(shù)學(xué)知識(shí)的掌握及靈活運(yùn)用、口套表達(dá)、語(yǔ)言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時(shí)間很長(zhǎng),培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競(jìng)賽取得好成績(jī)奠定了堅(jiān)實(shí)的基礎(chǔ)。
3.1學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識(shí)得到增強(qiáng)。數(shù)學(xué)建模競(jìng)賽的團(tuán)隊(duì)組織形式活潑自由,通常采用學(xué)生組隊(duì)模式開(kāi)展,數(shù)學(xué)建模競(jìng)賽隊(duì)伍形成一個(gè)團(tuán)結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽(yù),還一定程度上展示著國(guó)家的形象。經(jīng)過(guò)長(zhǎng)時(shí)間的培訓(xùn),對(duì)數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢(shì)和特長(zhǎng),進(jìn)行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個(gè)數(shù)學(xué)建模,在建模過(guò)程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢(shì)和長(zhǎng)處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識(shí)得到鍛煉,責(zé)任感和榮譽(yù)感進(jìn)一步增強(qiáng),通過(guò)建模競(jìng)賽彰顯團(tuán)隊(duì)的合作能力和中國(guó)數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來(lái)大學(xué)生數(shù)學(xué)建模競(jìng)賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績(jī)也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運(yùn)用知識(shí)的能力得到提升。數(shù)學(xué)建模競(jìng)賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個(gè)展示。在數(shù)學(xué)建模競(jìng)賽中,學(xué)生不僅要需要扎實(shí)豐厚的數(shù)學(xué)知識(shí)儲(chǔ)備,還需要具備清晰的數(shù)學(xué)邏輯思維和語(yǔ)言表達(dá)能力。同時(shí)要有機(jī)智的臨場(chǎng)發(fā)揮能力和應(yīng)變能力,不怯場(chǎng)、不驚慌,有充分的思想準(zhǔn)備,能輕松應(yīng)對(duì)其他參賽選手和評(píng)委的提問(wèn),能組織條理性、邏輯性的語(yǔ)言進(jìn)行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計(jì)清晰完整的傳達(dá)給評(píng)委和其他參賽選手。在這個(gè)過(guò)程中,無(wú)疑會(huì)使學(xué)生的數(shù)學(xué)邏輯思維和語(yǔ)言表達(dá)能力及靈活運(yùn)用數(shù)學(xué)知識(shí)的能力有一個(gè)較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競(jìng)賽對(duì)參賽學(xué)生的綜合知識(shí)和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f(shuō)數(shù)學(xué)建模過(guò)程中,有許多高深的知識(shí)難于理解,有的日常學(xué)習(xí)過(guò)程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢(shì)和平時(shí)培訓(xùn)中的知識(shí)積淀,通過(guò)借助大量的工具書及參考資料,加上團(tuán)隊(duì)的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識(shí),無(wú)疑這對(duì)學(xué)生的自學(xué)能力培養(yǎng)是一個(gè)很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識(shí)的過(guò)程是枯燥乏味的,需要長(zhǎng)久的耐力和信心,無(wú)疑這對(duì)學(xué)生的堅(jiān)毅不畏難的品質(zhì)是一個(gè)很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過(guò)艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問(wèn)題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強(qiáng),能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴(yán)謹(jǐn)推導(dǎo)也使學(xué)生養(yǎng)成認(rèn)真細(xì)心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問(wèn)題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實(shí)踐,數(shù)學(xué)素養(yǎng)進(jìn)一步得到提升。
綜上所述,高校學(xué)生數(shù)學(xué)建模競(jìng)賽的開(kāi)展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團(tuán)隊(duì)合作能力、競(jìng)爭(zhēng)能力、表達(dá)交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開(kāi)展數(shù)學(xué)建模競(jìng)賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵(lì)全體學(xué)生參與數(shù)學(xué)建模競(jìng)賽,通過(guò)競(jìng)賽實(shí)現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
[1]趙剛.高校數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實(shí)踐及其對(duì)培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競(jìng)賽對(duì)高校創(chuàng)新人才培養(yǎng)的促進(jìn)作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開(kāi)展數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)的思考[j].中國(guó)校外教育,20xx(12).
數(shù)學(xué)建模心得體會(huì)論文篇十七
數(shù)學(xué),源于人們對(duì)生產(chǎn)與生活實(shí)際問(wèn)題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來(lái),信息技術(shù)飛速發(fā)展,推動(dòng)了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會(huì)各個(gè)領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時(shí)代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計(jì)、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問(wèn)、自主解決,體驗(yàn)做數(shù)學(xué)的過(guò)程,從而提高解決實(shí)際問(wèn)題的能力.
一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開(kāi)學(xué)生“做”數(shù)學(xué)的過(guò)程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對(duì)學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺保瑢⒔忸}過(guò)程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開(kāi)展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動(dòng)流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問(wèn)題,其題目長(zhǎng)、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
1.自主探索原則.
學(xué)生長(zhǎng)期處于師講、生聽(tīng)的教學(xué)模式,淪為被動(dòng)接受知識(shí)的“容器”,難有創(chuàng)造的意識(shí).在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問(wèn)題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問(wèn)題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計(jì),要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計(jì)的問(wèn)題不切實(shí)際,往往會(huì)扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問(wèn)題.
數(shù)學(xué)建模心得體會(huì)論文篇十八
信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問(wèn)題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識(shí),學(xué)會(huì)創(chuàng)造性地解決問(wèn)題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識(shí)很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)將現(xiàn)實(shí)問(wèn)題化為數(shù)學(xué)問(wèn)題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對(duì)解決現(xiàn)實(shí)問(wèn)題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識(shí)為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對(duì)數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問(wèn)題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識(shí)為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過(guò)程中引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過(guò)程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對(duì)數(shù)學(xué)本原知識(shí)的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對(duì)提高學(xué)生創(chuàng)新能力和對(duì)數(shù)學(xué)教育改革的重要意義,探索開(kāi)展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對(duì)課程體系進(jìn)行調(diào)整,在問(wèn)題解決過(guò)程中安排需要融入的知識(shí)體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對(duì)學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識(shí)應(yīng)用于工程問(wèn)題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評(píng)價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開(kāi)展融入式教學(xué)的實(shí)驗(yàn)班級(jí),對(duì)數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺(jué)思維深入理解背景知識(shí)、符號(hào)翻譯開(kāi)展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對(duì)實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對(duì)策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過(guò)程中著力于對(duì)學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí),而對(duì)應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識(shí)則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識(shí),仍難以學(xué)會(huì)用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問(wèn)題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。
這樣,在解決實(shí)際問(wèn)題的時(shí)候,學(xué)生就會(huì)有意識(shí)地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識(shí)的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語(yǔ)數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對(duì)相關(guān)知識(shí)的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識(shí)與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問(wèn)題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問(wèn)題,仍將有待于更深入的研究。
數(shù)學(xué)建模心得體會(huì)論文篇十九
第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁(yè)邊距;從左側(cè)裝訂。
第二條,論文第一頁(yè)為承諾書,第二頁(yè)為編號(hào)專用頁(yè),具體內(nèi)容見(jiàn)本規(guī)范第3、4頁(yè)。
第三條,論文第三頁(yè)為摘要專用頁(yè)(含標(biāo)題和關(guān)鍵詞,但不需要翻譯成英文),從此頁(yè)開(kāi)始編寫頁(yè)碼;頁(yè)碼必須位于每頁(yè)頁(yè)腳中部,用阿拉伯?dāng)?shù)字從“1”開(kāi)始連續(xù)編號(hào)。摘要專用頁(yè)必須單獨(dú)一頁(yè),且篇幅不能超過(guò)一頁(yè)。
第四條,從第四頁(yè)開(kāi)始是論文正文(不要目錄,盡量控制在20頁(yè)以內(nèi));正文之后是論文附錄(頁(yè)數(shù)不限)。
第五條,論文附錄至少應(yīng)包括參賽論文的所有源程序代碼,如實(shí)際使用的軟件名稱、命令和編寫的全部可運(yùn)行的源程序(含excel、spss等軟件的交互命令);通常還應(yīng)包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運(yùn)行,可能會(huì)被取消評(píng)獎(jiǎng)資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實(shí)沒(méi)有需要以附錄形式提供的信息,論文可以沒(méi)有附錄。
第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。
第七條,引用別人的成果或其他公開(kāi)的資料(包括網(wǎng)上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻(xiàn),并在正文引用處予以標(biāo)注。
第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號(hào)、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對(duì)論文增加其他要求。
第九條,參賽隊(duì)?wèi)?yīng)按照《全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽報(bào)名和參賽須知》的要求命名和提交以下兩個(gè)電子文件,分別對(duì)應(yīng)于參賽論文和相關(guān)的支撐材料。
第十條,參賽論文的電子版不能包含承諾書和編號(hào)專用頁(yè)(即電子版論文第一頁(yè)為摘要頁(yè))。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個(gè)單獨(dú)的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過(guò)20mb。
第十一條,支撐材料(不超過(guò)20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應(yīng)包含參賽論文的所有源程序,通常還應(yīng)包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開(kāi)渠道找到的相關(guān)資料等。所有支撐材料使用winrar軟件壓縮在一個(gè)文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會(huì)被取消評(píng)獎(jiǎng)資格。支撐材料中不能包含承諾書和編號(hào)專用頁(yè),不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。如果確實(shí)沒(méi)有需要提供的支撐材料,可以不提供支撐材料。
第十二條,不符合本格式規(guī)范的論文將被視為違反競(jìng)賽規(guī)則,可能被取消評(píng)獎(jiǎng)資格。
第十三條,本規(guī)范的解釋權(quán)屬于全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽組委會(huì)。
說(shuō)明:
(1)本科組參賽隊(duì)從a、b題中任選一題,??平M參賽隊(duì)從c、d題中任選一題。
(2)賽區(qū)可自行決定是否在競(jìng)賽結(jié)束時(shí)收集參賽論文的紙質(zhì)版,但對(duì)于送全國(guó)評(píng)閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書由賽區(qū)組委會(huì)保存,不必提交給全國(guó)組委會(huì))。
(3)賽區(qū)評(píng)閱前將紙質(zhì)版論文第一頁(yè)(承諾書)取下保存,同時(shí)在第一頁(yè)和第二頁(yè)建立“賽區(qū)評(píng)閱編號(hào)”(由各賽區(qū)規(guī)定編號(hào)方式),“賽區(qū)評(píng)閱紀(jì)錄”表格可供賽區(qū)評(píng)閱時(shí)使用(由各賽區(qū)自行決定是否使用)。評(píng)閱后,賽區(qū)對(duì)送全國(guó)評(píng)閱的論文在第二頁(yè)建立“送全國(guó)評(píng)閱統(tǒng)一編號(hào)”(編號(hào)方式由全國(guó)組委會(huì)規(guī)定),然后送全國(guó)評(píng)閱。
數(shù)學(xué)建模心得體會(huì)論文篇一
數(shù)學(xué)建模是利用數(shù)學(xué)方法解決實(shí)際問(wèn)題的一種實(shí)踐應(yīng)用。即通過(guò)抽象、簡(jiǎn)化、假設(shè)、引進(jìn)變量等處理過(guò)程后,將實(shí)際問(wèn)題用數(shù)學(xué)方式來(lái)表達(dá),建立起數(shù)學(xué)模型,然后運(yùn)用先進(jìn)的數(shù)學(xué)方法和計(jì)算機(jī)技術(shù)進(jìn)行求解。數(shù)學(xué)建模將各種知識(shí)綜合應(yīng)用于解決實(shí)際問(wèn)題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識(shí)分析問(wèn)題、解決問(wèn)題的能力的必備手段之一。
數(shù)學(xué)建模是在上世紀(jì)六七十年代進(jìn)入一些西方國(guó)家大學(xué)的,我國(guó)的幾所大學(xué)也在80年代初將數(shù)學(xué)建模引入課堂。經(jīng)過(guò)30多年的發(fā)展,現(xiàn)在,絕大多數(shù)本科院校和許多??茖W(xué)校都開(kāi)設(shè)了各種形式的數(shù)學(xué)建模課程和講座,為培養(yǎng)學(xué)生利用數(shù)學(xué)方法分析、解決實(shí)際問(wèn)題的能力開(kāi)辟了一條有效的途徑。
大學(xué)生數(shù)學(xué)建模競(jìng)賽最早是1985年在美國(guó)出現(xiàn)的,1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動(dòng)下,我國(guó)幾所大學(xué)的學(xué)生開(kāi)始參加美國(guó)的競(jìng)賽,而且積極性越來(lái)越高,近幾年參賽校數(shù)、隊(duì)數(shù)占到相當(dāng)大的比例。可以說(shuō),數(shù)學(xué)建模競(jìng)賽是在美國(guó)誕生、在中國(guó)開(kāi)花、結(jié)果的。
全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽已成為全國(guó)高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,創(chuàng)辦于1992年,每年一屆,目前也是世界上規(guī)模最大的數(shù)學(xué)建模競(jìng)賽。20xx年,來(lái)自全國(guó)33個(gè)省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國(guó)的1338所院校、25347個(gè)隊(duì)(其中本科組22233隊(duì)、??平M3114隊(duì))、7萬(wàn)多名大學(xué)生報(bào)名參加本項(xiàng)競(jìng)賽。
數(shù)學(xué)建模是一種數(shù)學(xué)的思想方法,是運(yùn)用數(shù)學(xué)的語(yǔ)言和方法,通過(guò)抽象、簡(jiǎn)化建立能近似刻畫并“解決”實(shí)際問(wèn)題的一種強(qiáng)有力的數(shù)學(xué)手段。其過(guò)程主要包括以下六個(gè)階段:
1.模型準(zhǔn)備:了解問(wèn)題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)象的各種信息。用數(shù)學(xué)語(yǔ)言來(lái)描述問(wèn)題。
2.模型假設(shè):根據(jù)實(shí)際對(duì)象的特征和建模的目的,對(duì)問(wèn)題進(jìn)行必要的簡(jiǎn)化,并用精確的語(yǔ)言提出一些恰當(dāng)?shù)募僭O(shè)。
3.模型建立:在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來(lái)刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)。
4.模型求解:利用獲取的數(shù)據(jù)資料,對(duì)模型的所有參數(shù)做出計(jì)算。
5.模型分析:對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
6.模型檢驗(yàn):將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來(lái)驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次重復(fù)建模過(guò)程。
7.模型應(yīng)用:應(yīng)用方式因問(wèn)題的性質(zhì)和建模的目的而異。
數(shù)學(xué)建模心得體會(huì)論文篇二
通過(guò)一個(gè)月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識(shí)到數(shù)學(xué)建模的實(shí)質(zhì)和對(duì)參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識(shí)。在一個(gè)月里,我們學(xué)了許多知識(shí)放方法,可以說(shuō)數(shù)學(xué)建模需要的`知識(shí)我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識(shí)。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對(duì)建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對(duì)我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來(lái)的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過(guò)的東西,連一點(diǎn)改進(jìn)也沒(méi)有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個(gè)觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無(wú)論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒(méi)有創(chuàng)新,模型就失去了靈魂;沒(méi)有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個(gè)隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無(wú)論正確與否,他總是會(huì)反對(duì)一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模心得體會(huì)論文篇三
數(shù)學(xué)建模是一個(gè)經(jīng)歷觀察、思考、歸類、抽象與的過(guò)程,也是一個(gè)信息捕捉、篩選、整理的過(guò)程,更是一個(gè)思想與方法的產(chǎn)生與選擇的過(guò)程。它給學(xué)生再現(xiàn)了一種“微型科研”的過(guò)程。數(shù)學(xué)建模教學(xué)有利于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,豐富學(xué)生數(shù)學(xué)探索的情感體驗(yàn);有利于學(xué)生自覺(jué)檢驗(yàn)、鞏固所學(xué)的數(shù)學(xué)知識(shí),促進(jìn)知識(shí)的深化、發(fā)展;有利于學(xué)生體會(huì)和感悟數(shù)學(xué)思想方法。同時(shí)教師自身具備數(shù)學(xué)模型的構(gòu)建意識(shí)與能力,才能指導(dǎo)和要求學(xué)生通過(guò)主動(dòng)思維,自主構(gòu)建有效的數(shù)學(xué)模型,從而使數(shù)學(xué)課堂彰顯科學(xué)的魅力。
為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語(yǔ)言來(lái)描述各種現(xiàn)象,這種語(yǔ)言就是數(shù)學(xué)。使用數(shù)學(xué)語(yǔ)言描述的事物就稱為數(shù)學(xué)模型。有時(shí)候我們需要做一些實(shí)驗(yàn),但這些實(shí)驗(yàn)往往用抽象出來(lái)了的數(shù)學(xué)模型作為實(shí)際物體的代替而進(jìn)行相應(yīng)的實(shí)驗(yàn),實(shí)驗(yàn)本身也是實(shí)際操作的一種理論替代。1.只有經(jīng)歷這樣的探索過(guò)程,數(shù)學(xué)的思想、方法才能沉積、凝聚,從而使知識(shí)具有更大的智慧價(jià)值。動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)應(yīng)當(dāng)是一個(gè)主動(dòng)、活潑的、生動(dòng)和富有個(gè)性的過(guò)程。因此,在教學(xué)時(shí)我們要善于引導(dǎo)學(xué)生自主探索、合作交流,對(duì)學(xué)習(xí)過(guò)程、學(xué)習(xí)材料、學(xué)習(xí)發(fā)現(xiàn)主動(dòng)歸納、提升,力求建構(gòu)出人人都能理解的數(shù)學(xué)模型。
教師不應(yīng)只是“講演者”,而應(yīng)不時(shí)扮演下列角色:參謀——提一些求解的建議,提供可參考的信息,但并不代替學(xué)生做出決斷。詢問(wèn)者——故作不知,問(wèn)原因、找漏洞,督促學(xué)生弄清楚、說(shuō)明白,完成進(jìn)度。仲裁者和鑒賞者——評(píng)判學(xué)生工作成果的價(jià)值、意義、優(yōu)劣,鼓勵(lì)學(xué)生有創(chuàng)造性的想法和作法。
為了讓更多的同學(xué)了解數(shù)學(xué)建模,以便于本協(xié)會(huì)其他活動(dòng)的順利開(kāi)展,在新生報(bào)到后,我們以高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽為契機(jī),通過(guò)宣傳和組織,展開(kāi)數(shù)學(xué)建模推廣活動(dòng),向廣大同學(xué)介紹數(shù)學(xué)建模相關(guān)知識(shí),推廣月的主要內(nèi)容有:數(shù)學(xué)建模競(jìng)賽的介紹,數(shù)學(xué)建模所涉及的數(shù)學(xué)知識(shí)的介紹,數(shù)學(xué)建模相關(guān)軟件的推廣等。推廣月活動(dòng)的主要形式是:橫幅、宣傳材料、人工咨詢等。
二、組織學(xué)生參加每年高教社杯全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽。
一年一度的高教社杯大學(xué)生數(shù)學(xué)建模競(jìng)賽將于9月15日左右如期舉行,屆時(shí)本協(xié)會(huì)將在相關(guān)指導(dǎo)老師的統(tǒng)一安排下,組織參賽隊(duì)伍參加此次大賽,力爭(zhēng)為我校爭(zhēng)取榮譽(yù)。
三、年度會(huì)員招收工作。
在校社團(tuán)管理部統(tǒng)一安排的時(shí)間,展開(kāi)新會(huì)員招收工作,主要針對(duì)大一新生,并適量吸收大二學(xué)生,為協(xié)會(huì)增加一些新鮮力量,為協(xié)會(huì)的長(zhǎng)足發(fā)展注入新的活力,招新活動(dòng)將持續(xù)兩到三天,在兩校區(qū)同時(shí)進(jìn)行。
四、干事招聘會(huì)。
在招新活動(dòng)結(jié)束后,我們將在全校范圍內(nèi)的,由協(xié)會(huì)內(nèi)部主要負(fù)責(zé)人組成評(píng)審團(tuán),通過(guò)公開(kāi)招聘的形式,招收一批具有突出能力的新干事,組成一支新的工作人員隊(duì)伍,為更好的開(kāi)展協(xié)會(huì)活動(dòng)和服務(wù)會(huì)員打下基礎(chǔ)。招收新干事部門有:辦公室、外聯(lián)部、實(shí)踐部、宣傳部、科研部、網(wǎng)絡(luò)信息部。
邀請(qǐng)本協(xié)會(huì)指導(dǎo)老師廖虎教授、余慶紅、吳文海等,舉辦三到四次數(shù)學(xué)建模專題講座,為廣大同學(xué)提供一個(gè)了解數(shù)學(xué)建模、學(xué)習(xí)建模知識(shí)的平臺(tái)。
六、會(huì)員大會(huì)。
擬于每年10月下旬和12月上旬,召開(kāi)兩次西安電力高等??茖W(xué)校數(shù)學(xué)建模協(xié)會(huì)會(huì)員大會(huì);會(huì)間將有請(qǐng)協(xié)會(huì)的輔導(dǎo)老師:廖虎教授、余慶紅、吳文海等和其他兄弟協(xié)會(huì)。屆時(shí)幾位輔導(dǎo)老師將介紹數(shù)學(xué)建模的意義和魅力,并講述大學(xué)生數(shù)學(xué)建模大賽的來(lái)歷、發(fā)展、參賽形式和我校每屆參與大賽的獲獎(jiǎng)情況等,讓新會(huì)員更快的認(rèn)識(shí)數(shù)學(xué)建模,并激發(fā)其學(xué)習(xí)數(shù)學(xué)的積極性,讓其更好的參與以后協(xié)會(huì)的活動(dòng)。
七、西安電力高等??茖W(xué)校第二屆大學(xué)生數(shù)學(xué)建模競(jìng)賽。
為進(jìn)一步提升我校學(xué)生參與數(shù)學(xué)建模的積極性,提高數(shù)學(xué)建模的廣泛參與性,我們擬于每年11月中旬舉辦西安電力高等專科學(xué)校第二屆大學(xué)生數(shù)學(xué)建模競(jìng)賽;大賽將分為4組,針對(duì)不同層次的大學(xué)生評(píng)選出獲獎(jiǎng)作品。比賽結(jié)束之后將舉行頒獎(jiǎng)大會(huì),為各個(gè)參賽組獲獎(jiǎng)選手頒發(fā)獎(jiǎng)品。
為加深我校學(xué)生對(duì)數(shù)學(xué)建模知識(shí)的了解,幫助同學(xué)們參與到數(shù)學(xué)建模事業(yè)中去,我們擬邀請(qǐng)全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽獲獎(jiǎng)選手與協(xié)會(huì)會(huì)員一起交流比賽經(jīng)驗(yàn),并由獲獎(jiǎng)選手回答提問(wèn)。
九、大學(xué)生數(shù)學(xué)建模協(xié)會(huì)網(wǎng)站的建設(shè)與信息服務(wù)。
在有關(guān)領(lǐng)導(dǎo)的關(guān)心幫助下,本協(xié)會(huì)的網(wǎng)站本著服務(wù)會(huì)員、交流心得、學(xué)習(xí)經(jīng)驗(yàn)、傳播知識(shí)的原則,對(duì)各種數(shù)學(xué)建模相關(guān)知識(shí)(論文、軟件)進(jìn)行發(fā)布,對(duì)校園內(nèi)各種相關(guān)新聞信息進(jìn)行報(bào)道,對(duì)各種同學(xué)們關(guān)心的數(shù)學(xué)問(wèn)題進(jìn)行討論。本學(xué)期,我們將利用網(wǎng)站這一優(yōu)勢(shì),我們將充分利用網(wǎng)絡(luò)信息傳遞速度快的特點(diǎn),在發(fā)揮網(wǎng)站宣傳平臺(tái)這一作用的基礎(chǔ)上,著手舉辦一些時(shí)代性強(qiáng)、參與性強(qiáng)、靈活生動(dòng)的網(wǎng)絡(luò)活動(dòng)。
數(shù)學(xué)建模心得體會(huì)論文篇四
數(shù)學(xué)建模是當(dāng)今社會(huì)中越來(lái)越受重視的一門學(xué)科,通過(guò)數(shù)學(xué)方法解決實(shí)際問(wèn)題,對(duì)于培養(yǎng)學(xué)生的邏輯思維、創(chuàng)新能力和實(shí)踐能力起著重要的作用。在我參與數(shù)學(xué)建模的過(guò)程中,我深刻地體會(huì)到,數(shù)學(xué)建模不僅需要良好的數(shù)學(xué)基礎(chǔ),還需要堅(jiān)持、努力和合作的精神,以及對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力。
首先,數(shù)學(xué)建模需要良好的數(shù)學(xué)基礎(chǔ)。在解決實(shí)際問(wèn)題的過(guò)程中,需要運(yùn)用到多種數(shù)學(xué)方法和模型,如概率統(tǒng)計(jì)、線性規(guī)劃、微分方程等。而這些都要求我們具備扎實(shí)的數(shù)學(xué)基礎(chǔ)。因此,在參與數(shù)學(xué)建模之前,我們要加強(qiáng)對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的學(xué)習(xí),同時(shí)要注重?cái)?shù)學(xué)的實(shí)際應(yīng)用,培養(yǎng)數(shù)學(xué)思維和解決實(shí)際問(wèn)題的能力。
其次,數(shù)學(xué)建模需要堅(jiān)持、努力和合作的精神。數(shù)學(xué)建模不是一蹴而就的過(guò)程,需要耐心和毅力去面對(duì)問(wèn)題和困難。在實(shí)際操作中,往往會(huì)遇到數(shù)據(jù)收集不全、模型構(gòu)建不準(zhǔn)確等問(wèn)題,這時(shí)候我們要保持積極樂(lè)觀的心態(tài),不斷嘗試和改進(jìn)。同時(shí),在團(tuán)隊(duì)合作中,我們要尊重他人意見(jiàn),共同努力,形成優(yōu)勢(shì)互補(bǔ)的合作關(guān)系,才能最終完成一個(gè)優(yōu)秀的數(shù)學(xué)模型。
此外,數(shù)學(xué)建模需要對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力。在解決實(shí)際問(wèn)題時(shí),我們要對(duì)問(wèn)題本身有敏銳的觸覺(jué),能夠發(fā)現(xiàn)問(wèn)題背后的本質(zhì)和規(guī)律。同時(shí),我們也要具備獨(dú)立思考的能力,不僅僅依靠他人的意見(jiàn)和經(jīng)驗(yàn),而是要從自己的角度去分析和解決問(wèn)題。只有這樣才能在數(shù)學(xué)建模中取得令人滿意的結(jié)果。
最后,數(shù)學(xué)建模是一個(gè)不斷學(xué)習(xí)和提高的過(guò)程。在每一次實(shí)踐中,我們都可以從中汲取經(jīng)驗(yàn),了解到不同領(lǐng)域、不同問(wèn)題的特點(diǎn)和要點(diǎn)。同時(shí),我們也要關(guān)注前沿的數(shù)學(xué)建模成果和方法,及時(shí)補(bǔ)充自己的知識(shí)和技能。通過(guò)不斷學(xué)習(xí)和提高,我們才能在數(shù)學(xué)建模的道路上越走越遠(yuǎn),取得更出色的成就。
總之,數(shù)學(xué)建模是一門需要我們付出努力和智慧的學(xué)科。通過(guò)我自己的經(jīng)歷,我深刻地認(rèn)識(shí)到數(shù)學(xué)建模不僅僅是一種學(xué)習(xí)方法,更是一種鍛煉自己解決實(shí)際問(wèn)題能力的機(jī)會(huì)。在今后的學(xué)習(xí)和實(shí)踐中,我將繼續(xù)努力,加強(qiáng)自己的數(shù)學(xué)基礎(chǔ),培養(yǎng)堅(jiān)持、努力和合作的精神,提高對(duì)實(shí)際問(wèn)題的敏感性和獨(dú)立思考的能力,不斷學(xué)習(xí)和提高,以更好地應(yīng)對(duì)數(shù)學(xué)建模所帶來(lái)的挑戰(zhàn)。
數(shù)學(xué)建模心得體會(huì)論文篇五
讀數(shù)學(xué)建模課程是我大學(xué)三年級(jí)的必修課程,這門課程讓我感受到了數(shù)學(xué)的實(shí)用性和嚴(yán)謹(jǐn)性,也讓我深刻理解到數(shù)學(xué)在現(xiàn)實(shí)生活中的重要性。在這門課程中,我學(xué)習(xí)了數(shù)學(xué)模型的構(gòu)建、求解和分析方法,我認(rèn)為,這些知識(shí)對(duì)于我以后的學(xué)習(xí)和工作都有很大的幫助。
第二段:探究
在學(xué)習(xí)數(shù)學(xué)建模的過(guò)程中,我發(fā)現(xiàn),一個(gè)好的數(shù)學(xué)模型不僅要符合現(xiàn)實(shí),還要有嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)證明。因此,我學(xué)習(xí)了多種數(shù)學(xué)知識(shí),包括微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等,這些知識(shí)讓我能夠更好地構(gòu)建數(shù)學(xué)模型,同時(shí)也能夠更好地驗(yàn)證和分析結(jié)果。
第三段:發(fā)揮
在實(shí)踐建模的過(guò)程中,我發(fā)現(xiàn),一個(gè)好的數(shù)學(xué)模型不僅需要有合適的數(shù)學(xué)公式,還需要有合理的數(shù)據(jù)支持。因此,我學(xué)習(xí)了如何獲取和分析數(shù)據(jù),并學(xué)會(huì)了使用MATLAB等計(jì)算工具對(duì)數(shù)據(jù)進(jìn)行分析和可視化。這些工具不僅方便了我對(duì)數(shù)據(jù)的理解,還能夠幫助我更好地展示數(shù)學(xué)模型的結(jié)果。
第四段:總結(jié)
通過(guò)學(xué)習(xí)數(shù)學(xué)建模,我發(fā)現(xiàn)成功的模型需要具備以下特點(diǎn):1、模型要符合現(xiàn)實(shí);2、模型的數(shù)學(xué)表達(dá)式要嚴(yán)謹(jǐn);3、模型需要有合理的數(shù)據(jù)支持;4、模型的結(jié)果需要有實(shí)際意義。這些特點(diǎn)相互為依存,缺一不可。同時(shí),我也認(rèn)識(shí)到,在數(shù)學(xué)建模中,靈活性和創(chuàng)新性同樣重要,只有掌握了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識(shí),才能更好地發(fā)揮個(gè)人思維的特點(diǎn),構(gòu)建出更為優(yōu)秀的數(shù)學(xué)模型。
第五段:?jiǎn)⑹?BR> 學(xué)習(xí)數(shù)學(xué)建模的過(guò)程中,我不僅學(xué)到了嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)知識(shí),還學(xué)會(huì)了如何分析和解決實(shí)際問(wèn)題。在以后的學(xué)習(xí)和工作中,我將不斷運(yùn)用這些知識(shí)和技能,以更好地解決實(shí)際問(wèn)題,為社會(huì)做出自己的貢獻(xiàn)。同時(shí),我也希望更多的人能夠認(rèn)識(shí)到數(shù)學(xué)的實(shí)用性和重要性,從而更好地學(xué)習(xí)和應(yīng)用數(shù)學(xué)。
數(shù)學(xué)建模心得體會(huì)論文篇六
計(jì)算機(jī)學(xué)院、軟件學(xué)院級(jí)學(xué)生吳瑞紅(保送為我院研究生)。
大一時(shí)聽(tīng)學(xué)長(zhǎng)們講數(shù)學(xué)建模競(jìng)賽,對(duì)他們有一種敬佩,對(duì)數(shù)學(xué)建模競(jìng)賽有一種渴望。這種渴望不是一定要拿個(gè)什么獎(jiǎng)項(xiàng),而是想體驗(yàn)一下這三天三夜的競(jìng)賽,提高自身能力。意想不到的是,我們榮獲了全國(guó)一等獎(jiǎng)。我們心里充滿驚喜的同時(shí)也充滿了感激。感謝老師和同學(xué)對(duì)我們悉心指導(dǎo)和鼓勵(lì);感謝學(xué)院和學(xué)校給我們提供物質(zhì)和精神的幫助和支持。
一直以來(lái),我們都認(rèn)為我們是很平凡的一組。第一,我們都沒(méi)有深入學(xué)習(xí)過(guò)數(shù)學(xué)建模,短短的個(gè)把月的學(xué)習(xí)時(shí)間讓我們始終有點(diǎn)懷疑自己能否真正了解它。盡管,我們不是信心十足地開(kāi)始了,但我們卻沒(méi)有放棄。我們堅(jiān)持著從最基本的開(kāi)始,一點(diǎn)點(diǎn)攻破。我們抱著能提高自己,學(xué)習(xí)知識(shí)的想法去對(duì)待這場(chǎng)競(jìng)賽?;蛟S,正是我們這種平常心讓我們把自己發(fā)揮得淋漓盡致,才有了最后的結(jié)果。有心栽花花不開(kāi),無(wú)心插柳柳成蔭,這讓我們明白一個(gè)道理:遇事不可太急功近利,那樣可能會(huì)適得其反。
第二,我想說(shuō)的是我們的團(tuán)隊(duì)。我們其實(shí)僅僅是臨時(shí)組的一個(gè)隊(duì),甚至我們之間有的幾乎沒(méi)說(shuō)過(guò)幾句話,但這并不影響我們的合作。我們?cè)谝婚_(kāi)始便進(jìn)行了分工:選組長(zhǎng)也是一個(gè)很重要的問(wèn)題:他的作用就相當(dāng)于計(jì)算機(jī)中的cpu,是全隊(duì)的核心,如果一個(gè)隊(duì)的leader不得力,往往影響一個(gè)隊(duì)的正常發(fā)揮。由于身為班長(zhǎng)的我具備了一定組織、協(xié)調(diào)和較強(qiáng)的決策能力以及對(duì)matlab較濃厚的興趣,決定由我擔(dān)任小組組長(zhǎng)并負(fù)責(zé)編程。我的隊(duì)友中有對(duì)數(shù)學(xué)比較感興趣的于是由她負(fù)責(zé)進(jìn)行算法的分析,另外一個(gè)隊(duì)友負(fù)責(zé)論文。組長(zhǎng)應(yīng)該有較強(qiáng)的決策能力,在大家出現(xiàn)分歧時(shí)能果斷地拿出主意,當(dāng)隊(duì)中有人信心動(dòng)搖時(shí)(特別是第三天,人可能已經(jīng)心力交瘁了),組長(zhǎng)應(yīng)發(fā)揮其作用,讓整個(gè)隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。注意有人說(shuō),團(tuán)隊(duì)需要磨合期,這是毋庸置疑的,但是如果你真的把自己當(dāng)成其中的一員,努力融入其中,你會(huì)發(fā)現(xiàn)那原來(lái)是一件很簡(jiǎn)單的事情。記得,你們是一個(gè)團(tuán)隊(duì),要相互支持,相互鼓勵(lì),要有相容的胸襟,要有合作的意識(shí),要時(shí)刻記得你們是榮辱與共的,不要只注重個(gè)人得失。在比賽時(shí),一個(gè)人的思考是不全面的,大家要一起討論才有可能把問(wèn)題搞清楚,因此無(wú)論做任何板塊,三個(gè)人要齊心才行,只靠一個(gè)人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
數(shù)學(xué)建模心得體會(huì)論文篇七
通過(guò)一個(gè)月的集訓(xùn),我受益匪淺。我進(jìn)一步的認(rèn)識(shí)到數(shù)學(xué)建模的實(shí)質(zhì)和對(duì)參賽隊(duì)員的要求。數(shù)學(xué)建模就是培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。它要求參賽隊(duì)員有較強(qiáng)的創(chuàng)新精神,有較大的'靈活性和隨機(jī)應(yīng)變能力,要求參賽隊(duì)員之間有良好的團(tuán)隊(duì)精神和相互協(xié)作意識(shí)。在一個(gè)月里,我們學(xué)了許多知識(shí)放方法,可以說(shuō)數(shù)學(xué)建模需要的知識(shí)我們都了解了一點(diǎn),關(guān)鍵在于如何應(yīng)用這些知識(shí)。這種即學(xué)即用的能力是我們以后學(xué)習(xí)、工作所必須的能力。在此我對(duì)建模是出現(xiàn)的一些現(xiàn)象發(fā)表一些看法。
隨著信息的高速化,我們很容易找到和建模有關(guān)的資料,這對(duì)我們理解題目意思和促發(fā)新思路、新想法是有幫助的。但是有的集訓(xùn)小組或集訓(xùn)隊(duì)員他們建模完全依靠找資料,建出來(lái)的模型就是幾本參考書的綜合,他們所用的方法完全是別人研究過(guò)的東西,連一點(diǎn)改進(jìn)也沒(méi)有。如果這樣的話,數(shù)學(xué)建模就失去了意義。我始終堅(jiān)持一個(gè)觀點(diǎn):數(shù)學(xué)建模最重要的是創(chuàng)新。無(wú)論是你創(chuàng)造一種新方法還是創(chuàng)造性的運(yùn)用一種方法,還是改進(jìn)別人的方法都是很重要的。沒(méi)有創(chuàng)新,模型就失去了靈魂;沒(méi)有創(chuàng)新,模型就不是你的模型。
我們隊(duì)配合不是很理想。主要是有個(gè)隊(duì)員他總認(rèn)為自己是正確的,別人找到的資料不如他好,別人提出的觀點(diǎn)、思想思想無(wú)論正確與否,他總是會(huì)反對(duì)一下。他總是十分注重小的方面,不從大局考慮。由于這些原因,我們建的模型總是不好。
數(shù)學(xué)建模心得體會(huì)論文篇八
數(shù)學(xué)建模作為一種綜合性的能力與技術(shù),近年來(lái)深受大眾的關(guān)注與推崇。作為一名數(shù)學(xué)愛(ài)好者,我對(duì)數(shù)學(xué)建模這個(gè)領(lǐng)域也產(chǎn)生了濃厚的興趣。在閱讀關(guān)于數(shù)學(xué)建模的相關(guān)書籍、學(xué)習(xí)課程與參加各類競(jìng)賽的過(guò)程中,我深刻地領(lǐng)悟到了數(shù)學(xué)建模的種種魅力,也匯總了一些讀數(shù)學(xué)建模的心得與體會(huì)。
第二段:學(xué)習(xí)經(jīng)驗(yàn)。
為了更好地理解數(shù)學(xué)建模,我通過(guò)網(wǎng)上課程等不斷學(xué)習(xí)。由于數(shù)學(xué)建模這個(gè)領(lǐng)域廣泛涉及到的知識(shí)面十分廣泛,所以學(xué)習(xí)的內(nèi)容也十分繁瑣。在學(xué)習(xí)的過(guò)程中,我力求將各個(gè)專業(yè)領(lǐng)域的知識(shí)以及各種方法融合在一起,取長(zhǎng)補(bǔ)短,做到融會(huì)貫通。同時(shí),也需要不斷地與比賽、挑戰(zhàn)賽等交流中,去檢驗(yàn)自己的知識(shí)水平,并不斷地提高自己的學(xué)習(xí)能力。
第三段:實(shí)踐體會(huì)。
學(xué)習(xí)歸來(lái),我開(kāi)始了自己的實(shí)踐之旅。在應(yīng)對(duì)數(shù)學(xué)建模的挑戰(zhàn)的過(guò)程中,我逐漸意識(shí)到模型的準(zhǔn)確度與應(yīng)用性是非常重要的。想要達(dá)到這點(diǎn),必須不斷地加強(qiáng)數(shù)學(xué)知識(shí)的學(xué)習(xí),提高自己的實(shí)際操作能力。另外,更加注重分析真實(shí)場(chǎng)景與數(shù)據(jù),了解不同數(shù)據(jù)之間的關(guān)系與差異,并運(yùn)用不同的數(shù)據(jù)分析方法,以保證模型的精度與可靠性。
第四段:對(duì)未來(lái)的研究目標(biāo)。
雖然我在數(shù)學(xué)建模的學(xué)習(xí)與實(shí)踐中有了一定的收獲,但我深知自己仍是一個(gè)初學(xué)者,未來(lái)的路還有很長(zhǎng)。因此,我計(jì)劃在未來(lái)的學(xué)習(xí)與實(shí)踐中,更加注重對(duì)數(shù)學(xué)建模理論的深度探究,從更加基礎(chǔ)的角度出發(fā)去分析模型,從而更好地將理論運(yùn)用于實(shí)踐。另外,我也將繼續(xù)參加各種數(shù)學(xué)建模競(jìng)賽,不斷挑戰(zhàn)自己,提高自己的技能水平。
第五段:總結(jié)。
回首自己的數(shù)學(xué)建模之路,我深深體會(huì)到數(shù)學(xué)建模的魅力與難度。在實(shí)踐過(guò)程中,我不斷地學(xué)習(xí)、嘗試與挑戰(zhàn)自己,才有了今天的成果。未來(lái),我會(huì)繼續(xù)深入學(xué)習(xí)、實(shí)踐,不斷提升自己,讓數(shù)學(xué)建模這個(gè)寶藏般的領(lǐng)域,能夠不斷地被挖掘、發(fā)現(xiàn)鏈梢,為人類社會(huì)提供更多的發(fā)展動(dòng)力。
數(shù)學(xué)建模心得體會(huì)論文篇九
計(jì)算機(jī)學(xué)院、軟件學(xué)院級(jí)學(xué)生范娜(保送為華東師大研究生)。
9月的“高教杯”全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽已經(jīng)過(guò)去一周多了,但是在我心中,計(jì)算機(jī)學(xué)院、軟件學(xué)院三樓機(jī)房的燈光依然明亮,與隊(duì)友三天三夜一起奮戰(zhàn)的記憶依然清晰。
大二下學(xué)期,我院開(kāi)設(shè)了《數(shù)學(xué)建?!愤x修課,由于每周只有一大節(jié)《數(shù)學(xué)建模》課程,再加上大二專業(yè)主干課程很多,任務(wù)重,除了老師課上的講解,平日我很少有時(shí)間去溫習(xí)和預(yù)習(xí),更別說(shuō)去結(jié)合實(shí)例進(jìn)行建模了。那時(shí)的數(shù)學(xué)建模對(duì)于我來(lái)說(shuō)就是一項(xiàng)很重要的任務(wù),想要參加但是又不知道如何去完成。但是我認(rèn)為數(shù)學(xué)建模是要求把模型用在實(shí)例中進(jìn)行求解,最重要的就是創(chuàng)建模型的思路以及用語(yǔ)言去描述建模的過(guò)程和結(jié)果。
暑假快要來(lái)臨時(shí),學(xué)院進(jìn)行參賽隊(duì)員的選拔。參賽的選手由老師選拔和筆試選拔兩部分組成。我是在筆試中被選拔出來(lái)的,現(xiàn)在想想,可能差一點(diǎn)就失去了參加數(shù)學(xué)建模的資格。我認(rèn)為選拔還是參照筆試的成績(jī)確定人選,從全方位考察學(xué)生的綜合素質(zhì)以及寫作素質(zhì),這樣才能更好的遴選出參賽選手,真正的做到給有創(chuàng)新思維的選手機(jī)會(huì)。
隨后遇到的問(wèn)題就是如何組隊(duì)。我們組是由兩個(gè)計(jì)算機(jī)專業(yè)和一個(gè)通信工程專業(yè)的學(xué)生組成,現(xiàn)在看來(lái)我們的組合有一定的偶然性,但更多的是一種合理性。首先,我們組中有兩位女生,都擅長(zhǎng)文字處理工作。應(yīng)該明確的是,數(shù)學(xué)建模比賽最后遞交給組委會(huì)的是一篇論文,也就是三天三夜的成果是以文字的形式出現(xiàn)在專家面前,文章中的文字排版、遣詞造句至關(guān)重要。女生的特點(diǎn)之一就是細(xì)心,我們平時(shí)很注意收集專業(yè)的描述性詞匯,因此論文詞匯豐富、生動(dòng);第二,我們?nèi)齻€(gè)的思維出發(fā)點(diǎn)不一樣,各有擅長(zhǎng)的數(shù)學(xué)模型和知識(shí)能力,這就使我們?cè)诜謩e思考后有更多的內(nèi)容可以討論,增加建模的創(chuàng)新點(diǎn),彌補(bǔ)彼此的不足;第三,我們?nèi)齻€(gè)的團(tuán)隊(duì)意識(shí)很強(qiáng),彼此相互鼓勵(lì)相互扶持。
同時(shí),我還發(fā)現(xiàn)這樣一個(gè)現(xiàn)象。由于時(shí)間緊張的關(guān)系,我們?cè)谂嘤?xùn)的時(shí)候還沒(méi)有完整的做過(guò)一道題目。也就是說(shuō)在賽前大家主要進(jìn)行理論上的準(zhǔn)備,很少進(jìn)行實(shí)踐,這樣就不能預(yù)見(jiàn)和發(fā)現(xiàn)小組在未來(lái)要進(jìn)行的三天三夜中,究竟會(huì)遇到什么問(wèn)題。針對(duì)這樣的現(xiàn)象,我們小組用了三天的時(shí)間來(lái)進(jìn)行比賽的模擬,每天做一道題。我們嚴(yán)格按照比賽的標(biāo)準(zhǔn)來(lái)要求自己:早上開(kāi)始審題,組員分別思考一小時(shí)進(jìn)行個(gè)人建模,其次三人一起討論,然后編寫論文,盡量把論文詳細(xì)的寫出來(lái)一部分直到一天結(jié)束。在模擬的過(guò)程中我們遇到很多的問(wèn)題,比如時(shí)常會(huì)忘記討論的初步模型和一些思路,因此我們?cè)谡嬲荣惖臅r(shí)候會(huì)對(duì)小組的的討論進(jìn)行錄音,這樣可以隨時(shí)查看建模的思路。像這樣的細(xì)節(jié)問(wèn)題只能是在模擬中才能發(fā)現(xiàn)的,因此我認(rèn)為在賽前進(jìn)行比賽的模擬也是十分重要的。
接下來(lái)的三天三夜讓我很難忘,我也有很多的感想。數(shù)學(xué)建模不是一般意義的解題,它允許你使用任何已有的東西,包括別人的'研究成果、圖書資料、網(wǎng)絡(luò)資源等等,但抄襲是不允許的。這些東西都需要證明,但要結(jié)合實(shí)例進(jìn)行求解。在賽前word文檔要熟練掌握,如果熟練程度不夠,那么在建模比賽中,在整理文檔這一項(xiàng)上就會(huì)浪費(fèi)大量的時(shí)間與精力。光有錄入速度是不夠的,還要注意符號(hào)的書寫,頁(yè)碼的插入,公式編輯器的熟練運(yùn)用。還要有熱情,要有認(rèn)真、嚴(yán)謹(jǐn)?shù)目茖W(xué)精神。當(dāng)我們遇到我們不會(huì)的問(wèn)題,需要用到新的知識(shí)時(shí),我們會(huì)毫不猶豫的去學(xué)習(xí)這些知識(shí),熱情使我們不懼怕任何困難。
總之,這次建模競(jìng)賽不論是在知識(shí)面上還是在動(dòng)手能力上都是對(duì)我的一種挑戰(zhàn),盡管一路走來(lái)十分辛苦,但是卻使我多了一種充實(shí)自我的經(jīng)歷,多了一份創(chuàng)造的經(jīng)驗(yàn),多了一份坦然面對(duì)的自信,從而在前進(jìn)的道路上走的更順暢。在這個(gè)過(guò)程中,指導(dǎo)老師和我們一起度過(guò)炎炎夏日,也陪我們熬夜修改論文,非常辛苦,也向給予我們指導(dǎo)的各位老師和建模過(guò)程中關(guān)心我們的院領(lǐng)導(dǎo)表示衷心的感謝!
數(shù)學(xué)建模心得體會(huì)論文篇十
數(shù)學(xué)建模作為一門綜合性學(xué)科,具有廣泛的應(yīng)用領(lǐng)域和深遠(yuǎn)的影響,對(duì)于提高解決實(shí)際問(wèn)題的能力和培養(yǎng)創(chuàng)新思維具有重要意義。通過(guò)參與數(shù)學(xué)建模比賽和項(xiàng)目,我深刻地認(rèn)識(shí)到數(shù)學(xué)建模的重要性,也積累了一些心得體會(huì)。下面我將結(jié)合個(gè)人經(jīng)歷,談?wù)勎以跀?shù)學(xué)建模過(guò)程中的心得體會(huì)。
一、明確問(wèn)題與方法。
在進(jìn)行數(shù)學(xué)建模之前,首先要明確問(wèn)題的面貌和要解決的目標(biāo),然后選擇適合的方法進(jìn)行分析和求解。在這個(gè)過(guò)程中,我們要善于抓住問(wèn)題的關(guān)鍵點(diǎn),理清問(wèn)題與已有知識(shí)的聯(lián)系,避免偏離主題和走入死胡同。同時(shí),我們也要善于借鑒已有的數(shù)學(xué)工具和模型,不斷開(kāi)拓創(chuàng)新。
在一次模擬城市交通擁堵的建模比賽中,我意識(shí)到對(duì)于這個(gè)復(fù)雜的問(wèn)題,單純的數(shù)學(xué)模型是遠(yuǎn)遠(yuǎn)不夠的。所以,我結(jié)合地理信息系統(tǒng)(GIS)和傳感器技術(shù),將城市道路分隔成小區(qū)域,通過(guò)收集實(shí)時(shí)的交通數(shù)據(jù),建立起更為精確和實(shí)用的交通擁堵模型。這一方法不僅使得模型具有了更高的可靠性和準(zhǔn)確度,也增加了我們對(duì)解決問(wèn)題的信心。
二、合理假設(shè)與模型構(gòu)建。
在進(jìn)行數(shù)學(xué)建模時(shí),我們往往需要根據(jù)實(shí)際情況進(jìn)行一些合理的假設(shè),以簡(jiǎn)化復(fù)雜的問(wèn)題和推動(dòng)建模的進(jìn)程。但是,這些假設(shè)必須是合理和可行的,不能過(guò)于片面或離實(shí)際太遠(yuǎn)。同時(shí),在構(gòu)建模型時(shí),我們也要盡量選用簡(jiǎn)單而有力的數(shù)學(xué)工具,以便于計(jì)算和分析。
在解決一個(gè)涉及醫(yī)學(xué)影像分析的問(wèn)題時(shí),我們需要對(duì)醫(yī)學(xué)影像進(jìn)行處理和分析,還要設(shè)計(jì)出一個(gè)能夠自動(dòng)識(shí)別和分析影像的數(shù)學(xué)模型。我所參與的團(tuán)隊(duì)深入了解醫(yī)學(xué)影像學(xué),分析了不同的影像特征,并基于傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型構(gòu)建了一個(gè)高效的醫(yī)學(xué)影像分析模型。在模型的構(gòu)建過(guò)程中,我們注意了計(jì)算和實(shí)施的可行性,將模型的復(fù)雜度降低到合理的范圍內(nèi),并采用了一些有效的算法來(lái)提高模型的精確性和準(zhǔn)確度。
三、數(shù)據(jù)分析與結(jié)果驗(yàn)證。
在數(shù)學(xué)建模中,數(shù)據(jù)的分析和結(jié)果的驗(yàn)證是非常重要的環(huán)節(jié)。通過(guò)對(duì)數(shù)據(jù)的分析,我們可以揭示問(wèn)題的本質(zhì)和規(guī)律,進(jìn)而得出解決問(wèn)題的方法和結(jié)論。而結(jié)果的驗(yàn)證則是模型可靠性和精確性的檢驗(yàn),也是對(duì)我們解決問(wèn)題的能力和方法的評(píng)判。
在一次銀行信用評(píng)估的建模過(guò)程中,我們基于大量的歷史交易數(shù)據(jù),通過(guò)建立一套信用評(píng)估模型,對(duì)客戶的信用情況進(jìn)行分析和預(yù)測(cè)。在對(duì)模型進(jìn)行驗(yàn)證時(shí),我們通過(guò)對(duì)部分客戶進(jìn)行篩選和測(cè)試,對(duì)比模型預(yù)測(cè)的結(jié)果與實(shí)際情況,發(fā)現(xiàn)模型的準(zhǔn)確度達(dá)到了90%以上。這使我們對(duì)模型的有效性和可靠性有了更加深刻的認(rèn)識(shí),并為進(jìn)一步完善和推廣模型提供了依據(jù)。
四、團(tuán)隊(duì)合作與學(xué)習(xí)。
數(shù)學(xué)建模不僅僅是一個(gè)人的事情,更是一個(gè)團(tuán)隊(duì)的合作。通過(guò)和其他隊(duì)員的合作,我們可以相互學(xué)習(xí)和借鑒彼此的經(jīng)驗(yàn)和思維模式,在解決實(shí)際問(wèn)題的過(guò)程中形成協(xié)同效應(yīng)。同時(shí),團(tuán)隊(duì)合作也是一個(gè)學(xué)習(xí)的過(guò)程,通過(guò)和隊(duì)友的交流和探討,我們可以不斷拓寬思維,并且從對(duì)方身上學(xué)到更多的知識(shí)和技能。
在一次研究森林生態(tài)系統(tǒng)的建模項(xiàng)目中,我和團(tuán)隊(duì)成員們共同制定了研究方案和實(shí)驗(yàn)設(shè)計(jì),并分工協(xié)作。通過(guò)團(tuán)隊(duì)的合作,我們不斷從實(shí)驗(yàn)數(shù)據(jù)中總結(jié)經(jīng)驗(yàn),進(jìn)行模型驗(yàn)證和修正,并最終成功地建立了一個(gè)能夠模擬和預(yù)測(cè)森林生態(tài)系統(tǒng)變化的多元模型。這個(gè)成功的案例不僅使我們對(duì)數(shù)學(xué)建模有了更深入的認(rèn)識(shí),也讓我們領(lǐng)悟到團(tuán)隊(duì)合作的重要性和價(jià)值。
五、不斷學(xué)習(xí)和總結(jié)。
在數(shù)學(xué)建模的過(guò)程中,我們要不斷學(xué)習(xí)和總結(jié),積累經(jīng)驗(yàn)和提高能力。只有不斷的學(xué)習(xí)和實(shí)踐,我們才能夠更好地適應(yīng)和解決不同領(lǐng)域的實(shí)際問(wèn)題,并在數(shù)學(xué)建模的道路上不斷成長(zhǎng)。
總的來(lái)說(shuō),參與數(shù)學(xué)建模是一次很有收獲和意義的經(jīng)歷。通過(guò)這次經(jīng)歷,我不僅提高了數(shù)學(xué)建模的能力和素養(yǎng),也深刻領(lǐng)悟到了科學(xué)研究的重要性和技術(shù)創(chuàng)新的意義。我相信,在未來(lái)的學(xué)習(xí)和工作中,我會(huì)更加努力地學(xué)習(xí)和實(shí)踐,用數(shù)學(xué)的力量為解決實(shí)際問(wèn)題做出更大的貢獻(xiàn)。
數(shù)學(xué)建模心得體會(huì)論文篇十一
讀數(shù)學(xué)建模是一項(xiàng)需要較高能力的學(xué)問(wèn),需要具備豐富的數(shù)學(xué)知識(shí)和邏輯思維能力。在我學(xué)習(xí)的過(guò)程中,我深刻認(rèn)識(shí)到了數(shù)學(xué)建模的重要性以及在實(shí)際工作和生活中的應(yīng)用價(jià)值。以下是我的讀數(shù)學(xué)建模的心得體會(huì)。
作為一個(gè)計(jì)算機(jī)科班出身的學(xué)生,我很早就開(kāi)始了接觸數(shù)學(xué)建模。但在一開(kāi)始的時(shí)候,我并沒(méi)有真正理解什么是數(shù)學(xué)建模。直到在大學(xué)的選修課中系統(tǒng)地學(xué)習(xí)了一門《數(shù)學(xué)建模及應(yīng)用》課程后,我才對(duì)數(shù)學(xué)建模有了更深入的認(rèn)知和理解。
第二段:理解“建?!?BR> “建?!钡暮诵囊馑际菍?fù)雜的實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,然后用數(shù)學(xué)語(yǔ)言描述該問(wèn)題并進(jìn)行數(shù)學(xué)分析。在實(shí)際的工作和生活中,我們要面對(duì)、研究的諸如市場(chǎng)營(yíng)銷、物流運(yùn)輸、氣象環(huán)境、圖像視頻等不同領(lǐng)域的問(wèn)題都可以通過(guò)“建模”的方式進(jìn)行求解。
第三段:掌握數(shù)學(xué)和編程技能。
數(shù)學(xué)建模需要掌握扎實(shí)的數(shù)學(xué)功底,同時(shí)也要在編程技能上有所涉獵。這是因?yàn)閿?shù)學(xué)建模過(guò)程中需要運(yùn)用到很多數(shù)據(jù)分類和篩選、數(shù)據(jù)可視化、計(jì)算機(jī)程序的實(shí)現(xiàn)等技能。只有將數(shù)學(xué)和編程技能完美結(jié)合,才能為數(shù)學(xué)建模提供最有利的條件。
第四段:關(guān)注實(shí)際問(wèn)題。
在理論知識(shí)的積累與技術(shù)能力的提升之外,數(shù)學(xué)建模中還需要關(guān)注實(shí)際問(wèn)題。我們不能將理論和技術(shù)與實(shí)際問(wèn)題劃分開(kāi)來(lái)。可行的“建?!眴?wèn)題是源于實(shí)際問(wèn)題,因此,在發(fā)現(xiàn)實(shí)際問(wèn)題的基礎(chǔ)上,我們才能夠有更清晰的目標(biāo)和向?qū)崿F(xiàn)目標(biāo)的循序漸進(jìn)的步驟。
第五段:學(xué)習(xí)和交流。
數(shù)學(xué)建模需要廣泛學(xué)習(xí)和交流。我們要閱讀相關(guān)領(lǐng)域的探討和論文,獲取更多的行業(yè)知識(shí)。同時(shí),我們還要積極參加學(xué)術(shù)會(huì)議和交流活動(dòng),與其他學(xué)者和專家協(xié)同工作和深度探討,交換經(jīng)驗(yàn)和知識(shí),并不斷提升自己的建模能力。
在讀數(shù)學(xué)建模的過(guò)程中,我也留下了許多經(jīng)典案例和優(yōu)秀論文,堅(jiān)持探索科學(xué)問(wèn)題的本質(zhì),發(fā)掘應(yīng)用數(shù)學(xué)的潛力。數(shù)學(xué)建模是一個(gè)學(xué)習(xí)與實(shí)踐并行、動(dòng)態(tài)更新的過(guò)程,它將不斷影響我們思考問(wèn)題和解決問(wèn)題的方式,讓我們更好地懂得數(shù)學(xué)對(duì)人類社會(huì)發(fā)展的重要性。
數(shù)學(xué)建模心得體會(huì)論文篇十二
一年一度的全國(guó)數(shù)學(xué)建模大賽在今年的x月x日上午8點(diǎn)拉開(kāi)戰(zhàn)幕,各隊(duì)將在3天72小時(shí)內(nèi)對(duì)一個(gè)現(xiàn)實(shí)中的實(shí)際問(wèn)題進(jìn)行模型建立,求解和分析,確定題目后,我們隊(duì)三人分頭行動(dòng),一人去圖書館查閱資料,一人在網(wǎng)上搜索相關(guān)信息,一人建立模型,通過(guò)三人的努力,在前兩天中建立出兩個(gè)模型并編程求解,經(jīng)過(guò)艱苦的奮斗,終于在第三天完成了論文的寫作,在這三天里我感觸很深,現(xiàn)將心得體會(huì)寫出,希望與大家交流。
1.團(tuán)隊(duì)精神:團(tuán)隊(duì)精神是數(shù)學(xué)建模是否取得好成績(jī)的最重要的因素,一隊(duì)三個(gè)人要相互支持,相互鼓勵(lì)。切勿自己只管自己的一部分(數(shù)學(xué)好的只管建模,計(jì)算機(jī)好的只管編程,寫作好的只管論文寫作),很多時(shí)候,一個(gè)人的思考是不全面的,只有大家一起討論才有可能把問(wèn)題搞清楚,因此無(wú)論做任何板塊,三個(gè)人要一起齊心才行,只靠一個(gè)人的力量,要在三天之內(nèi)寫出一篇高水平的文章幾乎是不可能的。
2.有影響力的leader:在比賽中,leader是很重要的,他的作用就相當(dāng)與計(jì)算機(jī)中的cpu,是全隊(duì)的核心,如果一個(gè)隊(duì)的leader不得力,往往影響一個(gè)隊(duì)的正常發(fā)揮,就拿選題來(lái)說(shuō),有人想做a題,有人想做b題,如果爭(zhēng)論一天都未確定方案的話,可能就沒(méi)有足夠時(shí)間完成一篇論文了,又比如,當(dāng)隊(duì)中有人信心動(dòng)搖時(shí)(特別是第三天,人可能已經(jīng)心力交瘁了),leader應(yīng)發(fā)揮其作用,讓整個(gè)隊(duì)伍重整信心,否則可能導(dǎo)致隊(duì)伍的前功盡棄。
3.合理的時(shí)間安排:做任何事情,合理的時(shí)間安排非常重要,建模也是一樣,事先要做好一個(gè)規(guī)劃,建模一共分十個(gè)板塊(摘要,問(wèn)題提出,模型假設(shè),問(wèn)題分析,模型假設(shè),模型建立,模型求解,結(jié)果分析,模型的評(píng)價(jià)與推廣,參考文獻(xiàn),附錄)。你每天要做完哪幾個(gè)板塊事先要確定好,這樣做才會(huì)使自己游刃有余,保證在規(guī)定時(shí)間內(nèi)完成論文,以避免由于時(shí)間上的不妥,以致于最后無(wú)法完成論文。
4.正確的論文格式:論文屬于科學(xué)性的文章,它有嚴(yán)格的書寫格式規(guī)范,因此一篇好的論文一定要有正確的格式,就拿摘要來(lái)說(shuō)吧,它要包括6要素(問(wèn)題,方法,模型,算法,結(jié)論,特色),它是一篇論文的概括,摘要的好壞將決定你的論文是否吸引評(píng)委的目光,但聽(tīng)閱卷老師說(shuō),這次有些論文的摘要里出現(xiàn)了大量的圖表和程序,這都是不符合論文格式的,這種論文也不會(huì)取得好成績(jī),因此我們寫論文時(shí)要端正態(tài)度,注意書寫格式。
5.論文的寫作:我個(gè)人認(rèn)為論文的寫作是至關(guān)重要的,其實(shí)大家最后的模型和結(jié)果都差不多,為什么有些隊(duì)可以送全國(guó),有些隊(duì)可以拿省獎(jiǎng),而有些隊(duì)卻什么都拿不到,這關(guān)鍵在于論文的寫作上面。一篇好的論文首先讀上去便使人感到邏輯清晰,有條例性,能打動(dòng)評(píng)委;其次,論文在語(yǔ)言上的表述也很重要,要注意用詞的準(zhǔn)確性;另外,一篇好的論文應(yīng)有閃光點(diǎn),有自己的特色,有自己的想法和思考在里面,總之,論文寫作的好壞將直接影響到成績(jī)的優(yōu)劣。
6.算法的設(shè)計(jì):算法的設(shè)計(jì)的好壞將直接影響運(yùn)算速度的快慢,建議大家多用數(shù)學(xué)軟件(mathematice,matlab,maple,mathcad,lindo,lingo,sas等),這里提供十種數(shù)學(xué)建模常用算法,僅供參考:
(1)蒙特卡羅算法(該算法又稱隨機(jī)性模擬算法,是通過(guò)計(jì)算機(jī)仿真來(lái)解決問(wèn)題的算法,同時(shí)可以通過(guò)模擬可以來(lái)檢驗(yàn)自己模型的正確性,是比賽時(shí)必用的方法)。
(2)數(shù)據(jù)擬合、參數(shù)估計(jì)、插值等數(shù)據(jù)處理算法(比賽中通常會(huì)遇到大量的數(shù)據(jù)需要處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用matlab作為工具)。
(3)線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問(wèn)題(建模競(jìng)賽大多數(shù)問(wèn)題屬于最優(yōu)化問(wèn)題,很多時(shí)候這些問(wèn)題可以用數(shù)學(xué)規(guī)劃算法來(lái)描述,通常使用lindo、lingo軟件實(shí)現(xiàn))。
(4)圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡(luò)流、二分圖等算法,涉及到圖論的問(wèn)題可以用這些方法解決,需要認(rèn)真準(zhǔn)備)。
(5)動(dòng)態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法(這些算法是算法設(shè)計(jì)中比較常用的方法,很多場(chǎng)合可以用到競(jìng)賽中)。
(6)最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò)、遺傳算法(這些問(wèn)題是用來(lái)解決一些較困難的最優(yōu)化問(wèn)題的算法,對(duì)于有些問(wèn)題非常有幫助,但是算法的實(shí)現(xiàn)比較困難,需慎重使用)。
(7)網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競(jìng)賽題中有應(yīng)用,當(dāng)重點(diǎn)討論模型本身而輕視算法的時(shí)候,可以使用這種暴力方案,最好使用一些高級(jí)語(yǔ)言作為編程工具)。
(8)一些連續(xù)離散化方法(很多問(wèn)題都是實(shí)際來(lái)的,數(shù)據(jù)可以是連續(xù)的,而計(jì)算機(jī)只認(rèn)的是離散的數(shù)據(jù),因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非常重要的)。
(9)數(shù)值分析算法(如果在比賽中采用高級(jí)語(yǔ)言進(jìn)行編程的話,那一些數(shù)值分析中常用的算法比如方程組求解、矩陣運(yùn)算、函數(shù)積分等算法就需要額外編寫庫(kù)函數(shù)進(jìn)行調(diào)用)。
(10)圖象處理算法(賽題中有一類問(wèn)題與圖形有關(guān),即使與圖形無(wú)關(guān),論文中也應(yīng)該要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問(wèn)題,通常使用matlab進(jìn)行處理)。
數(shù)學(xué)建模心得體會(huì)論文篇十三
運(yùn)籌學(xué)與數(shù)學(xué)建模2門課程聯(lián)系密切,在運(yùn)籌學(xué)教學(xué)中,適當(dāng)融入數(shù)學(xué)建模思想,能大幅度提高學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問(wèn)題的能力.從運(yùn)籌學(xué)教學(xué)中教學(xué)大綱的改革、教學(xué)環(huán)節(jié)的設(shè)計(jì)等方面進(jìn)行了探索與實(shí)踐.教學(xué)實(shí)踐表明,將數(shù)學(xué)建模思想融入到運(yùn)籌學(xué)教學(xué)中能提高課堂教學(xué)的效果,鍛煉學(xué)生的動(dòng)手實(shí)踐能力.
數(shù)學(xué)建模心得體會(huì)論文篇十四
在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時(shí)期對(duì)大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識(shí)的同時(shí),要注重學(xué)生學(xué)習(xí)能力和解決問(wèn)題能力的培養(yǎng)。
數(shù)學(xué)知識(shí)來(lái)源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識(shí)中的典型代表,在各個(gè)行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力十分重要,在傳授知識(shí)的過(guò)程中幫助學(xué)生利用所學(xué)知識(shí)來(lái)解決實(shí)際問(wèn)題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會(huì)公式的應(yīng)用過(guò)程,逐漸掌握解題技巧。
因此,如何能夠在傳授知識(shí)的同時(shí),促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識(shí)應(yīng)用到實(shí)踐中來(lái)解決數(shù)學(xué)問(wèn)題是一個(gè)首要問(wèn)題。從大量教學(xué)實(shí)踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實(shí)提升學(xué)生的數(shù)學(xué)專業(yè)水平。
在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實(shí)際情況,深入挖掘數(shù)學(xué)知識(shí)。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識(shí)實(shí)際學(xué)習(xí)情況,有針對(duì)性地整合數(shù)學(xué)知識(shí),了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
(一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)。
閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識(shí)理論性較強(qiáng),知識(shí)較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識(shí)后,可以引入椅子的穩(wěn)定問(wèn)題,創(chuàng)建數(shù)學(xué)模型,提問(wèn)學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問(wèn)題同所學(xué)知識(shí)相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問(wèn)題。學(xué)生整合所學(xué)知識(shí),通過(guò)對(duì)問(wèn)題的分析,可以了解到利用介值定理來(lái)解決問(wèn)題。通過(guò)建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識(shí)學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。
(二)定積分。
定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問(wèn)題時(shí)均有所應(yīng)用,并且被廣泛應(yīng)用在實(shí)際生活中。如,在一道全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目中,計(jì)算煤矸石的堆積,煤礦采煤時(shí)所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來(lái)堆放煤矸石,根據(jù)上級(jí)主管部門的年產(chǎn)量計(jì)劃和經(jīng)費(fèi)如何堆放煤矸石?題目中的關(guān)鍵點(diǎn)在于堆放煤矸石的征地費(fèi)用和電費(fèi)的計(jì)算。征地費(fèi)計(jì)算難度較小,但是煤矸石堆積的電費(fèi)計(jì)算難度較高,但此項(xiàng)內(nèi)容涉及定積分中的變力做功知識(shí)點(diǎn)。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開(kāi)采量來(lái)堆放煤矸石。通過(guò)數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實(shí)際生活之間的聯(lián)系,學(xué)習(xí)積極性就會(huì)大大提升。
(三)最值問(wèn)題。
在高等數(shù)學(xué)中,最值問(wèn)題占比比較大,同時(shí)在實(shí)際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識(shí)可以解決實(shí)際生活中的最值問(wèn)題,這就需要提高對(duì)導(dǎo)數(shù)知識(shí)實(shí)際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識(shí)后,通過(guò)建立關(guān)于天空的采空模型,提問(wèn)學(xué)生為什么雨后太陽(yáng)出來(lái)了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問(wèn)彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對(duì)此,學(xué)生的興趣較為濃厚,可以分為若干個(gè)小組進(jìn)行討論。通過(guò)分析可以得出,雨滴可以反射太陽(yáng)光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識(shí)來(lái)計(jì)算得出太陽(yáng)光偏轉(zhuǎn)角度的最值,有效解決實(shí)際學(xué)習(xí)的問(wèn)題,加深對(duì)知識(shí)的理解和記憶,提升數(shù)學(xué)知識(shí)學(xué)習(xí)成效。
(四)微分方程。
微分方程知識(shí)同實(shí)際生活之間息息相關(guān),建立微分方程可以有效解決實(shí)際生活中的問(wèn)題。這就需要學(xué)生在了解微分方程知識(shí)的基礎(chǔ)上,進(jìn)一步建立數(shù)學(xué)模型來(lái)解決問(wèn)題。如,在當(dāng)前社會(huì)進(jìn)步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問(wèn)題之一,受到社會(huì)各界廣泛的關(guān)注和重視。通過(guò)問(wèn)題精簡(jiǎn)化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運(yùn)動(dòng)鍛煉兩個(gè)關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹(shù)立正確的減肥理念。
(五)矩陣。
在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問(wèn)題之前,應(yīng)該根據(jù)知識(shí)點(diǎn)來(lái)創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動(dòng)。通過(guò)引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動(dòng)力,并且詳細(xì)記錄管理費(fèi)用。這有助于加深人們對(duì)矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時(shí)幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識(shí)。
綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過(guò)數(shù)學(xué)建模思想來(lái)引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動(dòng)性和創(chuàng)新能力,提升學(xué)生解決問(wèn)題的能力,將所學(xué)知識(shí)靈活運(yùn)用到實(shí)際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
數(shù)學(xué)建模心得體會(huì)論文篇十五
摘要:隨著現(xiàn)代社會(huì)的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無(wú)需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識(shí)解決日常問(wèn)題的一個(gè)重要手段。本文通過(guò)簡(jiǎn)述數(shù)學(xué)建模的方法與過(guò)程,以及應(yīng)用數(shù)學(xué)建模解決實(shí)際經(jīng)濟(jì)問(wèn)題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟(jì)問(wèn)題解決中的重要作用。
經(jīng)濟(jì)現(xiàn)象具有多變性,隨著經(jīng)濟(jì)社會(huì)的發(fā)展,國(guó)際間貿(mào)易往來(lái)的日趨緊密,日常經(jīng)濟(jì)形勢(shì)受到的影響因素越來(lái)越復(fù)雜多變。而日常經(jīng)濟(jì)生活中所遇到的經(jīng)濟(jì)現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對(duì)這些難以把控的變量,做好風(fēng)險(xiǎn)的預(yù)估、成本的核算、進(jìn)行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識(shí)、應(yīng)用數(shù)學(xué)建模為工具進(jìn)行較為理性的計(jì)算,為經(jīng)濟(jì)決策、企業(yè)規(guī)劃提供重要的幫助。
數(shù)學(xué)建模,其實(shí)就是建立數(shù)學(xué)模型的簡(jiǎn)稱,實(shí)際上數(shù)學(xué)建??梢苑Q之為解決問(wèn)題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進(jìn)行合理的運(yùn)算,推導(dǎo)出一種理性的結(jié)果的過(guò)程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個(gè)中介和橋梁,在工業(yè)設(shè)計(jì)、經(jīng)濟(jì)領(lǐng)域、工程建設(shè)等各個(gè)方面,運(yùn)用數(shù)學(xué)的語(yǔ)言和方法進(jìn)行問(wèn)題的求解和推導(dǎo),實(shí)際上,都是一種數(shù)學(xué)建模的過(guò)程。數(shù)學(xué)建模的主要過(guò)程可以總結(jié)為如下的框圖形式:實(shí)際上,數(shù)學(xué)模型的最終建立是一個(gè)反復(fù)驗(yàn)證、修改、完善的動(dòng)態(tài)過(guò)程,很少能夠通過(guò)一次過(guò)程就建立起完美適合實(shí)際問(wèn)題的數(shù)學(xué)模型。通過(guò)上述過(guò)程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問(wèn)題,明確建模的目的,統(tǒng)計(jì)各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實(shí)際對(duì)象的特性,對(duì)復(fù)雜問(wèn)題進(jìn)行簡(jiǎn)化,提取主要因素,提煉精確的數(shù)學(xué)語(yǔ)言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個(gè)量(變量、常量)間的數(shù)學(xué)關(guān)系,化實(shí)際問(wèn)題為數(shù)學(xué)語(yǔ)言;4.模型求解:對(duì)上述數(shù)學(xué)關(guān)系進(jìn)行求解(包括解方程、圖形分析、邏輯運(yùn)算等);5.模型分析:將求解結(jié)果與實(shí)際問(wèn)題結(jié)合,綜合分析,找到模型的缺陷和不足,進(jìn)行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗(yàn):將模型得到的結(jié)果與實(shí)際情況相驗(yàn)證,檢驗(yàn)?zāi)P偷暮侠硇院瓦m用性。
二、經(jīng)濟(jì)問(wèn)題數(shù)學(xué)模型的建立。
經(jīng)濟(jì)類問(wèn)題因?yàn)槠涮赜械奶攸c(diǎn),可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機(jī)性情況的模型,可以解決類似風(fēng)險(xiǎn)評(píng)估、最優(yōu)產(chǎn)量計(jì)算、庫(kù)存平衡等問(wèn)題;確定型則可以基于一定的條件與假設(shè),精確的對(duì)一種特定情況的結(jié)果做出判斷,如成本核算、損失評(píng)估等。對(duì)經(jīng)濟(jì)問(wèn)題的建模計(jì)算實(shí)際上是一個(gè)從經(jīng)濟(jì)世界進(jìn)入數(shù)學(xué)世界再回到經(jīng)濟(jì)世界的過(guò)程。建立經(jīng)濟(jì)數(shù)學(xué)模型,需要首先對(duì)實(shí)際經(jīng)濟(jì)問(wèn)題和情況有一個(gè)較為深入的認(rèn)識(shí),然后通過(guò)細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟(jì)問(wèn)題簡(jiǎn)化提煉為一個(gè)較為理想的自然模型,然后基于這個(gè)原始模型應(yīng)用數(shù)學(xué)知識(shí)建立完整的數(shù)學(xué)經(jīng)濟(jì)模型。
三、建模舉例。
四、結(jié)語(yǔ)。
綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟(jì)中的應(yīng)用可以非常廣泛,對(duì)很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤(rùn)、規(guī)避風(fēng)險(xiǎn)、降低成本、節(jié)省開(kāi)支等各個(gè)方面。上文只提供了一個(gè)簡(jiǎn)單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
數(shù)學(xué)建模心得體會(huì)論文篇十六
高校數(shù)學(xué)教育是高等教育的基礎(chǔ)學(xué)科,占據(jù)重要的一席之地。如何改變學(xué)生對(duì)數(shù)學(xué)枯燥乏味的學(xué)習(xí)狀態(tài),讓學(xué)生輕松愉快地參與到數(shù)學(xué)學(xué)習(xí)中,是當(dāng)前高校數(shù)學(xué)教學(xué)者面臨的一個(gè)重要課題。在高校數(shù)學(xué)教學(xué)中開(kāi)展數(shù)學(xué)建模競(jìng)賽,不僅能培養(yǎng)學(xué)生的創(chuàng)新思維,還能有效提高提高學(xué)生的創(chuàng)新能力、綜合素質(zhì)和對(duì)數(shù)學(xué)的應(yīng)用能力。本文對(duì)高校開(kāi)展數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)進(jìn)行了分析闡述,并對(duì)此進(jìn)行了一定的思考。
數(shù)學(xué)建模是一種融合數(shù)學(xué)邏輯思想的思考方法,通過(guò)運(yùn)用抽象性的數(shù)學(xué)語(yǔ)言和數(shù)學(xué)邏輯思考方法,創(chuàng)造性的解決數(shù)學(xué)問(wèn)題。當(dāng)前很多高校中開(kāi)始引入數(shù)學(xué)建模思想來(lái)加強(qiáng)學(xué)生創(chuàng)新能力的培養(yǎng),可以使學(xué)生的邏輯思維能力和運(yùn)用數(shù)學(xué)邏輯創(chuàng)新解決問(wèn)題的能力得到提升。數(shù)學(xué)建模競(jìng)賽起源于1985年的美國(guó),幾年后國(guó)內(nèi)幾所高校數(shù)學(xué)建模教師組織學(xué)生開(kāi)始參與美國(guó)的數(shù)學(xué)建模大賽,促進(jìn)了數(shù)學(xué)建模思維的快速發(fā)展。直到1992中國(guó)首屆數(shù)學(xué)建模大賽召開(kāi),而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長(zhǎng),呈現(xiàn)一派繁榮景象。
2.1數(shù)學(xué)建模競(jìng)賽自主性較強(qiáng)。自主性首先體現(xiàn)在在數(shù)學(xué)建模過(guò)程中學(xué)生可以根據(jù)自己的建模需要通過(guò)一切可以利用的資源、工具來(lái)進(jìn)行資料查閱和收集,建模比賽隊(duì)員可以根據(jù)自己的意見(jiàn)和思維進(jìn)行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學(xué)建模競(jìng)賽的組織形式呈現(xiàn)多元化特點(diǎn),組織制度上也較為靈活多樣,數(shù)學(xué)建模主要側(cè)重于分析思想,沒(méi)有標(biāo)準(zhǔn)答案可以參考分享。2.2建模隊(duì)伍呈日益燎原之勢(shì)。1992年首屆中國(guó)數(shù)學(xué)建模大賽開(kāi)展以來(lái),其影響力與日俱增,高校和社會(huì)各界對(duì)數(shù)學(xué)建模頗為重視,參賽隊(duì)伍、參賽學(xué)生的質(zhì)量一直處于上升狀態(tài),數(shù)學(xué)模型也日漸合理科學(xué),學(xué)生團(tuán)隊(duì)在國(guó)際數(shù)學(xué)建模大賽中屢創(chuàng)驕人戰(zhàn)績(jī)。2.3組織培訓(xùn)日益加強(qiáng)。數(shù)學(xué)建模競(jìng)賽對(duì)學(xué)生數(shù)學(xué)知識(shí)的掌握及靈活運(yùn)用、口套表達(dá)、語(yǔ)言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓(xùn)的時(shí)間很長(zhǎng),培訓(xùn)內(nèi)容也很豐富,為數(shù)學(xué)建模競(jìng)賽取得好成績(jī)奠定了堅(jiān)實(shí)的基礎(chǔ)。
3.1學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識(shí)得到增強(qiáng)。數(shù)學(xué)建模競(jìng)賽的團(tuán)隊(duì)組織形式活潑自由,通常采用學(xué)生組隊(duì)模式開(kāi)展,數(shù)學(xué)建模競(jìng)賽隊(duì)伍形成一個(gè)團(tuán)結(jié)戰(zhàn)斗的整體,代表著不僅僅是學(xué)校的聲譽(yù),還一定程度上展示著國(guó)家的形象。經(jīng)過(guò)長(zhǎng)時(shí)間的培訓(xùn),對(duì)數(shù)學(xué)模型的研究和分析,根據(jù)學(xué)生訓(xùn)練中的優(yōu)勢(shì)和特長(zhǎng),進(jìn)行合理科學(xué)的小組分工,讓學(xué)生快速高效地完成整個(gè)數(shù)學(xué)建模,在建模過(guò)程中學(xué)生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢(shì)和長(zhǎng)處,確保數(shù)學(xué)建模取得最大效用,學(xué)生的團(tuán)隊(duì)協(xié)作能力和意識(shí)得到鍛煉,責(zé)任感和榮譽(yù)感進(jìn)一步增強(qiáng),通過(guò)建模競(jìng)賽彰顯團(tuán)隊(duì)的合作能力和中國(guó)數(shù)學(xué)建模方面的發(fā)展。
3.2高校學(xué)生參賽積極性高漲。近年來(lái)大學(xué)生數(shù)學(xué)建模競(jìng)賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績(jī)也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學(xué)的應(yīng)用能力提升。
3.3高校學(xué)生數(shù)學(xué)邏輯思維能力和靈活運(yùn)用知識(shí)的能力得到提升。數(shù)學(xué)建模競(jìng)賽充滿著刺激性和挑戰(zhàn)性,是學(xué)生各方面綜合能力的一個(gè)展示。在數(shù)學(xué)建模競(jìng)賽中,學(xué)生不僅要需要扎實(shí)豐厚的數(shù)學(xué)知識(shí)儲(chǔ)備,還需要具備清晰的數(shù)學(xué)邏輯思維和語(yǔ)言表達(dá)能力。同時(shí)要有機(jī)智的臨場(chǎng)發(fā)揮能力和應(yīng)變能力,不怯場(chǎng)、不驚慌,有充分的思想準(zhǔn)備,能輕松應(yīng)對(duì)其他參賽選手和評(píng)委的提問(wèn),能組織條理性、邏輯性的語(yǔ)言進(jìn)行表述,將參賽小組數(shù)學(xué)模型的含義和設(shè)計(jì)清晰完整的傳達(dá)給評(píng)委和其他參賽選手。在這個(gè)過(guò)程中,無(wú)疑會(huì)使學(xué)生的數(shù)學(xué)邏輯思維和語(yǔ)言表達(dá)能力及靈活運(yùn)用數(shù)學(xué)知識(shí)的能力有一個(gè)較大的提升。
3.4學(xué)生的自學(xué)能力和意志力得到鍛。數(shù)學(xué)建模競(jìng)賽對(duì)參賽學(xué)生的綜合知識(shí)和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f(shuō)數(shù)學(xué)建模過(guò)程中,有許多高深的知識(shí)難于理解,有的日常學(xué)習(xí)過(guò)程中根本接觸不到,需要數(shù)學(xué)建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢(shì)和平時(shí)培訓(xùn)中的知識(shí)積淀,通過(guò)借助大量的工具書及參考資料,加上團(tuán)隊(duì)的`理解分析去摸索,探尋數(shù)學(xué)建模所需要的基礎(chǔ)知識(shí),無(wú)疑這對(duì)學(xué)生的自學(xué)能力培養(yǎng)是一個(gè)很好的鍛煉。另外,搜尋資料、學(xué)習(xí)數(shù)學(xué)建模知識(shí)的過(guò)程是枯燥乏味的,需要長(zhǎng)久的耐力和信心,無(wú)疑這對(duì)學(xué)生的堅(jiān)毅不畏難的品質(zhì)是一個(gè)很好的培養(yǎng)和磨煉。
3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過(guò)艱苦復(fù)雜的數(shù)學(xué)建模訓(xùn)練,高校學(xué)生信息收集與處理復(fù)雜問(wèn)題的能力得到培養(yǎng)鍛煉,學(xué)生數(shù)量觀念得到增強(qiáng),能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學(xué)的嚴(yán)謹(jǐn)推導(dǎo)也使學(xué)生養(yǎng)成認(rèn)真細(xì)心、一絲不茍的習(xí)慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復(fù)雜問(wèn)題,有效解決數(shù)學(xué)疑難,數(shù)學(xué)理論能更好第應(yīng)用于實(shí)踐,數(shù)學(xué)素養(yǎng)進(jìn)一步得到提升。
綜上所述,高校學(xué)生數(shù)學(xué)建模競(jìng)賽的開(kāi)展,能較高地提升學(xué)生的創(chuàng)新能力和綜合素養(yǎng),團(tuán)隊(duì)合作能力、競(jìng)爭(zhēng)能力、表達(dá)交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開(kāi)展數(shù)學(xué)建模競(jìng)賽,使學(xué)生的綜合素質(zhì)得到發(fā)展和鍛煉。學(xué)校用重視和鼓勵(lì)全體學(xué)生參與數(shù)學(xué)建模競(jìng)賽,通過(guò)競(jìng)賽實(shí)現(xiàn)學(xué)生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
[1]趙剛.高校數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
[2]陳羽,徐小紅,房少梅.數(shù)學(xué)建模實(shí)踐及其對(duì)培養(yǎng)學(xué)生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
[3]趙建英.數(shù)學(xué)建模競(jìng)賽對(duì)高校創(chuàng)新人才培養(yǎng)的促進(jìn)作用分析[j].科技展望,20xx(08)5.
[4]畢波,杜輝.關(guān)于高校開(kāi)展數(shù)學(xué)建模競(jìng)賽與創(chuàng)新思維培養(yǎng)的思考[j].中國(guó)校外教育,20xx(12).
數(shù)學(xué)建模心得體會(huì)論文篇十七
數(shù)學(xué),源于人們對(duì)生產(chǎn)與生活實(shí)際問(wèn)題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來(lái),信息技術(shù)飛速發(fā)展,推動(dòng)了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會(huì)各個(gè)領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時(shí)代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計(jì)、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問(wèn)、自主解決,體驗(yàn)做數(shù)學(xué)的過(guò)程,從而提高解決實(shí)際問(wèn)題的能力.
一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開(kāi)學(xué)生“做”數(shù)學(xué)的過(guò)程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對(duì)學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺保瑢⒔忸}過(guò)程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開(kāi)展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動(dòng)流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問(wèn)題,其題目長(zhǎng)、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
1.自主探索原則.
學(xué)生長(zhǎng)期處于師講、生聽(tīng)的教學(xué)模式,淪為被動(dòng)接受知識(shí)的“容器”,難有創(chuàng)造的意識(shí).在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問(wèn)題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問(wèn)題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計(jì),要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計(jì)的問(wèn)題不切實(shí)際,往往會(huì)扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問(wèn)題.
數(shù)學(xué)建模心得體會(huì)論文篇十八
信息化時(shí)代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強(qiáng)數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問(wèn)題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進(jìn)行定量化、精確化思維的意識(shí),學(xué)會(huì)創(chuàng)造性地解決問(wèn)題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計(jì)知識(shí)很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識(shí)將現(xiàn)實(shí)問(wèn)題化為數(shù)學(xué)問(wèn)題,并進(jìn)行求解運(yùn)算的能力,激發(fā)學(xué)生對(duì)解決現(xiàn)實(shí)問(wèn)題的探索欲望,強(qiáng)化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價(jià)值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識(shí)為宗旨的教育改革需要。
大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對(duì)數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實(shí)生活解決實(shí)際問(wèn)題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識(shí)為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過(guò)程中引導(dǎo)學(xué)生將數(shù)學(xué)知識(shí)內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過(guò)程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進(jìn)數(shù)學(xué)教育改革的重要舉措。
2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機(jī)地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對(duì)數(shù)學(xué)本原知識(shí)的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補(bǔ)性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對(duì)提高學(xué)生創(chuàng)新能力和對(duì)數(shù)學(xué)教育改革的重要意義,探索開(kāi)展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點(diǎn),對(duì)課程體系進(jìn)行調(diào)整,在問(wèn)題解決過(guò)程中安排需要融入的知識(shí)體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對(duì)學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識(shí)應(yīng)用于工程問(wèn)題的創(chuàng)新能力。
2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評(píng)價(jià)方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實(shí)踐檢驗(yàn)。選取開(kāi)展融入式教學(xué)的實(shí)驗(yàn)班級(jí),對(duì)數(shù)學(xué)建模思想方法融入主干課程進(jìn)行教學(xué)效果實(shí)踐驗(yàn)證。設(shè)計(jì)相應(yīng)的考察量表,從運(yùn)用直覺(jué)思維深入理解背景知識(shí)、符號(hào)翻譯開(kāi)展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進(jìn)行建模求解等多方面對(duì)實(shí)驗(yàn)課程的教學(xué)效果進(jìn)行檢驗(yàn),深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進(jìn)的對(duì)策。
3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過(guò)程中著力于對(duì)學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識(shí),而對(duì)應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識(shí)則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識(shí),仍難以學(xué)會(huì)用數(shù)學(xué)的基本方法解決現(xiàn)實(shí)問(wèn)題?,F(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進(jìn)學(xué)生對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)的掌握,同時(shí)理解數(shù)學(xué)原理所蘊(yùn)涵的思想與方法。
這樣,在解決實(shí)際問(wèn)題的時(shí)候,學(xué)生就會(huì)有意識(shí)地從數(shù)學(xué)的角度進(jìn)行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進(jìn)行求解,拓展了數(shù)學(xué)知識(shí)的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語(yǔ)數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟(jì)、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動(dòng)大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對(duì)相關(guān)知識(shí)的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識(shí)與創(chuàng)新能力。
此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問(wèn)題,比如數(shù)學(xué)建模與計(jì)算技術(shù)如何有效結(jié)合以進(jìn)行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問(wèn)題,仍將有待于更深入的研究。
數(shù)學(xué)建模心得體會(huì)論文篇十九
第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁(yè)邊距;從左側(cè)裝訂。
第二條,論文第一頁(yè)為承諾書,第二頁(yè)為編號(hào)專用頁(yè),具體內(nèi)容見(jiàn)本規(guī)范第3、4頁(yè)。
第三條,論文第三頁(yè)為摘要專用頁(yè)(含標(biāo)題和關(guān)鍵詞,但不需要翻譯成英文),從此頁(yè)開(kāi)始編寫頁(yè)碼;頁(yè)碼必須位于每頁(yè)頁(yè)腳中部,用阿拉伯?dāng)?shù)字從“1”開(kāi)始連續(xù)編號(hào)。摘要專用頁(yè)必須單獨(dú)一頁(yè),且篇幅不能超過(guò)一頁(yè)。
第四條,從第四頁(yè)開(kāi)始是論文正文(不要目錄,盡量控制在20頁(yè)以內(nèi));正文之后是論文附錄(頁(yè)數(shù)不限)。
第五條,論文附錄至少應(yīng)包括參賽論文的所有源程序代碼,如實(shí)際使用的軟件名稱、命令和編寫的全部可運(yùn)行的源程序(含excel、spss等軟件的交互命令);通常還應(yīng)包括自主查閱使用的數(shù)據(jù)等資料。賽題中提供的數(shù)據(jù)不要放在附錄。如果缺少必要的源程序或程序不能運(yùn)行,可能會(huì)被取消評(píng)獎(jiǎng)資格。論文附錄必須打印裝訂在論文紙質(zhì)版中。如果確實(shí)沒(méi)有需要以附錄形式提供的信息,論文可以沒(méi)有附錄。
第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。
第七條,引用別人的成果或其他公開(kāi)的資料(包括網(wǎng)上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻(xiàn),并在正文引用處予以標(biāo)注。
第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號(hào)、字體、行距、顏色等)不做統(tǒng)一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對(duì)論文增加其他要求。
第九條,參賽隊(duì)?wèi)?yīng)按照《全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽報(bào)名和參賽須知》的要求命名和提交以下兩個(gè)電子文件,分別對(duì)應(yīng)于參賽論文和相關(guān)的支撐材料。
第十條,參賽論文的電子版不能包含承諾書和編號(hào)專用頁(yè)(即電子版論文第一頁(yè)為摘要頁(yè))。除此之外,其內(nèi)容及格式必須與紙質(zhì)版完全一致(包括正文及附錄),且必須是一個(gè)單獨(dú)的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過(guò)20mb。
第十一條,支撐材料(不超過(guò)20mb)包括用于支撐論文模型、結(jié)果、結(jié)論的所有必要文件,至少應(yīng)包含參賽論文的所有源程序,通常還應(yīng)包含參賽論文使用的`數(shù)據(jù)(賽題中提供的原始數(shù)據(jù)除外)、較大篇幅的中間結(jié)果的圖形或表格、難以從公開(kāi)渠道找到的相關(guān)資料等。所有支撐材料使用winrar軟件壓縮在一個(gè)文件中(后綴為rar);如果支撐材料與論文內(nèi)容不相符,該論文可能會(huì)被取消評(píng)獎(jiǎng)資格。支撐材料中不能包含承諾書和編號(hào)專用頁(yè),不能有任何可能顯示答題人身份和所在學(xué)校及賽區(qū)的信息。如果確實(shí)沒(méi)有需要提供的支撐材料,可以不提供支撐材料。
第十二條,不符合本格式規(guī)范的論文將被視為違反競(jìng)賽規(guī)則,可能被取消評(píng)獎(jiǎng)資格。
第十三條,本規(guī)范的解釋權(quán)屬于全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽組委會(huì)。
說(shuō)明:
(1)本科組參賽隊(duì)從a、b題中任選一題,??平M參賽隊(duì)從c、d題中任選一題。
(2)賽區(qū)可自行決定是否在競(jìng)賽結(jié)束時(shí)收集參賽論文的紙質(zhì)版,但對(duì)于送全國(guó)評(píng)閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質(zhì)版論文(承諾書由賽區(qū)組委會(huì)保存,不必提交給全國(guó)組委會(huì))。
(3)賽區(qū)評(píng)閱前將紙質(zhì)版論文第一頁(yè)(承諾書)取下保存,同時(shí)在第一頁(yè)和第二頁(yè)建立“賽區(qū)評(píng)閱編號(hào)”(由各賽區(qū)規(guī)定編號(hào)方式),“賽區(qū)評(píng)閱紀(jì)錄”表格可供賽區(qū)評(píng)閱時(shí)使用(由各賽區(qū)自行決定是否使用)。評(píng)閱后,賽區(qū)對(duì)送全國(guó)評(píng)閱的論文在第二頁(yè)建立“送全國(guó)評(píng)閱統(tǒng)一編號(hào)”(編號(hào)方式由全國(guó)組委會(huì)規(guī)定),然后送全國(guó)評(píng)閱。