三角形的內(nèi)角和教學(xué)設(shè)計大全(18篇)

字號:

    對于一個項目或任務(wù)而言,總結(jié)是對完成情況和經(jīng)驗教訓(xùn)的一種歸納總結(jié)。如何合理規(guī)劃時間,提高工作效率?總結(jié)是一種很好的總結(jié)和概括經(jīng)驗的方式,以下是一些總結(jié)范文,供大家一起學(xué)習和參考。
    三角形的內(nèi)角和教學(xué)設(shè)計篇一
    1.使學(xué)生知道三角形的內(nèi)角和是180 ,并能運用三角形的內(nèi)角和是180 解決生活中常見的問題。
    2.讓學(xué)生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、 判斷、 交流和推理探索用多種方法證明三角形的內(nèi)角和是180 。
    3.培養(yǎng)學(xué)生自主學(xué)習、互動交流、合作探究的能力和習慣,培養(yǎng)學(xué)習數(shù)學(xué)的興趣,感受學(xué)習數(shù)學(xué)的樂趣。
    使學(xué)生知道三角形的內(nèi)角和是180 ,并能運用它解決生活中常見的問題。
    通過多種方法驗證三角形的內(nèi)角和是180 。
    課件。四組教學(xué)用三角板。鉛筆。大帆布兜子。固體膠。剪刀。筷子若干。
    一、激趣導(dǎo)入,提煉學(xué)習方法
    1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學(xué)生面前。激發(fā)學(xué)生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學(xué)藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”
    2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。
    3.選擇工具,總結(jié)方法。
    讓選擇不同工具的同學(xué)用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。
    師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。
    4.導(dǎo)入新課。
    圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學(xué)過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)
    二、動手操作,探索交流新知
    1.分組活動,探索新知
    根據(jù)學(xué)生的選擇把學(xué)生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。
    量一量組同學(xué)發(fā)給以下幾種學(xué)具:
    折一折組同學(xué)發(fā)給上面的三角形一組。
    拼一拼組同學(xué)發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。
    在學(xué)生探索的過程中教師要走近學(xué)生,與他們共同交流探討,在學(xué)生有困難的時候要適當給予引導(dǎo)。
    2.多方互動,交流新知
    師:請我的大徒弟(量一量組)的同學(xué)先來匯報你們的研究成果。
    (1)首先要求學(xué)生說一說你們小組是怎樣進行探究的。
    (2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學(xué)生不正確的結(jié)論,因為這是知識的形成過程。)
    (3)請學(xué)生說說通過探究活動你們組得出的結(jié)論是什么。
    師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?
    引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。
    師:別看小徒弟(拼一拼組)這么小,方法可能是最好的??靵戆涯銈兊姆椒ńo大家匯報匯報。
    同樣引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。
    3.思想碰撞,夯實新知
    師:三個徒弟你們能說說誰的方法最好嗎?
    學(xué)生都會說自己的方法最好,再讓其他同學(xué)發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導(dǎo)學(xué)生說出量一量的方法可能由于量的不夠準確,所以結(jié)果可能比180 大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)
    師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學(xué)的方法更準確。三角形的內(nèi)角和就是180 。(板書:三角形的內(nèi)角和是180 )
    四、走進生活,提升運用能力
    1.出示課前那架柁標出它的頂角是120 ,求它的一個底角是多少度?
    2.給你三根木條,能做出一個有兩個直角的三角形嗎?
    五、總結(jié)
    六、拓展新知,課外延伸
    師:俗話說“活到老,學(xué)到老?!蹦銈兿律胶筮€要繼續(xù)探索,所以我要把我畢生都沒有完成的任務(wù)交給你們?nèi)パ芯俊?BR>    大屏幕出示:
    能用你今天學(xué)過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?
    三角形的內(nèi)角和教學(xué)設(shè)計篇二
    本節(jié)課的教學(xué)先通過計算三角尺的3個內(nèi)角的度數(shù)的和,激發(fā)學(xué)生的好奇心,進而引發(fā)“三角形內(nèi)角和是180度”的猜想,再通過組織操作活動驗證猜想,得出結(jié)論。
    1、讓學(xué)生通過觀察、操作、比較、歸納,發(fā)現(xiàn)“三角形的內(nèi)角和是180o”。
    2、讓學(xué)生學(xué)會根據(jù)“三角形的內(nèi)角和是180o”這一知識求三角形中一個未知角的度數(shù)。
    3、激發(fā)學(xué)生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。
    教學(xué)準備:三角板,量角器、點子圖、自制的三種三角形紙片等。
    一、提出猜想:
    看了這2個算式你有什么猜想?
    二、驗證猜想:
    1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。
    老師注意巡視和指導(dǎo)。交流各自加得的結(jié)果,說說你的發(fā)現(xiàn)。
    2、折、拼:學(xué)生用自己事先剪好的圖形,折一折。
    指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。
    繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。
    通過交流使學(xué)生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的度數(shù)和也是180度。
    3、撕、拼:可能有個別學(xué)生對折的方法感到有困難。那么還可以用撕的方法。
    在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角——180度。
    小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180o。
    4、試一試:
    三角形中,角1=75o,角2=39o,角3=()o。
    算一算,量一量,結(jié)果相同嗎?
    三、完成想想做做:
    1、算出下面每個三角形中未知角的度數(shù)。
    在交流的時候可以分別學(xué)生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80o。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。
    指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。
    然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180o。
    3、用一張正方形紙折一折,填一填。
    4、說理:一個直角三角形中最多有幾個直角?為什么?
    一個鈍角三角形中最多有幾個直角?為什么?
    1、(第2題)你能連一連嗎?
    學(xué)生獨立做,做完后把有疑問的幾個選出來交流。
    2、在釘子板上分別圍出銳角三角形、直角三角形和鈍角三角形。
    學(xué)生圍好后,互相檢查驗證。
    3、用一張長方形紙,折出兩個完全一樣的直角三角形。
    用一張正方形紙,折出四個完全一樣的直角三角形。
    讓學(xué)生動手折一折,在交流的時候用“對角線“來說一說。
    5、你能在下面的三角形中分別畫一條線段,把它分成兩個直角三角形嗎?
    通過交流使學(xué)生明白:畫出的線段就是原來三角形的高。
    三角形的內(nèi)角和教學(xué)設(shè)計篇三
    本節(jié)微課視頻是蘇教版數(shù)學(xué)教科書四年級下冊第78~79頁的教學(xué)內(nèi)容。在教學(xué)之前,學(xué)生已經(jīng)掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經(jīng)構(gòu)成學(xué)生進一步學(xué)習的認知基礎(chǔ)?!度切蔚膬?nèi)角和》是三角形的一個重要性質(zhì)。學(xué)生在學(xué)習四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預(yù)習,大部分的學(xué)生已經(jīng)能得出結(jié)論:三角形的內(nèi)角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結(jié)論,而是驗證結(jié)論的過程。教材組織學(xué)生對不同形狀、不同大小的三角形的內(nèi)角和進行探索,通過轉(zhuǎn)化、推理、比較、操作和驗證,總結(jié)概括出“所有三角形的內(nèi)角和都是180度”的規(guī)律,從而進一步發(fā)展學(xué)生的空間觀念,提高學(xué)生的自主學(xué)習能力和推理能力。
    下面就具體談?wù)勎⒄n的教學(xué)設(shè)計:
    一、教學(xué)目標
    1、通過測量、轉(zhuǎn)化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內(nèi)角和是180度”的規(guī)律,并且能利用這一結(jié)論解決求三角形中未知角的度數(shù)等實際問題。
    2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學(xué)生的'聯(lián)想意識和動手操作能力。體驗驗證結(jié)論的過程與方法,提高學(xué)生分析和解決問題的能力。
    3、使學(xué)生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學(xué)生積極主動學(xué)習數(shù)學(xué)的興趣。
    二、教學(xué)重點和難點
    重點:讓學(xué)生親自驗證并總結(jié)出三角形的內(nèi)角和是180度的結(jié)論
    難點:對不同驗證方法的理解和掌握。
    三、教學(xué)過程
    (一)質(zhì)疑――發(fā)現(xiàn)問題,提出問題
    交流:不同三角尺的內(nèi)角和都是一樣的嗎?三角尺的內(nèi)角和有什么特征?
    引導(dǎo)學(xué)生得出三角尺的三個內(nèi)角的度數(shù)和是180度。
    提問:三角尺的形狀是什么三角形?三角尺的內(nèi)角和是180度,我們還可以說成是什么?(得出結(jié)論:直角三角形的內(nèi)角和是180度。)
    你有什么辦法驗證這一結(jié)論呢?(動手操作,尋找答案)
    方法一:拿出不同的直角三角形,分別測量三個內(nèi)角的度數(shù),再求和。(提示存在誤差,但三個內(nèi)角的和都在180度左右)
    方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內(nèi)角和是360度,因此能得出一個直角三角形的三個內(nèi)角和是180度。
    (二)探究――分析問題,解決問題
    出示三個三角形:直角三角形、銳角三角形和鈍角三角形。
    引導(dǎo):直角三角形的內(nèi)角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內(nèi)角和也有可能是180度。
    提問:你有什么辦法來驗證這一猜想呢?
    拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。
    方法一:可以像上面那樣先測量每個三角形的三個內(nèi)角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學(xué)生測量計算,教師巡視指導(dǎo)。
    引導(dǎo):測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學(xué)要重新測定和確認,計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。
    方法二:既然是求三角形的內(nèi)角和,我們就可以想辦法把三角形的3個內(nèi)角拼在一起,看看拼成了什么角。那怎樣才能把3個內(nèi)角拼在一起呢?我們可以將三角形中的3個內(nèi)角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。
    方法三:把三角形的三個內(nèi)角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內(nèi)角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。
    方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內(nèi)角和是180度進行推理。180+180=360度,360-90-90=180度。
    (三)歸納――獲得結(jié)論
    交流:回顧以上3個三角形的內(nèi)角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?
    總結(jié):通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內(nèi)角和都是180度這一結(jié)論。
    (四)拓展――鞏固練習
    1、將一個大三角形剪成兩個小三角形,每個小三角形的內(nèi)角和是多少度?
    2、在一個三角形中,根據(jù)兩個內(nèi)角的度數(shù),求第三個內(nèi)角的度數(shù)?
    三角形的內(nèi)角和教學(xué)設(shè)計篇四
    教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
    3、培養(yǎng)學(xué)生動手動腦及分析推理能力。
    一、復(fù)習。
    1、什么是平角?平角是多少度?
    2、計算角的度數(shù)。
    3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。
    二、新知。
    (設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。
    1、讀學(xué)卡的學(xué)習目標、任務(wù)目標,做到心里有數(shù)。
    4、驗證:
    (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
    (3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)。
    (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
    5、結(jié)論:修改板書,把“?”去掉,寫“是”。
    6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。
    7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
    三、知識運用(課件出示練習題,生解答)。
    1、填空。
    (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是()、
    (2)一個直角三角形的一個銳角是50,則另一個銳角是()。
    (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
    (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
    2、判斷。
    (1)一個三角形中最多有兩個直角。()。
    (3)有一個角是60的等腰三角形不一定是等邊三角形。()。
    (4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。
    (5)直角三角形中的兩個銳角的和等于90。()。
    四、拓展探究。
    根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
    1、小組討論。
    2、匯報結(jié)果。
    3、課件提示幫助理解。
    五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。
    六、談?wù)勛约罕竟?jié)課的收獲。
    今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達到這節(jié)課的教學(xué)目標了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。
    任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。
    如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進入主題。
    如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應(yīng)該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。
    本節(jié)課的練習的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰(zhàn)。
    給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。
    前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。
    總而言之,這次的公開課,給了我一次學(xué)習和鍛煉的機會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習。
    三角形的內(nèi)角和教學(xué)設(shè)計篇五
    《三角形內(nèi)角和》是北師大版《數(shù)學(xué)》四年級下冊的內(nèi)容。是在學(xué)生學(xué)習了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎(chǔ),因此,掌握三角形的內(nèi)角和是180度這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學(xué)生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了試一試,練一練的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。
    【學(xué)生分析】
    經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學(xué)產(chǎn)生了濃厚的興趣。1.知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。
    【學(xué)習目標】
    知識目標:掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應(yīng)用。
    能力目標:培養(yǎng)學(xué)生主動探索、動手操作的能力。培養(yǎng)學(xué)生收集、整理、歸納信息的能力。使學(xué)生養(yǎng)成良好的合作習慣。
    情感目標:讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。
    【教學(xué)過程】
    一、情景激趣,質(zhì)疑猜想。
    播放動畫片:在圖形王國中,有一天三角形大家庭里為三角形內(nèi)角和的大小爆發(fā)了一場激烈的'爭吵。
    鈍角三角形大聲叫著:我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大。銳角三角形也不示弱:我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小。直角三角形說:別爭了,三角形的內(nèi)角和都是180。我們的內(nèi)角和是一樣大的。
    師:想一想,什么是三角形的三個內(nèi)角的和。
    生:三角形的三個內(nèi)角的度數(shù)和。
    師:同學(xué)們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?
    學(xué)生進行猜想,自由發(fā)言。
    (設(shè)計意圖:教師借助多媒體技術(shù)創(chuàng)設(shè)問題情境,架起數(shù)學(xué)學(xué)習與現(xiàn)實生活,抽象數(shù)學(xué)與具體問題之間的橋梁,激發(fā)了學(xué)生的學(xué)習興趣。鼓勵學(xué)生主動質(zhì)疑猜想是培養(yǎng)學(xué)生學(xué)會學(xué)習的重要途徑。)
    二、自主探究,驗證猜想
    生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180(量的時候可能會有些誤差)。
    生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。
    生3:我把三角形的三個角撕下來,拼一拼是否180。
    生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。
    師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧?。▽W(xué)生把三角形的三個內(nèi)角分別標上1、2、3,以免在剪拼時把內(nèi)角搞混了。)
    學(xué)生邊實驗邊整理信息,完成實驗報告單后,學(xué)習小組內(nèi)進行交流討論。
    (設(shè)計意圖:驗證猜想為學(xué)生提供了做數(shù)學(xué)的機會,讓每個學(xué)生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學(xué)生在操作中自主探究數(shù)學(xué)知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學(xué)生用不同的方法進行驗證,促進學(xué)生創(chuàng)新能力的發(fā)展。)
    三、交流評價,歸納結(jié)論。
    學(xué)生操作驗證,完成實驗報告單后,利用投影儀展示學(xué)生填寫的實驗報告單。
    實驗報告單
    實驗名稱
    三角形內(nèi)角和
    實驗?zāi)康?BR>    探究三角形內(nèi)角和是多少度。
    實驗材料
    尺子
    剪刀
    量角器
    銳角三角形紙片
    直角三角形紙片
    鈍角三角形紙片
    我的方法
    我的發(fā)現(xiàn)
    我的表現(xiàn)
    自評
    互評
    學(xué)生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學(xué)生的閃光點及時進行表揚和鼓勵。
    師生共同歸納,得出結(jié)論:
    三角形的內(nèi)角和教學(xué)設(shè)計篇六
    探索三角形內(nèi)角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。
    教學(xué)目標:
    1、通過測量、撕拼、折疊等探索活動,使學(xué)生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?
    2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
    3、培養(yǎng)學(xué)生動手實踐,動腦思考的習慣。
    教學(xué)重點:
    了解三角形三個內(nèi)角的度數(shù)。
    教學(xué)難點:
    理解三角形三個內(nèi)角大小的關(guān)系。
    教具學(xué)具準備:
    課件三角形若干量角器剪刀。
    教材與學(xué)生
    教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學(xué)生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學(xué)生測量,折疊,撕拼來找到答案。
    學(xué)生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導(dǎo)致測量不同,因此,學(xué)生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。
    教學(xué)過程:
    一、呈現(xiàn)真實狀態(tài)。
    學(xué)生各抒己見。
    二、提出問題:
    師;剛才我們觀察三角形哪個內(nèi)角和大,同學(xué)們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。
    (1)以小組為單位請同學(xué)們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。
    (2)組內(nèi)交流。
    (3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)
    (4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。
    三。自主探索、研究問題、歸納總結(jié):
    師引導(dǎo)提問:三角形的內(nèi)角和會不會就是180呢?
    (一)組內(nèi)探索:
    (1)以小組為單位探索更好的辦法。
    (2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。
    (有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學(xué)生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學(xué)生學(xué)習到良好的學(xué)習方法)
    (3)把你沒有想到的方法動手做一次
    (使學(xué)生更直觀地理解三角形的內(nèi)角和是180的證明過程)
    (4)根據(jù)學(xué)生的反饋情況教師進行操作演示。
    (二)教師演示
    撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示
    2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?
    生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。
    師:平角是多少度呢?說明什么?
    生:180?說明三個內(nèi)角和剛好等于180。
    師:這種方法是不是適用各種三角形呢?
    進行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。
    折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。
    你們也來試一試好嗎?
    在學(xué)生完成這一實踐后肯定這一發(fā)現(xiàn)
    三角形三個內(nèi)角和等于180?
    四。鞏固練習,知識升華。
    1.完成課本第28頁的“試一試”第三題。
    2.想一想:鈍角三角形最多有幾個鈍角?為什么?
    銳角三角形中的兩個內(nèi)角和能小于90嗎?
    3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?
    試一試,看誰算得快。
    師:誰來說說自己的計算過程?
    生:它們的內(nèi)角和都是180度。
    [回答可能有二]:
    (一種全部說是:)
    師:請問,你們是怎么想的,為什么這么認為?
    生:……
    師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)
    (一種有一部分同學(xué)說是,有一部分同學(xué)說不是:)
    師:看來,大家的意見不一致,想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧?。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)
    (二)動手操作,探究新知
    師:老師看你們有答案了,哪位同學(xué)愿意說一說你的奇思妙想?
    生:我準備用量的方法。
    師:然后呢?
    生:然后把它們?nèi)齻€內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?
    師:說的真不錯,還有沒有其它的方法?
    生:我是把三角形的三個角剪下來,拼在一起(師鼓勵:你的想法很有創(chuàng)意,等一會兒用你的行動來驗證你的猜想吧?。?BR>    生:……
    (如生一時想不到,師可引導(dǎo):他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)
    師:好啦,老師相信咱們班的同學(xué)個個都是小數(shù)學(xué)家,一定能找出更多的方法的,請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學(xué)們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內(nèi)角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!
    開始吧?。▽W(xué)生研究,師巡回指導(dǎo))預(yù)設(shè)時間:5分鐘
    師:老師看各小組已經(jīng)研究好了,哪位同學(xué)愿意上來交流一下?
    師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?
    (預(yù)設(shè):如果第一類同學(xué)說的是量的方法)
    師:你是用什么來研究的?
    生:量角器。
    師:那請你說一下你度量的結(jié)果好嗎?
    (生匯報度量結(jié)果)
    生:180度。
    師:那到底三角形的內(nèi)角和是不是180度呢?還有哪位同學(xué)有其它的方法進行驗證嗎?
    生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻€角組成的度數(shù)。
    師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
    (師邊講解邊點擊flash:把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學(xué)生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)
    生:我們還用了折的方法(生介紹方法)
    師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
    (師邊講解邊點擊flash:先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向?qū)厡φ?,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻€內(nèi)角就形成了一個大角,這個大角是個什么角呢?)
    生:是個平角。180度。
    師:請這位同學(xué)來說給大家聽聽吧!
    生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360度,那么一個三角形的內(nèi)角和就是180度。
    生1:量的不準。
    生2:有的量角器有誤差。
    師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內(nèi)角和也將是180度。
    生:三角形的內(nèi)角和是180度。(師板書)
    師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
    (三)拓展應(yīng)用,深化認識
    師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生:180度)右邊呢(生:也是180度)
    師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?
    (生答后師引導(dǎo)歸納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是180度。)
    師:剛才我們在討論學(xué)習三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧?。ǔ鍪菊n件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)
    師:到底誰說的對呢?今天我們就用我們今天學(xué)到的知識來為它們解決解決吧!
    師:好,請看大屏幕!
    (出示基礎(chǔ)練習)在一個三角形中角一是140度,角三是25度,求角二的度數(shù)。
    生答后,師提問:你是怎樣想的?
    生陳述后,師鼓勵:說的真好!
    出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。
    師:同學(xué)們,今天我們一起學(xué)習了三角形的內(nèi)角和,你有哪些收獲呢?
    師:嗯,真不錯,你們知道嗎?三角形的內(nèi)角和等于180度是法國著名的數(shù)學(xué)家帕斯卡在1635年他12歲時獨自發(fā)現(xiàn)的,今天憑著同學(xué)們的聰明智慧也研究出了三角形的內(nèi)角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學(xué)習和刻苦鉆研下,你們就是下一個“帕斯卡”!
    師:好,下課!同學(xué)們再見!
    三角形的內(nèi)角和教學(xué)設(shè)計篇七
    一、構(gòu)建新的課堂教學(xué)模式。
    傳統(tǒng)的教學(xué)往往只重視對結(jié)論的記憶和模仿,而這節(jié)課老師把學(xué)生的學(xué)習定位在自主建構(gòu)知識的.基礎(chǔ)上,建立了“猜想——驗證——歸納——運用”的教學(xué)模式。
    二、培養(yǎng)學(xué)生勇于猜想,大膽創(chuàng)新的精神。
    教學(xué)中趙老師遵循的基本教學(xué)原則是激勵學(xué)生展開積極的思維活動.先創(chuàng)設(shè)猜角的游戲情景,讓學(xué)生對三角形的三個角的度數(shù)關(guān)系產(chǎn)生好奇,引發(fā)學(xué)生的探究欲望.
    三、為學(xué)生提供了大量數(shù)學(xué)活動的機會,讓學(xué)生真正成為學(xué)習的主人。
    “給學(xué)生一些權(quán)利,讓他們自己選擇;讓他們自己去鍛煉;給學(xué)生一些問題,讓他們自己去探索;給學(xué)生一片空間,讓學(xué)生自己飛翔.”這正是課堂教學(xué)改革中學(xué)生的主體性的表現(xiàn)。所以在這節(jié)課中趙老師樹立了數(shù)學(xué)教學(xué)為學(xué)生服務(wù),創(chuàng)設(shè)有助于學(xué)生自主學(xué)習,合作交流的機會,通過想辦法求三角形的內(nèi)角和這一核心問題,引發(fā)學(xué)生去思考,去探究.這樣學(xué)生的潛能的以激活,思維展開了想象,能力得以發(fā)展.
    四、給學(xué)生一個開放探究的學(xué)習空間.
    培養(yǎng)學(xué)生的問題意識是數(shù)學(xué)課堂教學(xué)的核心問題,所以課堂上學(xué)生的學(xué)習過程就是解決問題的過程,當一個問題解決完后又引發(fā)出新的問題,使學(xué)生體會到成功的喜悅,使數(shù)學(xué)課堂充滿挑戰(zhàn).所以課堂上老師沒有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內(nèi)角和延伸,使學(xué)生悟出規(guī)律,這樣學(xué)生帶著問題在課后向更高的學(xué)習目標繼續(xù)探索,一追求更大的成功。
    一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。
    三角形的內(nèi)角和教學(xué)設(shè)計篇八
    【教學(xué)目標】。
    1.使學(xué)生知道三角形的內(nèi)角和是180,并能運用三角形的內(nèi)角和是180解決生活中常見的問題。
    2.讓學(xué)生經(jīng)歷量一量、折一折、拼一拼等動手操作的過程。通過觀察、判斷、交流和推理探索用多種方法證明三角形的內(nèi)角和是180。
    3.培養(yǎng)學(xué)生自主學(xué)習、互動交流、合作探究的能力和習慣,培養(yǎng)學(xué)習數(shù)學(xué)的興趣,感受學(xué)習數(shù)學(xué)的樂趣。
    【教學(xué)重點】。
    使學(xué)生知道三角形的內(nèi)角和是180,并能運用它解決生活中常見的問題。
    【教學(xué)難點】。
    【教學(xué)準備】。
    課件。四組教學(xué)用三角板。鉛筆。大帆布兜子。固體膠。剪刀??曜尤舾?。
    【教學(xué)過程】。
    一、激趣導(dǎo)入,提煉學(xué)習方法。
    1.課程開始,教師耳朵上別著一根鉛筆,肩背大帆布兜子,里面裝著一個量角器和幾把缺了直角的三角板,手拿一張不規(guī)則的白紙,以一位老木匠的身份出現(xiàn)在學(xué)生面前。激發(fā)學(xué)生的好奇心。然后自述:“你們好,我是一個有三十多年工作經(jīng)驗的老木匠了。我收了三個徒弟,他們已經(jīng)從師學(xué)藝三年了,今天我想讓他們下山掙錢,可又不放心,想出幾道題考驗考驗他們,又不知我的題合不合適,大家想不想先當一會我的徒弟試試這幾道題呢?”
    2.繼續(xù)以老木匠的身份說:前幾天我造了一架柁,徒弟們能不能用我手中的工具驗證一下橫木和立柱是不是成直角的。
    3.選擇工具,總結(jié)方法。
    讓選擇不同工具的同學(xué)用自己的方法驗證。教師隨機板書:量一量、拼一拼、折一折。
    師:你們真是愛動腦筋的好徒弟,那么請聽好師傅的第二個問題。
    4.導(dǎo)入新課。
    圖中有很多三角形,不論什么樣的三角形都有三個角,這三個角就叫做三角形的內(nèi)角,徒弟們能不能用學(xué)過的方法或者你喜歡的方法求一求三角形三個內(nèi)角的和是多少?(板書課題:三角形的內(nèi)角和)。
    二、動手操作,探索交流新知。
    1.分組活動,探索新知。
    根據(jù)學(xué)生的選擇把學(xué)生分成三組,分別采用量一量、折一折和拼一拼的方法探索新知。
    量一量組同學(xué)發(fā)給以下幾種學(xué)具:
    折一折組同學(xué)發(fā)給上面的三角形一組。
    拼一拼組同學(xué)發(fā)給上面的三角形一組、剪刀一把還有下面這樣的白紙一張。
    在學(xué)生探索的過程中教師要走近學(xué)生,與他們共同交流探討,在學(xué)生有困難的時候要適當給予引導(dǎo)。
    2.多方互動,交流新知。
    師:請我的大徒弟(量一量組)的同學(xué)先來匯報你們的研究成果。
    (1)首先要求學(xué)生說一說你們小組是怎樣進行探究的。
    (2)說出你們組的探究結(jié)果怎樣。(在此過程中教師不能急于糾正學(xué)生不正確的結(jié)論,因為這是知識的形成過程。)。
    (3)請學(xué)生說說通過探究活動你們組得出的結(jié)論是什么。
    師:大徒弟就是大徒弟,匯報的真不錯。二徒弟(折一折組)你們有沒有更好的辦法呢?
    引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。
    師:別看小徒弟(拼一拼組)這么小,方法可能是最好的??靵戆涯銈兊姆椒ńo大家匯報匯報。
    同樣引導(dǎo)這一組從探究的過程和結(jié)論與同學(xué)、老師交流。
    3.思想碰撞,夯實新知。
    師:三個徒弟你們能說說誰的方法最好嗎?
    學(xué)生都會說自己的方法最好,再讓其他同學(xué)發(fā)表自己的意見,此時生生之間,師生之間交流。(教師要引導(dǎo)學(xué)生說出量一量的方法可能由于量的不夠準確,所以結(jié)果可能比180大一些,或小一些。而其他兩種方法沒有改變角的大小,所以他們的是正確的。)。
    師:不論你量的怎樣認真都會有不準確的地方,這就叫誤差。而其他兩組同學(xué)的方法更準確。三角形的內(nèi)角和就是180。(板書:三角形的內(nèi)角和是180)。
    四、走進生活,提升運用能力。
    1.出示課前那架柁標出它的頂角是120,求它的一個底角是多少度?
    2.給你三根木條,能做出一個有兩個直角的三角形嗎?
    五、總結(jié)。
    六、拓展新知,課外延伸。
    師:俗話說“活到老,學(xué)到老。”你們下山后還要繼續(xù)探索,所以我要把我畢生都沒有完成的任務(wù)交給你們?nèi)パ芯俊?BR>    大屏幕出示:
    能用你今天學(xué)過的知識和方法探索一下四邊形的內(nèi)角和是多少度嗎?
    三角形的內(nèi)角和教學(xué)設(shè)計篇九
    一、說課內(nèi)容:北師大版義務(wù)教育課程標準實驗教材小學(xué)數(shù)學(xué)四年級下冊第二單元第三節(jié)----《三角形的內(nèi)角和》一課。
    二、教材分析:
    在這一環(huán)節(jié)我要闡述四方面的內(nèi)容:
    1、三角形的內(nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領(lǐng)域的重要內(nèi)容之一,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,教材呈現(xiàn)教學(xué)內(nèi)容時,安排了一系列的實驗操作活動。讓學(xué)生通過探索,發(fā)現(xiàn)三角形的內(nèi)角和是180度。
    2、學(xué)情分析:
    學(xué)生已經(jīng)知道了三角形的概念、分類,熟悉了各角的特點,掌握了量角的方法。也可能有部分學(xué)生知道了三角形內(nèi)角和是180°的結(jié)論。
    3、教學(xué)目標:
    a、讓學(xué)生親自動手,發(fā)現(xiàn),證實三角形的內(nèi)角和等于180度。并能初步運用這一性質(zhì)解決有一些實際問題。
    b、在經(jīng)歷“觀察、測量、撕拼、折疊”的驗證的過程中培養(yǎng)學(xué)生觀察能力,歸納能力、合作能力和創(chuàng)造能力。
    4、教學(xué)重難點:
    經(jīng)歷三角形的內(nèi)角和是180度這一知識的形成,發(fā)展和應(yīng)用的全過程。
    5、教學(xué)難點:
    讓學(xué)生用不同方法驗證三角形的內(nèi)角和是180度。
    三、教學(xué)準備:
    在備課過程中,我閱讀了農(nóng)遠光盤中多位名師的教學(xué)案例來完善自己的教學(xué)設(shè)計,并收集了農(nóng)遠光盤中的多媒體課件,用課件適時播放。
    四、教法分析
    為了使教學(xué)目標得以落實,談?wù)劚菊n的教法和學(xué)法。新課程標準強調(diào)“教學(xué)要從學(xué)生已有的經(jīng)驗出發(fā),讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進行解釋與應(yīng)用的過程。要激發(fā)學(xué)生的學(xué)習積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,讓他們積極主動地探索,解決數(shù)學(xué)問題,發(fā)現(xiàn)數(shù)學(xué)規(guī)律,獲得數(shù)學(xué)經(jīng)驗;而教師只是學(xué)生學(xué)習的組織者、引導(dǎo)者和合作者。我采用了趣味教學(xué)法、情境教學(xué)法、引導(dǎo)發(fā)現(xiàn)法、合作探究法和直觀演示法。
    五、學(xué)法分析
    在學(xué)法指導(dǎo)上,我把學(xué)習的主動權(quán)交給學(xué)生,引導(dǎo)學(xué)生通過動手、動腦、動口,積極參與知識形成的全過程。體現(xiàn)了學(xué)生動手實踐、合作交流,自主探索的學(xué)習方式。
    六:教學(xué)流程:
    (一)猜迷激趣,復(fù)習舊知。,
    興趣是最好的老師,開課我出示了一則謎語。調(diào)動學(xué)生學(xué)習的積極性。
    形狀是似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。(打一平面圖形)
    由謎底又得出了一個對三角形你們有哪些了解的問題,喚醒學(xué)生頭腦中有關(guān)三角形的知識,同時很自然引出對“三角形內(nèi)角和”一詞的講解,為后面的探索奠定基礎(chǔ)。
    (二)創(chuàng)設(shè)情境,巧引新知(課件出示)
    (三)驗證猜想,主動探究。
    本環(huán)節(jié)是學(xué)生獲取知識、提高能力的一個重要過程。我有目的、有意識的引導(dǎo)學(xué)生主動參與實踐活動、經(jīng)歷知識的形成過程。
    “你能運用已有的知識和身邊的學(xué)具想辦法驗證你的猜想嗎?”學(xué)生思考片刻后,我出示學(xué)習提綱:
    a、先獨立思考,你想怎樣驗證?
    b、再小組合作探究,運用多種方法驗證。
    c、最后匯報,展示你的驗證方法。
    1.量角求和
    這個驗證方法應(yīng)是全班同學(xué)都能想到的,因此,在這一環(huán)節(jié)我設(shè)計了小組活動的形式。讓小組成員在練習本上任意地畫幾個三角形進行測量并記錄。學(xué)生通過畫、量、算,最后發(fā)現(xiàn)三角形的三個內(nèi)角和都是180度。
    2.拼角求和
    通過討論,有的小組可能會想到把三個角撕開,再拼在一起,剛好拼成了一個平角,由于學(xué)生在以前學(xué)過平角是180度,很快就發(fā)現(xiàn)這三個三角形的內(nèi)角和都是180度。為了讓全班學(xué)生能夠真切,清晰地看到撕拼的過程,我利用了多媒體課件進行了演示。(課件出示)課件播放后學(xué)生一目了然,攻克了本課的一個教學(xué)重點。
    3.折角求和
    有的小組還可能想到把三個角折在一起,也剛好形成一個平角。但如何折才能夠使三個內(nèi)角剛好組成平角呢?這一驗證方法是本課教學(xué)的一個難點。
    在學(xué)生展示完驗證方法后,我又讓每位學(xué)生選擇自己喜歡的方法,再去驗證剛才的發(fā)現(xiàn)。最后歸納出結(jié)論:所有三角形的內(nèi)角和都是180度。
    (四)應(yīng)用新知,解決問題。
    數(shù)學(xué)離不開練習。本節(jié)課我把圖像、動畫等引入課件,使練習的內(nèi)容具有簡單的背景與情節(jié),使學(xué)生對解題產(chǎn)生了濃厚的興趣。
    我設(shè)計了四個層次的練習:有序而多樣。
    1)基本練習:讓學(xué)生通過這一習題,掌握求未知角的一般方法。
    2)實踐運用:這一習題的設(shè)計是為了讓學(xué)生知道生活中到處都有數(shù)學(xué),數(shù)學(xué)能解決生活實際問題,真切體驗到學(xué)的是有價值的數(shù)學(xué)。
    3)鞏固提高:使學(xué)生了解在間接條件下求未知角的方法。
    4)拓展延伸。讓學(xué)生體會到數(shù)學(xué)中輔助線的橋梁作用,在潛移默化中滲透一個重要數(shù)學(xué)思想―――轉(zhuǎn)化,為以后學(xué)習數(shù)學(xué)打下堅實的基礎(chǔ)。
    (五)全課小結(jié)完善新知
    1、這節(jié)課我們學(xué)到了什么知識?2、你有什么收獲?
    通過學(xué)生談這節(jié)課的收獲,對所學(xué)知識和學(xué)習方法進行系統(tǒng)的整理歸納。
    (六)板書設(shè)計
    三角形的內(nèi)角和
    量角撕拼折角拼圖
    三角形的內(nèi)角和是180度。
    六、說效果預(yù)測:
    本課中,學(xué)生通過動手操作,測量、撕拼、折疊等實驗活動,得到的不僅是三角形內(nèi)角和的知識,也使學(xué)生學(xué)到了怎么由已知探究未知的思維方式與方法,培養(yǎng)了他們主動探索的精神。促進學(xué)生良好思維品質(zhì)的形成,達到預(yù)想的教學(xué)目的。使學(xué)生在探索中學(xué)習,在探索中發(fā)現(xiàn),在探索中成長!
    三角形的內(nèi)角和教學(xué)設(shè)計篇十
    一堂好課不應(yīng)是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術(shù)的集中展示。一堂好課不是看它的熱鬧程度,而在于學(xué)生從中得到了什么,它留給人們的應(yīng)是思考、啟示和回味。2月19日上午,在沈家門第一小學(xué),我有幸聆聽了趙斌娜老師執(zhí)教的《三角形的內(nèi)角和》一課,這就是一堂好課。
    趙老師營造了寬松和諧的課堂氣氛,讓學(xué)生能主動參與學(xué)習活動,既關(guān)注了學(xué)生的個人差異和不同的學(xué)習需求,又注重了學(xué)生的個體感悟,強調(diào)情感體驗的過程。確立了學(xué)生在課堂教學(xué)中的主體地位,使學(xué)生在學(xué)習過程中既調(diào)動了積極性,又激發(fā)了學(xué)生的主體意識和進取精神。學(xué)生在自主、合作、探究的學(xué)習方式中互相激勵,取長補短,能團結(jié)協(xié)作,最終形成了相應(yīng)能力;同時培養(yǎng)了學(xué)生刻苦鉆研,事實求是的態(tài)度。
    教學(xué)過程是一堂課關(guān)鍵中的關(guān)鍵,新課標提出數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),而數(shù)學(xué)活動應(yīng)是學(xué)生自己建構(gòu)知識的活動。教師讓學(xué)生“在參與中體驗,在活動中發(fā)展”。本節(jié)課有操作活動、自主探索與合作交流、應(yīng)用活動三個方面,下面我重點談?wù)劜僮骰顒印?BR>    1、在實踐材料上下了工夫。
    操作實踐的材料是精心選擇的,老師為學(xué)生準備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個,這樣學(xué)生在操作時候,便于選擇、測量、拼擺、觀察、思考問題,而且這些三角形顏色醒目、比較大,學(xué)生應(yīng)用起來很得手,操作的材料和學(xué)生的動手實踐配合恰當。
    2、找準時機讓學(xué)生進行實踐操作。
    本節(jié)課安排了兩次操作活動:一是在得出三角形內(nèi)角和規(guī)律前進行實踐操作,促使學(xué)生在實踐操作中探究新知識;二是在初步得出規(guī)律之后,讓學(xué)生通過實踐操作來驗證新知識。幫助學(xué)生清楚地認識到第一次出現(xiàn)內(nèi)角和偏差的原因是測量誤差造成的。給學(xué)生提供的這兩次動手實踐的機會,不僅提高了操作的效果,更重要的使“聽數(shù)學(xué)”變?yōu)椤白鰯?shù)學(xué)”。促使學(xué)生在“做數(shù)學(xué)”的過程中對所學(xué)知識產(chǎn)生了深刻的體驗,從中感悟和理解到新知識的形成和發(fā)展,體會了數(shù)學(xué)學(xué)習的過程與方法,獲得數(shù)學(xué)活動的經(jīng)驗。
    3、把實踐操作和數(shù)學(xué)思維結(jié)合起來。
    學(xué)生通過實踐操作獲得的認識是一種感性的認識,是外在的直觀的印象。在本節(jié)課中趙老師在學(xué)生實踐操作的基礎(chǔ)上引導(dǎo)學(xué)生把動手實踐和數(shù)學(xué)思維結(jié)合起來,先讓學(xué)生思考出可以用量、撕和拼的方法來推導(dǎo)三角形內(nèi)角和的度數(shù),接著引導(dǎo)學(xué)生說出量的方法,最后讓學(xué)生實際測量。采取邊說邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學(xué)的基礎(chǔ)上及時對三角形內(nèi)角和規(guī)律進行抽象概括。做到邊動手,邊思考。同時學(xué)生獲得了一種數(shù)學(xué)思想和方法,學(xué)會了解決一些類似的一系列的問題,提高了實踐動手的有效性。
    三角形的內(nèi)角和教學(xué)設(shè)計篇十一
    “三角形的內(nèi)角和”是人教版小學(xué)數(shù)學(xué)四年級下冊第五單元第四節(jié)的內(nèi)容,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì)。本課教學(xué)內(nèi)容不算多,學(xué)生只需要翻看課本就會知道三角形的內(nèi)角和是180°,但是陳麗老師并沒有讓學(xué)生這樣做?!皵?shù)學(xué)學(xué)習的過程實際上是數(shù)學(xué)活動的過程”。課程標準要求我們“將課堂還給學(xué)生,讓課堂煥發(fā)生命的活力”,要求我們“努力營造學(xué)生在教學(xué)活動中獨立自主學(xué)習的時間和空間,使他們成為課堂教學(xué)中重要的參與者與創(chuàng)造者,落實學(xué)生的主體地位,促進學(xué)生的自主學(xué)習和探究?!痹诮虒W(xué)中,陳老師力求探究,將教學(xué)思路擬定為“創(chuàng)設(shè)情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結(jié)——拓展應(yīng)用,反思升華”四個環(huán)節(jié),努力構(gòu)建探究型的課堂教學(xué)模式。具體體現(xiàn)在以下幾個方面:
    課一開始,陳老師創(chuàng)設(shè)了一個實踐操作的活動情境:讓學(xué)生畫一個含有兩個直角的三角形。很顯然三角形是畫不出來的,學(xué)生同樣也不知道畫不出來。簡單的活動激活了學(xué)生的思維,讓他們產(chǎn)生了問題:是不是三角形的角有些什么秘密呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
    在教學(xué)中,陳老師巧妙運用“猜想、驗證”的方式引導(dǎo)學(xué)生進行自主學(xué)習和探究活動。學(xué)生大膽猜想三角形的內(nèi)角和是180°,讓學(xué)生對問題形成了統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。這個時候,陳老師就把課堂大量的時間和空間留給學(xué)生,在學(xué)生交流探究設(shè)想和打算采用的方法后,放手讓每個同學(xué)自主參與驗證活動,在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,同時發(fā)展空間觀念和論證推理能力。驗證的具體過程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結(jié)論的形成不缺乏科學(xué)性。這個環(huán)節(jié)的設(shè)計更重要的是變“聽數(shù)學(xué)”為“做數(shù)學(xué)”,讓學(xué)生在“做中學(xué)”。
    學(xué)生在活動中體驗,在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識的層面上,陳老師還引導(dǎo)學(xué)生對獲得知識所用的方法進行了總結(jié),加強了學(xué)法指導(dǎo)。
    課程標準提倡練習的.有效性。本節(jié)課的練習設(shè)計陳老師非常注意將數(shù)學(xué)的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用。兩個小三角形拼成一個較大的三角形互動練習讓學(xué)生進一步理解任意三角形的內(nèi)角和都是180°;后面的練習設(shè)計從圖形到文字,由一般到特殊;“開心一刻”更是把學(xué)生帶到無窮的學(xué)習樂趣之中。這些練習設(shè)計目的明確,針對性強,使學(xué)生不但鞏固了知識,更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
    兩點建議:
    2、學(xué)生的猜想結(jié)果都是180°,這時老師是否可以反問:你們是怎樣知道的?便于學(xué)生的學(xué)習活動更流暢的進入下一個環(huán)節(jié)。
    總之,我個人認為陳老師對“四步教學(xué)法”模式的把握是成功的,學(xué)生在這種課堂教學(xué)模式下的學(xué)習是自主的,是活動的,也是快樂的。
    三角形的內(nèi)角和教學(xué)設(shè)計篇十二
    《三角形內(nèi)角和》是北師大版《數(shù)學(xué)》四年級下冊的內(nèi)容。是在學(xué)生學(xué)習了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎(chǔ),因此,掌握三角形的內(nèi)角和是180度這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學(xué)生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了試一試,練一練的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。
    三角形的內(nèi)角和教學(xué)設(shè)計篇十三
    三角形的內(nèi)角和是北師大版四年級下冊第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個重要性質(zhì),學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進一步學(xué)習幾何的基礎(chǔ)。
    本節(jié)課是在學(xué)生學(xué)過角的度量、三角形的特征和分類等知識的基礎(chǔ)上進行教學(xué)的,學(xué)生已經(jīng)具備一定的關(guān)于三角形的認識的直接經(jīng)驗,也已具備了一些相應(yīng)的三角形知識和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅實的基礎(chǔ)。
    因此,我確定本節(jié)課的教學(xué)目標是:
    知識與技能:通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180。知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。能應(yīng)用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
    發(fā)展學(xué)生動手操作、觀察比較和抽象概括的能力。
    情感、態(tài)度與價值觀:體驗數(shù)學(xué)活動的探索樂趣,體會研究數(shù)學(xué)問題的思想方法。
    學(xué)生經(jīng)歷探究三角形內(nèi)角和的全過程并歸納概括三角形內(nèi)角和等于180。
    三角形內(nèi)角和的探索與驗證,對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。
    整個教學(xué)將體現(xiàn)以人為本,先放后扶的教學(xué)策略。放,不是漫無目的的放,而是為學(xué)生提供足夠的探究規(guī)律的材料和時間,放手讓學(xué)生自主學(xué)習,合作探究;扶,則是根據(jù)學(xué)生的不同探究方法和出現(xiàn)的錯誤,給予恰當指導(dǎo),引導(dǎo)學(xué)生歸納概括出規(guī)律。
    《課程標準》明確指出:要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導(dǎo)學(xué)生從猜測――驗證展開學(xué)習活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。在教學(xué)中,學(xué)生通過測量、拼折、驗證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動手實踐、合作交流,自主探索的學(xué)習方式,同時也培養(yǎng)了探索能力和創(chuàng)新精神。
    基于以上分析,我以猜測、驗證、結(jié)論和應(yīng)用四個活動環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習進行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動經(jīng)驗。
    通過出示一個角形,讓學(xué)生說知道三角形的知識來引出三角形的內(nèi)角的概念,讓學(xué)生自由猜測,三角形內(nèi)角和是多少?引出課題,以疑激思。
    動手實踐,自主探究,是學(xué)生學(xué)習數(shù)學(xué)的重要方式,新課程的一個重要理念就是提倡學(xué)生做數(shù)學(xué)用親身體驗的方式來經(jīng)歷數(shù)學(xué),探究數(shù)學(xué),這要求老師首先為學(xué)生提供充分的研究材料,以及充裕的時間,保證學(xué)生能真正地試驗,操作和探索。
    這一環(huán)節(jié)我設(shè)計為以下三步:
    1、操作感知。
    組織學(xué)生通過算一算初步感知三角形的內(nèi)角和。根據(jù)學(xué)生特點,為了節(jié)約學(xué)生上課的時間,作為預(yù)習作業(yè),我提前讓學(xué)生在家里自制鈍角、銳角、直角三角形,并測量出每個角的度數(shù),寫在三角形對應(yīng)的角上,也填在書上的表格里。這時直接讓學(xué)生計算,學(xué)生匯報計算結(jié)果,不同的學(xué)生可能會有不同的結(jié)果,有可能大于180或小于180甚至等于180,只要相對合理(允許一點誤差)都給與肯定。這時可引導(dǎo)學(xué)生得出結(jié)論(強調(diào)在排除測量誤差的前提下):三角形的內(nèi)角和是180度。在這一過程中,學(xué)生有困惑,有疑問,而正是這些困惑激發(fā)了學(xué)生更強的探究欲望,正是這些疑問,使得合作成為學(xué)生的內(nèi)在需要。
    2、小組合作。
    針對探究過程中不同思維能力的學(xué)生,要做到因材施教。對于得出結(jié)論的學(xué)生要鼓勵他們思考新的方法,對于無法下手的學(xué)生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來看是多少?能用什么方法將三個角合起來。在探究學(xué)習中,老師只是起一個引導(dǎo)者的作用,引導(dǎo)學(xué)生不斷地深入探究,盡可能用多種合理的方法,驗證結(jié)論。
    3、交流反饋,得出結(jié)論。
    學(xué)生完成探究活動之后,在有親身體驗的基礎(chǔ)上,我將選擇不同方法的代表,在展示平臺上展示自己的探究過程,并說說自己是怎樣想的。我關(guān)注的不是學(xué)生最后論證的結(jié)果,而是學(xué)生思維的過程。學(xué)生可能通過:拼一拼、折一折、畫一畫的方法,驗證得出三角形的內(nèi)角和是180度,并通過觀察對比各組所用的三角形,是不同類型的而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對于任意三角形都是適用。在學(xué)生探究之后,我用課件重新演示了3種方法,讓學(xué)生有一個系統(tǒng)的知識體系。
    揭示規(guī)律之后,學(xué)生要掌握知識,形成技能技巧,就要通過解答實際問題的練習來鞏固內(nèi)化。根據(jù)學(xué)生能力的不同,我將練習分為以下3個層次。
    1、基礎(chǔ)練習。要求學(xué)生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個角,求第三個角。由于學(xué)生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字敘述題。在這之間指導(dǎo)學(xué)生注意一題多解。
    2、提高練習。如已知一個直角三角形的一個角的度數(shù),求另一個角的度數(shù);已知一個等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。
    3、拓展練習。針對不同思維能力的學(xué)生,我設(shè)計的思考題是要求學(xué)生應(yīng)用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學(xué)生去求解多邊形的內(nèi)角和,更重要的是為了讓學(xué)生靈活應(yīng)用知識點,培養(yǎng)學(xué)生的空間思維能力。
    這樣安排可以兼顧不同能力的學(xué)生,在保證基本教學(xué)要求的同時,盡量滿足學(xué)生的學(xué)習需要,啟發(fā)學(xué)生的思維活動。
    本節(jié)課通過這樣的設(shè)計,學(xué)生全身心投入到數(shù)學(xué)探究互動中去,學(xué)生不僅學(xué)到科學(xué)探究的方法,而體驗到探索的甘苦,領(lǐng)略成功的喜悅,學(xué)生在探索中學(xué)習,在探索中發(fā)現(xiàn),在探索中成長,最終實現(xiàn)可持續(xù)性發(fā)展。
    猜測驗證結(jié)論應(yīng)用。
    三角形的內(nèi)角和教學(xué)設(shè)計篇十四
    教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
    1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
    2.能運用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。
    3.培養(yǎng)學(xué)生動手動腦及分析推理能力。
    導(dǎo)學(xué)過程。
    1、什么是平角?平角是多少度?
    2、計算角的度數(shù)。
    3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)。
    (設(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))。
    1、讀學(xué)卡的學(xué)習目標、任務(wù)目標,做到心里有數(shù)。
    4、驗證:
    (1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。
    (2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
    (3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和是180°(師巡視)。
    (4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)。
    5、結(jié)論:修改板書,把“?”去掉,寫“是”。
    6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)。
    7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)。
    1、填空。
    (1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110,第三個內(nèi)角是().
    (2)一個直角三角形的一個銳角是50,則另一個銳角是()。
    (3)等邊三角形的3個內(nèi)角都是()。
    (4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
    (5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
    2、判斷。
    (1)一個三角形中最多有兩個直角。()。
    (2)銳角三角形任意兩個內(nèi)角的和大于90。()。
    (3)有一個角是60的等腰三角形不一定是等邊三角形。()。
    (4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。()。
    (5)直角三角形中的兩個銳角的和等于90。()。
    根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
    1、小組討論。
    2、匯報結(jié)果。
    3、課件提示幫助理解。
    教學(xué)反思。
    今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達到這節(jié)課的教學(xué)目標了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。
    任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。
    如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角?,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進入主題。
    如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應(yīng)該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。
    本節(jié)課的練習的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰(zhàn)。
    給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。
    前邊驗證時間過多,到練習時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。
    總而言之,這次的公開課,給了我一次學(xué)習和鍛煉的機會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習。
    三角形的內(nèi)角和教學(xué)設(shè)計篇十五
    2.弄清三角形按角的分類,會按角的大小對三角形進行分類;。
    3.通過對三角形分類的學(xué)習,使學(xué)生了解數(shù)學(xué)分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
    4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時培養(yǎng)學(xué)生嚴謹?shù)目茖W(xué)態(tài)。
    5.通過對定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。
    直尺、微機。
    互動式,談話法。
    1、創(chuàng)設(shè)情境,自然引入。
    把問題作為教學(xué)的出發(fā)點,創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
    問題2你能用幾何推理來論證得到的關(guān)系嗎?
    對于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會感到困難,因為這個證明需添加輔助線,這是同學(xué)們第一次接觸的新知識―――“輔助線”。教師可以趁機告訴學(xué)生這節(jié)課將要學(xué)習的一個重要內(nèi)容(板書課題)。
    新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學(xué)習了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習的內(nèi)容自然合理。
    2、設(shè)問質(zhì)疑,探究嘗試。
    讓學(xué)生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設(shè)計了電腦動畫顯示具體情景。然后,圍繞問題設(shè)計以下幾個問題讓學(xué)生思考,教師進行學(xué)法指導(dǎo)。
    問題1觀察:三個內(nèi)角拼成了一個什么角?
    問題2此實驗給我們一個什么啟示?
    問題3由圖中ab與cd的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
    其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對于問題3學(xué)生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關(guān)知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉(zhuǎn)化條件;恰當轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達到化難為易解決問題的目的。
    (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
    學(xué)生回答后,電腦顯示圖表。
    (3)三角形中三個內(nèi)角之和為定值,那么對三角形的其它角還有哪些特殊的關(guān)系呢?
    問題1直角三角形中,直角與其它兩個銳角有何關(guān)系?
    問題2三角形一個外角與它不相鄰的兩個內(nèi)角有何關(guān)系?
    問題3三角形一個外角與其中的一個不相鄰內(nèi)角有何關(guān)系?
    其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。
    這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習習慣。第二,模仿定理的證明書寫格式,加強學(xué)生書寫能力。第三,提高學(xué)生靈活運用所學(xué)知識的能力。
    引導(dǎo)學(xué)生分析并嚴格書寫解題過程。
    三角形的內(nèi)角和教學(xué)設(shè)計篇十六
    傳統(tǒng)的課堂教學(xué)是教師講、學(xué)生聽,依據(jù)教材給的例子,通過觀察,發(fā)現(xiàn)規(guī)律,再進行模仿練習,課堂沉悶乏味。而好的教育一定要致力于學(xué)生用自己的眼睛去觀察,用自己的心靈去感悟,用自己的頭腦去判別,用自己的語言去表達,本節(jié)課中我充分體現(xiàn)了這一觀點。
    首先,通過學(xué)生生活中的例子從小明家到學(xué)校走哪條路近,呈現(xiàn)教學(xué)內(nèi)容,學(xué)生在感性認識上獲得了基礎(chǔ),從而為發(fā)現(xiàn)三角形三邊關(guān)系律奠定了基礎(chǔ)。
    其次,為學(xué)生提供足夠的學(xué)習時間和空間,教師啟發(fā)學(xué)生用不同長度的三根小棒分別來圍三角形,引導(dǎo)學(xué)生進行小組合作探究,師生、生生多向互動,人人體驗探索規(guī)律的過程。
    第三,改變了學(xué)生被動接受的學(xué)習方式,讓學(xué)生根據(jù)自己對知識的理解和課堂中獲得的信息進行判斷和辨析,提出自己的見解和疑問。因此,課堂上體現(xiàn)學(xué)生在主動參與中思維的靈活性和開拓性,出現(xiàn)了許多令教師意外而驚喜的資源。如有的學(xué)生提出:判斷三條線段能否圍成三角形,只需要把最短的兩條邊相加大于第三邊就可以了。
    通過這節(jié)課的教學(xué),我深深體會到:一個真實的教學(xué)過程是不可預(yù)設(shè)的,而是一個師生等多種因素間動態(tài)的相互作用的過程。教師應(yīng)多關(guān)注學(xué)生,要為學(xué)生提供必要的資源,要善于開發(fā)和利用學(xué)生資源,使課堂成為一個資源生成和動態(tài)生成的過程,成為促進師生生命共同發(fā)展的場所。
    初中三角形的邊教學(xué)反思篇二
    三角形的邊一課是在學(xué)生知道了三角形有三條邊、三個角、三個頂點以及三角形具有穩(wěn)定性的基礎(chǔ)上學(xué)習的,通過前面的學(xué)習,學(xué)生雖然知道了三角形有三條邊,但三角形“邊”的研究卻是學(xué)生首次接觸。因此,教學(xué)中,我讓學(xué)生在觀察、感知的基礎(chǔ)上,動手操作,擺一擺,比一比,看一看,想一想,分組討論、合作學(xué)習,運用多媒體課件輔助教學(xué),老師恰當點撥,適時引導(dǎo)。
    本節(jié)課的一個突出特點就在于學(xué)生的實際動手操作上,具體體現(xiàn)在以下兩個環(huán)節(jié):一是導(dǎo)入部分:學(xué)生從4根小棒中任意拿出3根,擺一擺,可能出現(xiàn)什么情況?結(jié)果有的學(xué)生擺成了三角形,而有的學(xué)生沒有擺成三角形,此時,老師接過話題:能否擺成三角形估計與三角形的“邊的長度”有關(guān)系,它們之間有著怎樣的關(guān)系呢?這樣很自然地就導(dǎo)入了新課,為后面的新課做了鋪墊。二是新授部分:學(xué)生用手中的小棒按老師的要求來擺三角形,并且做好記錄。這個過程必須得每個學(xué)生親自動手,在此基礎(chǔ)上觀察、發(fā)現(xiàn)、比較,從而得出結(jié)論。教學(xué)中,我設(shè)置這些實際動手操作、共同探討的活動,既滿足了學(xué)生的精神需要,又讓學(xué)生在濃烈的學(xué)習興趣中學(xué)到了知識,體驗到了成功的快樂。
    評價一節(jié)數(shù)學(xué)課,最直接有效的方式就是通過練習得到的反饋。而學(xué)生之間參差不齊,為了能兼顧全班學(xué)生的整體水平,我在練習設(shè)計上主要采用了層層深入的原則,先是基礎(chǔ)知識的練習;然后用三角形的知識解決問題。新授課中的小組合作“擺三角形”,學(xué)生分工明確,參與性強,而練習中的小組合作卻能集眾人智慧,全面考慮,在有限的時間內(nèi)完成學(xué)習任務(wù)。
    對這堂課的教學(xué),我也有不少遺憾之處。
    1、教學(xué)設(shè)計不夠精巧,沒有波瀾,對學(xué)生積極性的調(diào)動還是不夠。對教材內(nèi)容的把握是過分拘泥于教材。
    2、學(xué)習小組內(nèi)的合作較好,但是組間競爭意識不強,小組加分過于機械,沒有充分調(diào)動學(xué)生競爭的積極性。
    改進:在適當?shù)恼n中多多運用小組學(xué)習,不要機械的運用小組,為了應(yīng)用而應(yīng)用。在有的課堂上如果運用小組確實能達到很好的效果就用,如果效果不明顯時就可以不用,對于小組要靈活運用。
    三角形的內(nèi)角和教學(xué)設(shè)計篇十七
    三角形的內(nèi)角和是四年級下冊第五單元的內(nèi)容,是在學(xué)生認識三角形的特征、分類的基礎(chǔ)上進行教學(xué)的,主要通過不同形式的動手操作驗證三角形的內(nèi)角和的度數(shù)。
    一、亮點。
    1.注重數(shù)學(xué)思想方法的滲透。在教學(xué)中,孔石蕾老師首先通過猜想,讓學(xué)。
    生通過量一量銳角三角形、直角三角形和鈍角三角形每個角的度數(shù),有的學(xué)生得到三角形的內(nèi)角和正好是180°,有的大于180°,而有的則小于180°,由此讓學(xué)生去想辦法去驗證三角形的內(nèi)角和的度數(shù)。在驗證的過程中,學(xué)生采用了把三角形的三個角撕下來拼成直角的方法、把三角形的三個角折成平角的方法得出了三角形的內(nèi)角和是180度,接著教師又通過動畫演示操作和幾何畫板的量角的優(yōu)勢,讓學(xué)生清晰地看出三角形內(nèi)角和的度數(shù)是180度,最后又應(yīng)用這一知識進行了綜合的練習。在整個教學(xué)過程中,教師采用了猜想、驗證、得出結(jié)論、應(yīng)用的四個探究環(huán)節(jié),讓學(xué)生經(jīng)歷了知識的發(fā)生、發(fā)展過程,提高了解決問題的能力。
    2.精心準備,精彩呈現(xiàn)。在教學(xué)過程中,孔石蕾老師在課件的制作,幾何畫板的應(yīng)用、知識材料的拓展、習題的選擇等方面進行了精心設(shè)計和準備,教學(xué)過程流暢、教學(xué)環(huán)節(jié)緊湊,教學(xué)語言清晰,有效地達成了教學(xué)目標,使學(xué)生在學(xué)習的過程中不僅掌握了知識,也掌握了學(xué)習數(shù)學(xué)的方法。
    二、建議。
    在教學(xué)過程中,可以適當?shù)倪M行知識的延伸拓展,如通過學(xué)習三角形的內(nèi)角和對于后續(xù)的學(xué)習有什么影響,可以想到四邊形的內(nèi)角和等等方面的內(nèi)容。
    三角形的內(nèi)角和教學(xué)設(shè)計篇十八
    1、善用激趣設(shè)疑導(dǎo)入:教學(xué)的藝術(shù)不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設(shè)懸念,三種類型的角在激烈的爭執(zhí),到的誰的內(nèi)角和大呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學(xué)生探究數(shù)學(xué)的愿望和興趣,而且也很自然地揭示了課題。
    2、巧用猜想:學(xué)生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
    3、善用驗證{自主探索}:學(xué)生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時間和空間留給學(xué)生,讓他們開展有針對性的`數(shù)學(xué)探究活動{即驗證三角形的內(nèi)角和是否是180度?},在活動中,把放和引有機的結(jié)合,鼓勵學(xué)生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓(轉(zhuǎn)自數(shù)學(xué)吧http://)每個學(xué)生自主參與驗證活動,而且使學(xué)生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
    4、善于引導(dǎo)鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學(xué)離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學(xué)的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關(guān)牛刀小試:給出一個三角形的兩個角度,學(xué)生求第三個角,從中培養(yǎng)學(xué)生應(yīng)用意識和解決問題的能力;第三關(guān)過關(guān)斬將:讓學(xué)生判斷有兩個小三角形拼成的三角形的內(nèi)角和的度數(shù),使學(xué)生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學(xué)生的空間觀念和空間想象能力。這些練習設(shè)計目的明確,針對性強,使學(xué)生不但鞏固了知識,更重要的是數(shù)學(xué)思維得到不斷的發(fā)展。
    5、有一定的拓展創(chuàng)新:數(shù)學(xué)具有嚴密的邏輯性和抽象性。而學(xué)生學(xué)習內(nèi)容的呈現(xiàn)是從簡單到復(fù)雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學(xué)習的知識往往是后面進一步學(xué)習的基礎(chǔ)。要培養(yǎng)學(xué)生思維的靈活性,可以先讓學(xué)生學(xué)會對知識的遷移。本課最后,謝老師設(shè)計了這樣一道題目:學(xué)了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過對本節(jié)課所學(xué)知識的遷移就可以完成,既能對學(xué)生進行思維訓(xùn)練,又能培養(yǎng)學(xué)生應(yīng)用知識的能力,更能培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新精神。
    總之,本節(jié)課教學(xué)活動中謝老師充分體現(xiàn)以下特點:以學(xué)生發(fā)展為本,以學(xué)生為主體,思維為主線的思想;充分關(guān)注學(xué)生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。