七年級數(shù)學有理數(shù)的減法教案(熱門16篇)

字號:

    教案是對教師課堂教學的一種規(guī)劃和設(shè)計,通過教案的編寫,可以更好地組織教學過程,提高教學效果。老師在編寫教案時要注重培養(yǎng)學生的綜合能力,培養(yǎng)他們的創(chuàng)新思維和實踐能力。以下是小編為大家收集的精選教案范例,僅供參考,希望能給您帶來啟示。
    七年級數(shù)學有理數(shù)的減法教案篇一
    1、知識目標:借助生活中的實例理解有理數(shù)的意義,體會負數(shù)引入的必要性和有理數(shù)應(yīng)用的廣泛性,會判斷一個數(shù)是正數(shù)還是負數(shù)。
    2、能力目標:能應(yīng)用正負數(shù)表示生活中具有相反意義的量。
    3、情感態(tài)度:讓學生了解有關(guān)負數(shù)的歷史、體會負數(shù)與實際生活的聯(lián)系。教學重難點。
    重點:理解有理數(shù)的意義。
    難點:能用正負數(shù)表示生活中具有相反意義的量。
    教學過程。
    一、創(chuàng)設(shè)情境、提出問題。
    某班舉行知識競賽,評分標準是:答對一題加1分,答錯一題扣1分,不回答得0分;每個隊的基礎(chǔ)分均為0分。兩個隊答題情況見書上第23頁。
    二、分析探索、問題解決。
    分組討論扣的分怎樣表示?
    用前面學的數(shù)能表示嗎?
    數(shù)怎么不夠用了?
    引出課題。
    講授正數(shù)、負數(shù)、有理數(shù)的定義。
    用負數(shù)表示比“0”低的數(shù),如:-10,讀作負10,表示比0低10分的數(shù)。啟發(fā)學生再從生活中例舉出用負數(shù)表示具有相反意義的數(shù)。
    三、鞏固練習。
    1、用正數(shù)或負數(shù)表示下列各題中的數(shù)量:
    (2)球賽時,如果勝2局記作+2,那么-2表示______;。
    (3)若-4萬表示虧損4萬元,那么盈余3萬元記作______;。
    (4)+150米表示高出海平面150米,低于海平面200米應(yīng)記作______.
    分析:用正、負數(shù)可分別表示具有相反意義的量,通常高于海平面的高度用正數(shù)表示,低于海平面的高度用負數(shù)表示;完全相反的兩個方向,一個方向定為用正數(shù)表示,則另一個方向用負數(shù)表示;如運進與運出,收入與支出,盈利與虧損,買進與賣出,勝與負等都是具有相反意義的量。
    2、下面說法中正確的是().
    a.“向東5米”與“向西10米”不是相反意義的量;
    b.如果汽球上升25米記作+25米,那么-15米的意義就是下降-15米;
    c.如果氣溫下降6℃記作-6℃,那么+8℃的意義就是零上8℃;。
    d.若將高1米設(shè)為標準0,高1.20米記作+0.20米,那么-0.05米所表示的高是0.95米。
    三、小結(jié)回顧、納入體系。
    學生交流回顧、討論總結(jié),教師補充如下:
    概念:正數(shù)、負數(shù)、有理數(shù)。
    分類:有理數(shù)的分類:兩種分法。
    應(yīng)用:有理數(shù)可以用來表示具有相反意義的量。
    七年級數(shù)學有理數(shù)的減法教案篇二
    1.1正數(shù)和負數(shù)(2)。
    教學目標:
    教學重點:
    深化對正負數(shù)概念的理解。
    教學難點:
    正確理解和表示向指定方向變化的量。
    教學準備:彩色粉筆。
    教學過程:
    一、復(fù)習引入:
    學生思考并討論.
    (數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
    二、講解新課。
    度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
    思考:教科書第4頁(學生先思考,教師再講解)。
    三、課堂練習課本p4練習1,2,3,4。
    四、課時小結(jié)。
    引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
    五、課外作業(yè)教科書p5:2、4。
    板書設(shè)計:
    七年級數(shù)學有理數(shù)的減法教案篇三
    理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。
    二、過程與方法。
    經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。
    三、情感態(tài)度與價值觀。
    通過對有理數(shù)的學習,體會到數(shù)學與現(xiàn)實世界的緊密聯(lián)系。
    教學重難點及突破。
    在引入了負數(shù)后,本課對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習,使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應(yīng)引起足夠的重視。關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
    教學準備。
    用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。
    教學過程。
    四、課堂引入。
    2.舉例說明現(xiàn)實中具有相反意義的量。
    3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意義?
    4.舉兩個例子說明+5與-5的區(qū)別。
    七年級數(shù)學有理數(shù)的減法教案篇四
    學習目標:。
    1、理解加減法統(tǒng)一成加法運算的意義.
    2、會將有理數(shù)的加減混合運算轉(zhuǎn)化為有理數(shù)的加法運算.
    3、培養(yǎng)學習數(shù)學的興趣,增強學習數(shù)學的信心.
    教學方法:講練相結(jié)合。
    教學過程。
    1、一架飛機作特技表演,起飛后的高度變化如下表:
    高度的變化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。
    記作+4.5千米—3.2千米+1.1千米—1.4千米。
    請你們想一想,并和同伴一起交流,算算此時飛機比起飛點高了千米.
    2、你是怎么算出來的,方法是。
    1、現(xiàn)在我們來研究(—20)+(+3)—(—5)—(+7),該怎么計算呢?還是先自己獨立動動手吧!
    2、怎么樣,計算出來了嗎,是怎樣計算的,與同伴交流交流,師巡視指導.
    如:(-20)+(+3)-(-5)-(+7)有加法也有減法。
    =(-20)+(+3)+(+5)+(-7)先把減法轉(zhuǎn)化為加法。
    =-20+3+5-7再把加號記在腦子里,省略不寫。
    可以讀作:“負20、正3、正5、負7的”或者“負20加3加5減7”.
    4、師生完整寫出解題過程。
    1、解決引例中的問題,再比較前面的方法,你的感覺是。
    2、例題:計算-4.4-(-4)-(+2)+(-2)+12.4。
    3、練習:計算1)(—7)—(+5)+(—4)—(—10)。
    1、小結(jié):說說這節(jié)課的收獲。
    2、p241、2。
    3、計算。
    1)27—18+(—7)—322)。
    五、作業(yè)。
    1、p2552、p26第8題、14題。
    七年級數(shù)學有理數(shù)的減法教案篇五
    學習過程:
    一、自主學習不動筆墨不讀書!請拿出你的筆和你的激情,探究新知:
    1.小學學過的加法運算律有哪些?舉例說明運用運算律有何好處?
    2.加法的交換律:
    兩個數(shù)相加,交換_______的位置,和不變.用式子表示:a+b=_______.
    3.加法的結(jié)合律:
    七年級數(shù)學有理數(shù)的減法教案篇六
    1、(6分)把下列各數(shù)填在相應(yīng)的集合內(nèi):
    -23,0.25,,-5.18,18,-38,10,+7,0,+12。
    正數(shù)集合:{………}。
    整數(shù)集合:{………}。
    分數(shù)集合:{………}。
    2、某校對七年級男生進行俯臥撐測試,以能做7個為標準,超過的次數(shù)用正數(shù)表示,不足的次數(shù)用負數(shù)表示,其中8名男生的成績?nèi)缦卤恚?BR>    2-103-2-310。
    (1)這8名男生的達標率是百分之幾?
    (2)這8名男生共做了多少個俯臥撐?
    答案。
    1、
    正數(shù)集合:{0.25,18,10,+7,+12………}。
    整數(shù)集合:{-23,18,-38,10,+7,0,+12………}。
    分數(shù)集合:{0.25,,-5.18………}。
    2、
    (1)50%,(2)56個。
    七年級數(shù)學有理數(shù)的減法教案篇七
    1、知識目標:了解有理數(shù)乘法法則的合理性,掌握有理數(shù)的乘法法則,熟練運用有理數(shù)的法則進行準確運算。
    2、能力目標:通過對問題的變式探索,培養(yǎng)自己觀察、分析、抽象、概括的能力。
    3、情感目標:培養(yǎng)積極思考和勇于探索的精神,形成良好的學習習慣。
    重點:有理數(shù)乘法運算法則的推導及熟練運用。
    難點:有理數(shù)乘法運算中積的符號的確定。
    1、在小學我們已經(jīng)接觸了乘法,那什么叫乘法呢?
    求幾個的運算,叫乘法。
    一個數(shù)同0相乘,得0。
    2、請你列舉幾道小學學過的乘法算式。
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘后蝸牛應(yīng)在o點的()邊()cm處。
    可以列式為:(+2)(+3)=。
    問題2:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘后蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘后蝸牛應(yīng)在o點的()邊()cm處。
    可以列式為:
    問題3:如果蝸牛一直以每分鐘2cm的速度向右爬行,那么3分鐘前蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘前蝸牛應(yīng)在o點的()邊()cm處。
    可以表示為:
    問題4:如果蝸牛一直以每分鐘2cm的速度向左爬行,那么3分鐘前蝸牛在什么位置?
    規(guī)定:向右為正,現(xiàn)在之后為正。
    3分鐘前蝸牛應(yīng)在o點的()邊()cm處。
    可以表示為:
    2、觀察這四個式子:
    (+2)(+3)=+6(—2)(—3)=+6。
    (—2)(+3)=—6(+2)(—3)=—6。
    正數(shù)乘正數(shù)積為__數(shù):負數(shù)乘負數(shù)積為__數(shù):
    負數(shù)乘正數(shù)積為__數(shù):正數(shù)乘負數(shù)積為__數(shù):
    乘積的絕對值等于各乘數(shù)絕對值的_____。
    思考:當一個因數(shù)為0時,積是多少?
    兩數(shù)相乘,同號得,異號得,并把絕對值。
    任何數(shù)同0相乘,都得。
    1、你能確定下列乘積的符號嗎?
    37積的符號為;(—3)7積的符號為;
    3(—7)積的`符號為;(—3)(—7)積的符號為。
    2先閱讀,再填空:
    (—5)x(—3)。同號兩數(shù)相乘。
    (—5)x(—3)=+()得正。
    5x3=15把絕對值相乘。
    所以(—5)x(—3)=15。
    填空:(—7)x4____________________。
    (—7)x4=—()___________。
    7x4=28_____________。
    所以(—7)x4=____________。
    [例1]計算:
    (1)(—5)(2)(—5)。
    (3)(—6)(—0.45)(4)(—7)0=。
    解:(1)(—5)(—6)=+(56)=+30=30。
    請同學們仿照上述步驟計算(2)(3)(4)。
    (2)(—5)6==。
    (3)(—6)(—0.45)==。
    (4)(—7)0=。
    讓我們來總結(jié)求解步驟:
    兩個數(shù)相乘,應(yīng)先確定積的,再確定積的。
    1、小組口算比賽,看誰更棒。
    (1)3(—4)(2)2(—6)(3)(—6)2。
    (4)6(—2)(5)(—6)0(6)0(—6)。
    2、仔細計算。,注意積的符號和絕對值。
    (1)(—4)0.25(2)(—0.5)(—2)(3)(—)。
    (4)(—2)(—)(5)(—)(—)(6)(—)5。
    1、下列說法錯誤的是()。
    a、一個數(shù)同0相乘,仍得0。
    b、一個數(shù)同1相乘,仍得原數(shù)。
    c、如果兩個數(shù)的乘積等于1,那么這兩個數(shù)互為相反數(shù)。
    d、一個數(shù)同—1相乘,得原數(shù)的相反數(shù)。
    2、在—2,3,4,—5這四個數(shù)中,任意兩個數(shù)相乘,所得的積最大的是()。
    a、10b、12c、—20d、不是以上的答案。
    3、計算下列各題:
    (5)(—6)(—5)=;(6)(—5)(—6)=。
    七年級數(shù)學有理數(shù)的減法教案篇八
    2.內(nèi)容解析。
    有理數(shù)的乘法是繼有理數(shù)的加減法之后的又一種基本運算.有理數(shù)乘法既是有理數(shù)運算的深入,又是進一步學習有理數(shù)的除法、乘方的基礎(chǔ),對后續(xù)代數(shù)學習是至關(guān)重要的.
    與有理數(shù)加法法則類似,有理數(shù)乘法法則也是一種規(guī)定,給出這種規(guī)定要遵循的原則是“使原有的運算律保持不變”.本節(jié)課要在小學已掌握的乘法運算的基礎(chǔ)上,通過合情推理的方式,得到“要使正數(shù)乘正數(shù)(或0)的規(guī)律在正數(shù)乘負數(shù)、負數(shù)乘負數(shù)時仍然成立,那么運算結(jié)果應(yīng)該是什么”的結(jié)論,從而使學生體會乘法法則的合理性.與加法法則一樣,正數(shù)乘負數(shù)、負數(shù)乘負數(shù)的法則,也要從符號和絕對值來分析.由于絕對值相乘就是非負數(shù)相乘,因此,這里關(guān)鍵是要規(guī)定好含有負數(shù)的兩數(shù)相乘之積的符號,這是有理數(shù)乘法的本質(zhì)特征,也是乘法法則的核心.
    基于以上分析,可以確定本課的教學重點是兩個有理數(shù)相乘的符號法則.
    二、目標及其解析。
    1.目標。
    (1)理解有理數(shù)乘法法則,能利用有理數(shù)乘法法則計算兩個數(shù)的乘法.
    (2)能說出有理數(shù)乘法的符號法則,能用例子說明法則的合理性.
    2.目標解析。
    達成目標(1)的標志是學生在進行兩個有理數(shù)乘法運算時,能按照乘法法則,先考慮兩乘數(shù)的符號,再考慮兩乘數(shù)的絕對值,并得出正確的結(jié)果.
    達成目標(2)的標志是學生能通過具體例子說明有理數(shù)乘法的符號法則的歸納過程.
    三、教學問題診斷分析。
    有理數(shù)的乘法與小學學習的乘法的區(qū)別在于負數(shù)參與了運算.本課要以正數(shù)、0之間的運算為基礎(chǔ),構(gòu)造一組有規(guī)律的算式,先讓學生從算式左右各數(shù)的符號和絕對值兩個角度觀察這些算式的共同特點并得出規(guī)律,再以問題“要使這個規(guī)律在引入負數(shù)后仍然成立,那么應(yīng)有……”為引導,讓學生思考在這樣的規(guī)律下,正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、兩個負數(shù)相乘各應(yīng)有什么運算結(jié)果,并從積的符號和絕對值兩個角度總結(jié)出規(guī)律,進而給出有理數(shù)乘法法則,在這個過程中體會規(guī)定的合理性.上述過程中,學生對于為什么要討論這些問題、什么叫“觀察下面的乘法算式”、從哪些角度概括算式的規(guī)律等,都會出現(xiàn)困難.為了解決這些困難,教師應(yīng)該在“如何觀察”上加強指導,并明確提出“從符號和絕對值兩個角度看規(guī)律”的要求.
    本課的教學難點是:如何觀察給定的乘法算式;從哪些角度概括算式的規(guī)律.
    四、教學過程設(shè)計。
    教師引導學生從有理數(shù)分類的角度考慮,區(qū)分出有理數(shù)乘法的情況有:正數(shù)乘正數(shù)、正數(shù)與0相乘、正數(shù)乘負數(shù)、負數(shù)乘正數(shù)、負數(shù)乘負數(shù).
    設(shè)計意圖:有理數(shù)分為正數(shù)、零、負數(shù),由此引出兩個有理數(shù)相乘的幾種情況,既復(fù)習有關(guān)知識,為下面的教學做好準備,又滲透了分類討論思想.
    問題2下面從我們熟悉的乘法運算開始.觀察下面的乘法算式,你能發(fā)現(xiàn)什么規(guī)律嗎?
    3×3=9,
    3×2=6,
    3×1=3,
    3×0=0.
    追問1:你認為問題要我們“觀察”什么?應(yīng)該從哪幾個角度去觀察、發(fā)現(xiàn)規(guī)律?
    如果學生仍然有困難,教師給予提示:
    (1)四個算式有什么共同點?——左邊都有一個乘數(shù)3.
    (2)其他兩個數(shù)有什么變化規(guī)律?——隨著后一個乘數(shù)逐次遞減1,積逐次遞減3.
    設(shè)計意圖:構(gòu)造這組有規(guī)律的算式,為通過合情推理,得到正數(shù)乘負數(shù)的法則做準備.通過追問、提示,使學生知道“如何觀察”“如何發(fā)現(xiàn)規(guī)律”.
    教師:要使這個規(guī)律在引入負數(shù)后仍然成立,那么,3×(-1)=-3,這是因為后一乘數(shù)從0遞減1就是-1,因此積應(yīng)該從0遞減3而得-3.
    追問2:根據(jù)這個規(guī)律,下面的兩個積應(yīng)該是什么?
    3×(-2)=,
    3×(-3)=.
    練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
    設(shè)計意圖:讓學生自主構(gòu)造算式,加深對運算規(guī)律的理解.
    先讓學生觀察、敘述、補充,教師再總結(jié):都是正數(shù)乘負數(shù),積都為負數(shù),積的.絕對值等于各乘數(shù)絕對值的積.
    設(shè)計意圖:先得到一類情況的結(jié)果,降低歸納概括的難度,同時也為后面的學習奠定基礎(chǔ).
    問題3觀察下列算式,類比上述過程,你又能發(fā)現(xiàn)什么規(guī)律?
    3×3=9,
    2×3=6,
    1×3=3,
    0×3=0.
    鼓勵學生模仿正數(shù)乘負數(shù)的過程,自己獨立得出規(guī)律.
    設(shè)計意圖:為得到負數(shù)乘正數(shù)的結(jié)論做準備;培養(yǎng)學生的模仿、概括的能力.
    追問1:要使這個規(guī)律在引入負數(shù)后仍然成立,你認為下面的空格應(yīng)各填什么數(shù)?
    (-1)×3=,
    (-2)×3=,
    (-3)×3=.
    練習:請你模仿上面的過程,自己構(gòu)造出一組算式,并說出它的變化規(guī)律.
    先讓學生觀察、敘述、補充,教師再總結(jié):都是負數(shù)乘正數(shù),積都為負數(shù),積的絕對值等于各乘數(shù)絕對值的積.
    追問3:正數(shù)乘負數(shù)、負數(shù)乘正數(shù)兩種情況下的結(jié)論有什么共性?你能把它概括出來嗎?
    設(shè)計意圖:讓學生模仿已有的討論過程,自己得出負數(shù)乘正數(shù)的結(jié)論,并進一步概括出“異號兩數(shù)相乘,積的符號為負,積的絕對值等于各乘數(shù)絕對值的積”.既使學生感受法則的合理性,又培養(yǎng)他們的歸納思想和概括能力.
    問題4利用上面歸納的結(jié)論計算下面的算式,你能發(fā)現(xiàn)其中的規(guī)律嗎?
    (-3)×3=,
    (-3)×2=,
    (-3)×1=,
    (-3)×0=.
    追問1:按照上述規(guī)律填空,并說說其中有什么規(guī)律?
    (-3)×(-1)=,
    (-3)×(-2)=,
    (-3)×(-3)=.
    設(shè)計意圖:由學生自主探究得出負數(shù)乘負數(shù)的結(jié)論.因為有前面積累的豐富經(jīng)驗,學生能獨立完成.
    問題5總結(jié)上面所有的情況,你能試著自己給出有理數(shù)乘法法則嗎?
    學生獨立思考后進行課堂交流,師生共同完成,得出結(jié)論后再讓學生看教科書.
    學生獨立思考、回答.如果有困難,可先讓學生看課本第29頁有理數(shù)乘法法則后面的一段文字.
    設(shè)計意圖:讓學生嘗試歸納乘法法則,明確按法則計算的關(guān)鍵步驟.
    例1計算:
    (1)。
    ;(2)。
    ;(3)。
    學生獨立完成后,全班交流.
    教師說明:在(3)中,我們得到了。
    =1.與以前學習過的倒數(shù)概念一樣,我們說。
    與-2互為倒數(shù).一般地,在有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù).
    追問:在(2)中,8和-8互為相反數(shù).由此,你能說說如何得到一個數(shù)的相反數(shù)嗎?
    設(shè)計意圖:本例既作為鞏固乘法法則,又引出了倒數(shù)的概念(因為這個概念很容易理解),同時說明了求一個數(shù)的相反數(shù)與乘-1之間的關(guān)系(反過來有-8=8×(―1)).
    設(shè)計意圖:利用有理數(shù)乘法解決實際問題,體現(xiàn)數(shù)學的應(yīng)用價值.
    小結(jié)、布置作業(yè)。
    請同學們帶著下列問題回顧本節(jié)課的內(nèi)容:
    (2)用有理數(shù)乘法法則進行兩個有理數(shù)的乘法運算的基本步驟是什么?
    (3)舉例說明如何從正數(shù)、0的乘法運算出發(fā),歸納出正數(shù)乘負數(shù)的法則.
    (4)你能舉例說明符號法則“負負得正”的合理性嗎?
    設(shè)計意圖:引導學生從知識內(nèi)容和學習過程兩個方面進行小結(jié).
    作業(yè):教科書第30頁,練習1,2,3;第37頁,習題1.4第1題.
    五、目標檢測設(shè)計。
    1.判斷下列運算結(jié)果的符號:
    (1)5×(-3);。
    (2)(-3)×3;。
    (3)(-2)×(-7);。
    (4)(+0.5)×(+0.7).
    2計算:
    (1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。
    (4)。
    ;(5)0×(-6);(6)8×。
    設(shè)計意圖:檢測學生對有理數(shù)乘法法則的理解情況.
    七年級數(shù)學有理數(shù)的減法教案篇九
    1.1正數(shù)和負數(shù)(2)。
    教學目標:
    教學重點:
    深化對正負數(shù)概念的理解。
    教學難點:
    正確理解和表示向指定方向變化的量。
    教學準備:彩色粉筆。
    教學過程:
    一、復(fù)習引入:
    學生思考并討論.
    (數(shù)0既不是正數(shù)又不是負數(shù),是正數(shù)和負數(shù)的分界,是基準.
    二、講解新課。
    度,用負數(shù)表示低于海平面的某地的海拔高度。例如,珠穆朗瑪峰的海拔高度為8848.43米,吐魯番盆地的海拔高度為—155米。記賬時,通常用正數(shù)表示收入款額,用負數(shù)表示支出款額。
    思考:教科書第4頁(學生先思考,教師再講解)。
    三、課堂練習課本p4練習1,2,3,4。
    四、課時小結(jié)。
    引入負數(shù)可以簡明的表示相反意義的量,對于相反意義的量,如果其中一種量用正數(shù)表示,那么另一種量可以用負數(shù)表示.在表示具有相反意義的量時,把哪一種意義的量規(guī)定為正,可根據(jù)實際情況決定.要特別注意零既不是正數(shù)也不是負數(shù),建立正負數(shù)概念后,當考慮一個數(shù)時,一定要考慮它的符號,這與以前學過的數(shù)有很大的區(qū)別.
    五、課外作業(yè)教科書p5:2、4。
    板書設(shè)計:
    將本文的word文檔下載到電腦,方便收藏和打印。
    七年級數(shù)學有理數(shù)的減法教案篇十
    2?培養(yǎng)學生的觀察、比較、分析、歸納、概括能力,以及學生的探索精神;
    3?滲透分類討論思想?
    重點:有理數(shù)乘方的運算?
    難點:有理數(shù)乘方運算的符號法則?
    1?求n個相同因數(shù)的積的運算叫做乘方?
    2?乘方的結(jié)果叫做冪,相同的因數(shù)叫做底數(shù),相同因數(shù)的個數(shù)叫做指數(shù)?
    一般地,在an中,a取任意有理數(shù),n取正整數(shù)?
    應(yīng)當注意,乘方是一種運算,冪是乘方運算的結(jié)果?當an看作a的n次方的結(jié)果時,也可以讀作a的n次冪。
    例1計算:
    (1)2,2,2,24;(2)-2,2,3,(-2)4;。
    (3)0,02,03,04?
    教師指出:2就是21,指數(shù)1通常不寫?讓三個學生在黑板上計算?
    引導學生觀察、比較、分析這三組計算題中,底數(shù)、指數(shù)和冪之間有什么關(guān)系?
    (1)模向觀察。
    正數(shù)的任何次冪都是正數(shù);負數(shù)的奇次冪是負數(shù),偶次冪是正數(shù);零的任何次冪都是零?
    (2)縱向觀察。
    互為相反數(shù)的兩個數(shù)的奇次冪仍互為相反數(shù),偶次冪相等?
    (3)任何一個數(shù)的偶次冪都是什么數(shù)?
    任何一個數(shù)的偶次冪都是非負數(shù)?
    你能把上述的結(jié)論用數(shù)學符號語言表示嗎?
    當a0時,an0(n是正整數(shù));
    當a。
    當a=0時,an=0(n是正整數(shù))?
    (以上為有理數(shù)乘方運算的符號法則)。
    a2n=(-a)2n(n是正整數(shù));
    =-(-a)2n-1(n是正整數(shù));
    a2n0(a是有理數(shù),n是正整數(shù))?
    例2計算:
    (1)(-3)2,(-3)3,[-(-3)]5;。
    (2)-32,-33,-(-3)5;。
    (3),?
    讓三個學生在黑板上計算?
    課堂練習。
    計算:
    (1),,,-,;
    (2)(-1)20xx,322,-42(-4)2,-23(-2)3;。
    (3)(-1)n-1?
    讓學生回憶,做出小結(jié):
    1?乘方的有關(guān)概念?2?乘方的符號法則?3?括號的作用?
    1?計算下列各式:
    (-3)2;(-2)3;(-4)4;;-0.12;。
    -(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?
    2?填表:
    3?a=-3,b=-5,c=4時,求下列各代數(shù)式的值:
    4?當a是負數(shù)時,判斷下列各式是否成立?
    (1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。
    5*?平方得9的數(shù)有幾個?是什么?有沒有平方得-9的有理數(shù)?為什么?
    6*?若(a+1)2+|b-2|=0,求a20xxb3的值?
    七年級數(shù)學有理數(shù)的減法教案篇十一
    本節(jié)是在學習有理數(shù)加.減.乘.除.乘方的基礎(chǔ)上。引入了有理數(shù)的混合運算,學生通過討論、理解有理數(shù)混合運算順序,掌握有理數(shù)混合運算.它是有理數(shù)運算的推廣和延續(xù)。
    本節(jié)課的重點是能熟練的按照有理數(shù)的運算順序進行混合運算。難點是在正確運算的基礎(chǔ)上,適當?shù)倪\用運算律簡化運算。首先,我先復(fù)習了運算律,既是對上節(jié)的復(fù)習,又對這節(jié)學習作鋪墊。又通過詳細分析了例題,小組討論。學生自主學習,使他們更明確了運算順序,進行有理數(shù)運算,培養(yǎng)了學生自主探究的習慣。第三,在例題的講解中穿插了讓學生自己動手鍛煉的過程.及時的反饋學習情況.最后,通過“算24點”游戲,創(chuàng)設(shè)良好的氛圍,讓學生動腦動手動口,不僅可以提高學生學習興趣,訓練學生的'思維,還可以培養(yǎng)學生的數(shù)學運算能力和數(shù)學表達能力.
    課后的專家的對教學過程和課堂的學生的學習效果進行了肯定,同時也提出了建議,希望根據(jù)學生的實際情況,將例題的難度降低,讓學生能更好的適應(yīng).
    本次活動,無論是課上,還是課后的研討,老師們都表現(xiàn)出高度的熱情,整個研討過程都呈現(xiàn)出濃厚的氛圍。通過本次活動,鍛煉和提高了我們的教學能力,相信通過堅持不懈地實踐,我們教師的專業(yè)成長步伐會更快!
    七年級數(shù)學有理數(shù)的減法教案篇十二
    (1)正確理解乘方、冪、指數(shù)、底數(shù)等概念.
    (2)會進行有理數(shù)乘方的運算.
    2.過程與方法。
    通過對乘方意義的理解,培養(yǎng)學生觀察、比較、分析、歸納、概括的能力,滲透轉(zhuǎn)化思想.
    3.情感態(tài)度與價值觀。
    培養(yǎng)探索精神,體驗小組交流、合作學習的重要性.
    重、難點與關(guān)鍵。
    1.重點:正確理解乘方的意義,掌握乘方運算法則.
    2.難點:正確理解乘方、底數(shù)、指數(shù)的概念,并合理運算.
    3.關(guān)鍵:弄清底數(shù)、指數(shù)、冪等概念,注意區(qū)別-an與(-a)n的意義.
    教學過程。
    一、復(fù)習提問。
    1.幾個不等于零的有理數(shù)相乘,積的符號是怎樣確定的?
    答:幾個不等于零的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)確定,當負因數(shù)的個數(shù)為奇數(shù)時,積為負;當負因數(shù)的個數(shù)為偶數(shù)時,積為正.值觀:體驗小組交流,合作學習的重要性。
    七年級數(shù)學有理數(shù)的減法教案篇十三
    有理數(shù)的加法與減法這節(jié)課,法則的生成很重要,所以在教學中我注重法則的生成過程,因為也剛剛寫了一篇博文就是注重數(shù)學知識的形成,對于法則,老師可以直接告訴答案,也可以和學生一起探討,研究得出法則,對于兩種教學方式,我采取更多的時間讓學生自己體會法則的生成,注重引導學生參與探索、歸納有理數(shù)加法法則的過程,主動獲取知識.這樣,學生在這節(jié)課上不僅學懂了法則,而且能感知到研究數(shù)學問題的一些基本方法.我在講完法則的'時候課程已經(jīng)進行了三十分鐘多一點,所以課上例題和練習才用了十分鐘,所以又用了習題課上了一節(jié),盡管上的比較慢,但是這種方案減少了應(yīng)用法則進行計算的練習,所以學生掌握法則的熟練程度可能稍差,這是教學中應(yīng)當注意的問題.但是,在后續(xù)的教學中學生將千萬次應(yīng)用“有理數(shù)加法法則”進行計算,故這種缺陷是可以得到彌補的.如果直接告訴答案削弱了得出結(jié)論的“過程”,失去了培養(yǎng)學生觀察、比較、歸納能力的一次機會。
    七年級數(shù)學有理數(shù)的減法教案篇十四
    2.使學生掌握求一個已知數(shù)的;。
    3.培養(yǎng)學生的觀察、歸納與概括的能力.
    重點:理解的意義,理解的代數(shù)定義與幾何定義的一致性.
    難點:多重符號的化簡.
    一、從學生原有的認知結(jié)構(gòu)提出問題。
    二、師生共同研究的定義。
    特點?
    引導學生回答:符號不同,一正一負;數(shù)字相同.
    像這樣,只有符號不同的兩個數(shù),我們說它們互為,如+5與。
    應(yīng)點有什么特點?
    引導學生回答:分別在原點的兩側(cè);到原點的距離相等.
    這樣我們也可以說,在數(shù)軸上的原點兩旁,離開原點距離相等的兩個點所表示的數(shù)互為.這個概念很重要,它幫助我們直觀地看出的意義,所以有的書上又稱它為的幾何意義.
    3.0的是0.
    這是因為0既不是正數(shù),也不是負數(shù),它到原點的距離就是0.這是等于它本身的的數(shù).
    三、運用舉例變式練習。
    例1(1)分別寫出9與-7的;。
    例1由學生完成.
    在學習有理數(shù)時我們就指出字母可以表示一切有理數(shù),那么數(shù)a的如何表示?
    引導學生觀察例1,自己得出結(jié)論:
    數(shù)a的是-a,即在一個數(shù)前面加上一個負號即是它的。
    1.當a=7時,-a=-7,7的是-7;。
    2.當-5時,-a=-(-5),讀作“-5的”,-5的是5,因此,-(-5)=5.
    3.當a=0時,-a=-0,0的是0,因此,-0=0.
    么意思?引導學生回答:-(-8)表示-8的;-(+4)表示+4的`;。
    例2簡化-(+3),-(-4),+(-6),+(+5)的符號.
    能自己總結(jié)出簡化符號的規(guī)律嗎?
    括號外的符號與括號內(nèi)的符號同號,則簡化符號后的數(shù)是正數(shù);括號內(nèi)、外的符號是異號,則簡化符號后的數(shù)是負數(shù).
    課堂練習。
    1.填空:
    (1)+1.3的是______;(2)-3的是______;。
    (5)-(+4)是______的;(6)-(-7)是______的。
    2.簡化下列各數(shù)的符號:
    -(+8),+(-9),-(-6),-(+7),+(+5).
    3.下列兩對數(shù)中,哪些是相等的數(shù)?哪對互為?
    -(-8)與+(-8);-(+8)與+(-8).
    四、小結(jié)。
    指導學生閱讀教材,并總結(jié)本節(jié)課學習的主要內(nèi)容:一是理解的定義——代數(shù)定義與幾何定義;二是求a的;三是簡化多重符號的問題.
    五、作業(yè)。
    1.分別寫出下列各數(shù)的:
    2.在數(shù)軸上標出2,-4.5,0各數(shù)與它們的。
    3.填空:
    (1)-1.6是______的,______的是-0.2.
    4.化簡下列各數(shù):
    5.填空:
    (3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.
    教學過程是以《教學大綱》中“重視基礎(chǔ)知識的教學、基本技能的訓練和能力的培養(yǎng)”,“數(shù)學教學中,發(fā)展思維能力是培養(yǎng)能力的核心”,“堅持啟發(fā)式,反對注入式”等規(guī)定的精神,結(jié)合教材特點,以及學生的學習基礎(chǔ)和學習特征而設(shè)計的由于內(nèi)容較為簡單,經(jīng)過教師適當引導,便可使學生充分參與認知過程.由于“新”知識與有關(guān)的“舊”知識的聯(lián)系較為直接,在教學中則著力引導觀察、歸納和概括的過程.
    探究活動。
    有理數(shù)a、b在數(shù)軸上的位置如圖:
    將a,-a,b,-b,1,-1用“”號排列出來.
    分析:由圖看出,a1,-1。
    解:在數(shù)軸上畫出表示-a、-b的點:
    由圖看出:-a-1。
    點評:通過數(shù)軸,運用數(shù)形結(jié)合的方法排列三個以上數(shù)的大小順序,經(jīng)常是解這一類問題的最快捷,準確的方法.
    七年級數(shù)學有理數(shù)的減法教案篇十五
    根據(jù)定義,無限循環(huán)小數(shù)和有限小數(shù)(整數(shù)可認為是小數(shù)點后是0的小數(shù)),統(tǒng)稱為有理數(shù),無限不循環(huán)小數(shù)是無理數(shù)。
    但人類不可能寫出一個位數(shù)最多的有理數(shù),對全地球人類,或比地球人更智慧的生物來說是有理數(shù)的數(shù),對每個地球人來說,可能是無法知道它是有理數(shù)還是無理數(shù)了。因此有理數(shù)和無理數(shù)的邊界,竟然緊靠無理數(shù),任何兩個十分接近的無理數(shù)中間,都可以加入無窮多的有理數(shù),反之也成立。
    竟然沒有人知道有理數(shù)的邊界,或者說有理數(shù)的邊界是無限接近無理數(shù)的。
    定理。
    定理:位數(shù)最多的非無限循環(huán)有理數(shù)是不可能被寫出的,盡管它的定義是有有限位,但它是無限趨近于無理數(shù)的,以致于沒有手段進行判斷。
    證明。
    證明:假設(shè)位數(shù)最多的非無限循環(huán)有理數(shù)被寫出,我們在這個數(shù)的最后再加一位,這個數(shù)還是有限位有理數(shù),但位數(shù)比已寫出有理數(shù)多一位,證明原來寫出的不是位數(shù)最多的非無限循環(huán)有理數(shù)。所以位數(shù)最多的非無限循環(huán)有理數(shù)是不可能被寫出的。
    七年級數(shù)學有理數(shù)的減法教案篇十六
    本課(節(jié))課題3.1認識直棱柱第1課時/共課時。
    教學目標(含重點、難點)及。
    1、了解多面體、直棱柱的有關(guān)概念.
    2、會認直棱柱的側(cè)棱、側(cè)面、底面.。
    3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.。
    教學重點與難點。
    教學重點:直棱柱的有關(guān)概念.
    教學難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.
    內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)。
    析:學生很容易回答出更多的答案。
    師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    1.多面體、棱、頂點概念:
    2.合作交流。
    師:以學習小組為單位,拿出事先準備好的幾何體。
    學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學語言。
    學生活動:分小組討論。
    說明:真正體現(xiàn)了“以生為本”。讓學生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
    師:請大家找出與長方體,立方體類似的物體或模型。
    析:舉出實例。(找出區(qū)別)。
    師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    長方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的'相鄰兩條側(cè)棱互相平行且相等。
    4.學以至用。
    出示例題。(先請學生單獨考慮,再作講解)。
    析:引導學生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(學生練習)。
    完成“課內(nèi)練習”
    師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?
    合作交流后得到:重點直棱柱的有關(guān)概念。
    直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側(cè)面都是長方形含正方形。
    例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
    板書設(shè)計。
    作業(yè)布置或設(shè)計作業(yè)本及課時特訓。