反比例函數(shù)的意義教學設計(通用19篇)

字號:

    寫總結是對已有知識的鞏固和巧妙運用,也是對自己學習能力的一種檢驗??偨Y時要注重客觀真實,避免主觀色彩過重。最后,希望大家能喜歡這些總結范文,并能從中獲得一些有益的啟示和收獲。
    反比例函數(shù)的意義教學設計篇一
    1.知識與技能。
    理解反比例函數(shù)的意義;根據(jù)已知條件確定反比例函數(shù)的解析式。
    2.過程與方法。
    學生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際問題;發(fā)展學生的抽象思維能力,提高數(shù)學化意識。
    3.情感態(tài)度與價值觀。
    經(jīng)歷反比例函數(shù)的形成過程,體會數(shù)學學習的重要性,提高學生學習數(shù)學的興趣;在學習過程中進行分組討論,培養(yǎng)學生的合作交流意識和探索精神,體驗學習的快樂與成就感。
    教學重點。
    理解反比例函數(shù)的意義;根據(jù)已知條件確定反比例函數(shù)的解析式。
    教學難點。
    反比例函數(shù)解析式的確定。
    教學過程。
    一、創(chuàng)設情境,導入新課。
    問題1:(課件展示)。
    問題2:(課件展示)。
    問題3:(課件展示)。
    下列問題中,變量間的`對應關系可用怎樣的函數(shù)關系式表示?
    (1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化。
    (2)某住宅小區(qū)要種植一個面積為1000o的矩形草坪,草坪的長y(單位m)隨寬x(單位m)的變化而變化。
    (3)已知某市的總面積為1.68×10平方千米,人均占有的土地面積s(單位:平方千米/人)會隨全市人口n(單位:人)的變化而變化。
    二、觀察思考,明晰概念。
    1.這些關系式都體現(xiàn)了函數(shù)關系,它們是我們曾學習過的正比例函數(shù)或一次函數(shù)嗎?
    2.這些函數(shù)關系式與正比例函數(shù)、一次函數(shù)有何不同?
    3.這些函數(shù)關系式有什么共同的特征?
    4.各關系式中兩變量之間有什么關系?
    5.你能歸納出反比例函數(shù)的概念嗎?
    通過回答以上問題,師生共同總結反比例函數(shù)的概念。
    三、小組討論,領悟概念。
    1.反比例函數(shù)關系式中有幾個變量?
    2.變量之間存在什么關系?
    3.反比例函數(shù)還有其他形式嗎?若有請指出。
    4.反比例函數(shù)中,變量x、y和常數(shù)k有什么具體要求?為什么?
    四、內化新知,拓展應用。
    1.下列函數(shù)中哪些是反比例函數(shù)?請指出反比例函數(shù)中的k值。
    2.已知y是x的反比例函數(shù),且當x=2時,y=6。
    (1)寫出y與x的函數(shù)關系式。
    (2)求當x=4時,y的值。
    3.當x為何值時函數(shù)y=x-2a-4是反比例函數(shù)?
    4.已知函數(shù)y=y1+y2,與x成正比例,y2與x成反比例,且當x=1時,y=4;當x=2時,y=5。
    (1)求y與x的函數(shù)關系式。
    (2)當x=-2時,求函數(shù)y的值。
    五、課堂練習。
    師生共同完成教課書第40頁的練習題。
    六、課堂小結。
    1.通過本節(jié)課的學習你對反比例函數(shù)有怎樣的認識?
    2.反比例函數(shù)與正比例函數(shù)的區(qū)別有哪些?
    七、作業(yè)布置。
    教材中本節(jié)習題17.1第1、2、4題。
    (責任編輯趙永玲)。
    反比例函數(shù)的意義教學設計篇二
    1.經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質;
    2.探索反比例函數(shù)的圖象的性質,體會用數(shù)形結合思想解數(shù)學問題。
    一、創(chuàng)設情境。
    上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質。
    二、探究歸納。
    1.畫出函數(shù)的圖象。
    分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x0.
    解1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
    2.描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(-6,-1)、(-3,-2)、(-2,-3)等。
    3.連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
    上述圖象,通常稱為雙曲線(hyperbola).
    提問這兩條曲線會與x軸、y軸相交嗎?為什么?
    學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟).
    學生討論、交流以下問題,并將討論、交流的結果回答問題。
    1.這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
    2.反比例函數(shù)(k0)的圖象在哪兩個象限內?由什么確定?
    (2)當k0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
    注1.雙曲線的兩個分支與x軸和y軸沒有交點;
    2.雙曲線的兩個分支關于原點成中心對稱。
    以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
    在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
    在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
    三、實踐應用。
    例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
    分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值。
    解由題意,得解得.
    例2已知反比例函數(shù)(k0),當x0時,y隨x的增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限。
    分析由于反比例函數(shù)(k0),當x0時,y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方。
    解因為反比例函數(shù)(k0),當x0時,y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限。
    (1)求這個函數(shù)的解析式,并畫出圖象;
    (2)由點a在反比例函數(shù)的圖象上,易求出m的值,再驗證點a關于兩坐標軸和原點的對稱點是否在圖象上。
    解(1)設:反比例函數(shù)的解析式為:(k0).
    而反比例函數(shù)的圖象過點(1,-2),即當x=1時,y=-2.
    所以,k=-2.
    點a的坐標為.
    點a關于x軸的對稱點不在這個圖象上;
    點a關于y軸的對稱點不在這個圖象上;
    點a關于原點的對稱點在這個圖象上;
    (1)求m的值;
    (2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
    (3)當-3時,求此函數(shù)的最大值和最小值。
    解(1)由反比例函數(shù)的定義可知:解得,m=-2.
    (2)因為-20,所以反比例函數(shù)的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。
    (3)因為在第個象限內,y隨x的增大而增大,
    所以當x=時,y最大值=;。
    當x=-3時,y最小值=.
    所以當-3時,此函數(shù)的最大值為8,最小值為.
    例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
    (1)寫出用高表示長的函數(shù)關系式;
    (2)寫出自變量x的取值范圍;
    (3)畫出函數(shù)的圖象。
    解(1)因為100=5xy,所以.
    (2)x0.
    (3)圖象如下:
    說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內的一個分支。
    四、交流反思。
    (2)當k0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
    五、檢測反饋。
    1.在同一直角坐標系中畫出下列函數(shù)的圖象:
    (1);(2).
    2.已知y是x的反比例函數(shù),且當x=3時,y=8,求:
    (1)y和x的函數(shù)關系式;
    (2)當時,y的值;
    (3)當x取何值時,?
    3.若反比例函數(shù)的圖象在所在象限內,y隨x的增大而增大,求n的值。
    4.已知反比例函數(shù)經(jīng)過點a(2,-m)和b(n,2n),求:
    (1)m和n的值;
    (2)若圖象上有兩點p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小。
    反比例函數(shù)的意義教學設計篇三
    知識與技能:1.進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象。
    2.體會函數(shù)的三種表示方法的相互轉換,對函數(shù)進行認識上的整合。
    3.培養(yǎng)學生從函數(shù)圖象中獲取信息的能力,初步探索反比例函數(shù)的性質。
    過程與方法:通過學生自己動手列表,描點,連線,提高學生的'作圖能力;通過觀察圖象,概括反比例函數(shù)圖象的有關性質,訓練學生的概括總結能力.
    情感、態(tài)度與價值觀:讓學生積極參與到數(shù)學學習活動中去,增強他們對數(shù)學學習的好奇心和求知欲。
    教學難點1)重點:畫反比例函數(shù)圖象并認識圖象的特點.
    教學關鍵教師畫圖中要規(guī)范,為學生樹立一個可以學習的模板。
    教學方法激發(fā)誘導,探索交流,講練結合三位一體的教學方式。
    教學手段教師畫圖,學生模仿。
    教具三角板,小黑板。
    學法學生動手,動眼,動耳,采用自主,合作,探究的學習方法。
    (包含課前檢測、新課導入、新課講解、課堂練習、小結、形成性檢測、反饋拓展、作業(yè)布置)。
    內容設計意圖。
    反比例函數(shù)的意義教學設計篇四
    2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.。
    3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.。
    教學重點。
    教學難點。
    教學過程。
    一、導入新課。
    (一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
    (二)教師提問。
    1.你為什么馬上能想到還剩多少呢?
    2.是不是因為吃了的和剩下的是兩種相關聯(lián)的量?
    教師板書:兩種相關聯(lián)的量。
    (三)教師談話。
    在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯(lián)的量,總價和。
    數(shù)量也是兩種相關聯(lián)的量.你還能舉出一些例子嗎?
    二、新授教學。
    (一)成正比例的量。
    例1.一列火車行駛的時間和所行的路程如下表:
    時間(時)。
    1
    2
    3
    4
    5
    6
    7
    8
    ……。
    路程(千米)。
    90。
    180。
    270。
    360。
    450。
    540。
    630。
    720。
    ……。
    1.寫出路程和時間的比并計算比值.。
    (1)。
    (2)2表示什么?180呢?比值呢?
    (3)這個比值表示什么意義?
    (4)360比5可以嗎?為什么?
    ……。
    2.思考。
    (1)180千米對應的時間是多少?4小時對應的路程又是多少?
    (2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?
    教師板書:時間、路程、速度。
    (3)速度是怎樣得到的?
    教師板書:
    (4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?
    (5)在這組題中誰與誰是兩種相關聯(lián)的量?它們是如何相關聯(lián)的?舉例說明變化規(guī)律.。
    3.小結:有什么規(guī)律?
    教師板書:商不變。
    1.華豐機械廠加工一批機器零件,每小時加工的數(shù)量和所需的加工時間如下表.。
    工效(個)。
    10。
    20。
    30。
    40。
    50。
    60。
    ……時間(時)。
    60。
    30。
    20。
    15。
    12。
    10。
    ……。
    2.教師提問。
    (1)計算工效和時間的乘積.。
    (2)這一組題中涉及了幾種量?誰與誰是相關聯(lián)的量?
    (3)請你舉例說明誰與誰是相對應的兩個數(shù)?
    (4)在這一組題中兩種相關聯(lián)的量是如何變化的?(舉例說明)。
    3.小結:有什么規(guī)律?(板書:積不變)。
    (三)不成比例的量。
    1.出示表格。
    運走的噸數(shù)。
    10。
    20。
    30。
    40。
    剩下的噸數(shù)。
    90。
    80。
    70。
    60。
    總噸數(shù)(和不變)。
    100。
    100。
    100。
    100。
    2.教師提問。
    (1)總噸數(shù)是怎樣得到的?
    (2)誰與誰是兩種相關聯(lián)的量?
    (3)它們又是怎樣變化的?變化的`規(guī)律是什么?
    運走的噸數(shù)少,剩下的噸數(shù)多;運走的噸數(shù)多,剩下的噸數(shù)少;總和不變。
    (四)結合三組題觀察、討論、總結變化規(guī)律.。
    討論題:
    1.這三組題每組題中誰與誰是兩種相關聯(lián)的量?
    2.在變化過程中,它們的異同點是什么?
    共同點:都有兩種相關聯(lián)的量,一種量變化,另一量也隨著變化。
    不同點:第一組商不變,第二組積不變,第三組和不變.。
    總結:
    4.強調第三組題中兩種相關聯(lián)的量叫做不成比例。
    5.教師提問。
    (1)兩種量成正比例必須具備什么條件?
    (2)兩種量成反比例必須具備什么條件?
    (五)字母關系式。
    三、鞏固練習。
    判斷下面各題是否成比例?成什么比例?
    1.一種圓珠筆。
    總價(元)。
    1.2。
    2.4。
    3.6。
    4.8。
    6
    7.2。
    支數(shù)。
    1
    2
    3
    4
    5
    6
    單價(元)。
    1
    2
    4
    5
    10。
    支數(shù)。
    100。
    50。
    25。
    20。
    10。
    (1)表中有哪兩種相關聯(lián)的量?
    (2)說出幾組這兩種量中相對應的兩個數(shù)的比。
    (3)每組等式說明了什么?
    (4)兩種相關的量是否成比例?成什么比例?
    2.當速度一定,時間路程成什么比例?
    當時間一定,路程和速度成什么比例?
    當路程一定,速度和時間成什么比例?
    3.長方形的面一定,長和寬。
    4.修一條路,已修的米數(shù)和剩下的米數(shù).。
    四、課堂總結。
    五、課后作業(yè)。
    (一)判斷下面每題中的兩種量是不是成正比例,并說明理由.。
    1.蘋果的單價一定,購買蘋果的數(shù)量和總價.。
    2.輪船行駛的速度一定,行駛的路程和時間.。
    3.每小時織布米數(shù)一定,織布總米數(shù)和時間.。
    4.長方形的寬一定,它的面積和長.。
    (二)判斷下面每題中的兩種量是不是成反比例,并說明理由.。
    1.煤的總量一定,每天的燒煤量和能夠燒的天數(shù).。
    2.種子的總量一定,每公頃的播種量和播種的公頃數(shù).。
    3.李叔叔從家到工廠,騎自行車的速度和所需時間.。
    4.華容做12道數(shù)學題,做完的題和沒有做的題.。
    反比例函數(shù)的意義教學設計篇五
    教學目的:
    1.使學生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。2.使學生進一步認識事物之間的相互聯(lián)系和發(fā)展變化規(guī)律。3.初步滲透函數(shù)思想。
    一、談話導入:
    師:咱們一塊做幾道題判斷一下。出示:
    1、除數(shù)一定,被除數(shù)和商。
    2、單產(chǎn)量一定,總產(chǎn)量和面積。
    3、加數(shù)一定,和和另一個加數(shù)。
    4、每張紙厚度一定,總厚度和紙的張數(shù)指名說并說請判斷依據(jù)。
    師:看來大家對正比例知識理解掌握得不錯,學完正比例接下來我們該學習什么了?(生答)是啊,有正就有反,這節(jié)課我們就來探究反比例的有關知識(板書:反比例)。
    二、學習。
    師:既然正與反意義是相反的,大家猜想一下,成反比例的兩個量的關系是怎樣的呢?(生猜想)。
    師:到底同學們的猜想是否正確?我們要用事實來驗證。獨立填寫研究單,然后在組內交流。
    學生自己填,在小組活動,師巡視學生臺前展示交流。
    師:對于這句話大家有什么不理解的嗎?判斷兩個量是否成反比例的要點是什么?
    指名說,(大屏幕出示紅色字)。
    師強調:要想判斷兩個量是不是成反比例,除了要相關聯(lián),最重要的一點就是要保證這兩個量乘積一定。
    出示表格,明確正比例和反比例的異同點。
    師:今天我們學習了反比例關系,對于今天學過的內容,大家還有疑問嗎?
    三、練習。
    1、書上51頁8、9、10題,獨立寫,集體交流。
    2、書上51頁11題,指名交流,說理。
    四、總結。
    師:這節(jié)課你有什么收獲?指名說。
    師:我們不僅收獲了知識,更重要的是運用學過的知識學習了新的內容,掌握了這種學習方法,并且不斷反思,不斷總結,相信我們會在數(shù)學的道路上越走越遠。
    反比例函數(shù)的意義教學設計篇六
    人教版六年制第十二冊第42~43頁的內容。
    二、教學目標。
    (一)經(jīng)歷探索兩種相關聯(lián)的量的變化過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
    (二)根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
    (三)滲透函數(shù)思想,使學生受到辯證唯物主義觀點的啟蒙教育。
    三、教學難點。
    正確判斷兩種相關聯(lián)的量是否成反比例。
    四、教學過程。
    (一)情境導入。
    1.課前談話:同學們,你們去過南昌嗎?你知道萍鄉(xiāng)到南昌需要多長時間嗎?(媒體顯示:幾年前,我乘坐由萍鄉(xiāng)開往南昌的k8727次列車需要4小時到達,現(xiàn)在改乘d117次列車,只需2小時5分鐘,這是為什么呢?)。
    2.學生對上述問題發(fā)表意見。
    3.師:今天,我們就來研究這種類型的問題。
    (二)探索新知。
    將本文的word文檔下載到電腦,方便收藏和打印。
    反比例函數(shù)的意義教學設計篇七
    反比例關系和正比例關系一樣,是比較重要的一種數(shù)量關系,學生理解并掌握了這種數(shù)量關系,可以加深對比例的理解,并能應用它解決一些簡單的正、反比例方面的實際問題。我就這節(jié)課的收獲、感悟,簡要談談:
    在教學反比例的意義時,我首先是聯(lián)系舊知、滲透難點。因為反比例的意義這一部分的內容的編排跟正比例的意義比較相似,在教學反比例的意義時,我以學生學習的正比例的意義為基礎,提出自主學習“要求”,讓學生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律。對于學生來說,數(shù)量關系并不陌生,在以前的應用題學習中是反復強調過的,因此,學生觀察、分析、概括起來是較為輕松的。當學完例1時,我并沒有急于讓學生概括出反比例的意義,而是讓學生按照學習例1的方法學習試一試,接著對例1和試一試進行比較,得出它們的相同點,在此基礎上來揭示反比例的意義,就顯得水道渠成了。然后,再通過說一說,讓學生對兩種相關聯(lián)的量進行判斷,以加深學生對反比例意義的理解。最后,通過學生對正反比例意義的對比,加強了知識的內在聯(lián)系,通過區(qū)別不同的概念,鞏固了知識。通過這節(jié)課的教學,我深深地體會到:要上好一節(jié)數(shù)學課很難,要上好每一節(jié)數(shù)學課就更難,原因多多……這節(jié)課課前我雖做了充分的準備,但還是存在一些問題。比如練習題安排難易不到位。由于學生剛接觸反比例的意義,應多練習學生接觸較多的題目,使學生的基礎得到鞏固,不能讓難題把學生剛建立起的知識結構沖跨。
    反比例函數(shù)的意義教學設計篇八
    本堂課是在學生學習了正比例的基礎上學習反比例,由于學生有了前面學習正比例的基礎,加上正比例與反比例在意義上研究的時候存在有一定的共性,因此學生在整堂課的學習上與前面學習的正比例相比有明顯的提高,而且在課時的安排上,在學習正比例的安排了2個課時,這里只是安排了1個課時,緊隨著課之后教材安排了一堂正反比例比較、綜合的一堂課,對學生在出現(xiàn)正反比例有點模糊的時候就及時地加以糾正。
    反比例關系和正比例關系一樣,是比較重要的一種數(shù)量關系,學生理解并掌握了這種數(shù)量關系,可以加深對比例的理解,并能應用它解決一些簡單的正、反比例方面的實際問題。同時通過反比例的教學,可以進一步滲透函數(shù)思想,為學生今后學習中學數(shù)學和物理、化學打下基礎。反比例的意義這部分內容是在學生理解并掌握比和比例的意義、性質的基礎上進行教學的,但概念比較抽象,學習難度比較大,是六年級教學內容的一個教學重點也是一個教學難點。
    反比例函數(shù)的意義教學設計篇九
    公開課上完了,總的感覺有成功的地方,也有不足之處。我認為本堂課成功的做法有以下幾方面:
    一、定位較準,立足于本校學情。由于學生基礎較差,本節(jié)復習是按知識點復習,目的是落實知識點和掌握一些基本的題型,通過教學來看目標已達成。
    二、習題設計合理,立足于思維訓練。本節(jié)課每個知識點都設計了針對性的變式練習,通過練習學生的解體技巧、方法、思維都得到了訓練。
    三、注重了數(shù)學思想方法的滲透。在反比例函數(shù)的性質教學時,緊緊抓住關鍵詞語,突破難點。性質強調“在同一象限內”,而我們學生往往忽略這個問題,無論是怎樣的兩點,都直接用性質,對此,采用討論的觀點,結合圖像觀察,讓學生看到理解到:在同一象限內可直接用性質,不在同一象限內,一、二象限的點的縱坐標永遠大于三、四象限內點的縱坐標。這樣,非常明了的讓學生把最容易混淆的知識分清了,突破難點的同時及時總結出這其中體現(xiàn)出的數(shù)學思想方法:分類討論和數(shù)形結合的思想方法。
    四、大膽嘗試信息技術教學?!鞍喟嗤ā弊哌M了課堂,信息技術的教學正沖擊著傳統(tǒng)的數(shù)學課堂,雖然白板的功能還沒完全了解,使用的也不夠熟練,但也能體現(xiàn)出信息技術在數(shù)學教學的靈活性、直觀性,對本節(jié)課“反比例函數(shù)的性質”等多處教學都起到一定的作用,提高了課堂效率。
    不足之處:。
    一、預見性不夠。這主要體現(xiàn)在知識回顧中的第二題,本來打算一點而過,結果學生的回答偏離了老師的預想,老師勢必站在學生的角度給他們一一糾正,從而浪費了時間,自己對于突發(fā)事件的處理靈活性還不夠,掌控課堂的能力有待提高。
    二、對學生的情感關注太少。本來想營造一種和諧的課堂氣氛,學生因為緊張回答問題不積極,不敢大膽發(fā)表自己的觀點,課堂氣氛死氣沉沉,沒有煥發(fā)出學生的激情。如果在一開始就用生動活潑激趣的語言導入課題,在教學過程中對少數(shù)同學的回答能及時給予表揚和激勵,不但能消除學生的緊張情緒,也能激發(fā)學生的興趣,堅定學習的信心。
    三、角色轉換不徹底。在整個課堂教學過程中,教師圍繞主題、圍繞學生提問的多,給學生提問的時間和機會很少.不能大膽放心把課堂交還給學生.今后還需要改進的地方:
    一、在上課過程中,要始終關注學生的情感。因為學生的學習是認知和情感的結合,只有給了他們情感上的極大滿足,學生才會獲得渴望成功的動力,我們的自主學習活動才能收到應有的效果。
    二、不斷學習新的教育理論,不斷更新教學觀念,使數(shù)學教育面向全體學生,實現(xiàn)——人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展。
    三、注意評價的多元化,全面了解學生的數(shù)學學習歷程,對數(shù)學學習的評價不僅要關注學生學習的結果,更要關注他們學習的過程,幫助學生認識自我,建立信心。
    四、努力學習多媒體軟件設計和制作,把它作為教師備課、教學改革的工具,使電腦、網(wǎng)絡、光盤、白板等現(xiàn)代媒體成為像黑板、粉筆一樣的得心應手的工具,恰如其分地應用于日常課堂教學中,真正為教學服務。
    有反思才會有進步,作為身處課程改革第一線的教育工作者,應迅速轉變傳統(tǒng)的教育觀念,勇于創(chuàng)新,積極接受挑戰(zhàn)。
    反比例函數(shù)的意義教學設計篇十
    知識與技能:1.進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象。
    2.體會函數(shù)的三種表示方法的相互轉換,對函數(shù)進行認識上的整合。
    3.培養(yǎng)學生從函數(shù)圖象中獲取信息的能力,初步探索反比例函數(shù)的性質。
    過程與方法:通過學生自己動手列表,描點,連線,提高學生的作圖能力;通過觀察圖象,概括反比例函數(shù)圖象的有關性質,訓練學生的概括總結能力。
    情感、態(tài)度與價值觀:讓學生積極參與到數(shù)學學習活動中去,增強他們對數(shù)學學習的好奇心和求知欲。
    教學難點1)重點:畫反比例函數(shù)圖象并認識圖象的特點。
    教學關鍵教師畫圖中要規(guī)范,為學生樹立一個可以學習的模板。
    教學方法激發(fā)誘導,探索交流,講練結合三位一體的教學方式。
    教學手段教師畫圖,學生模仿。
    教具三角板,小黑板。
    學法學生動手,動眼,動耳,采用自主,合作,探究的學習方法。
    (包含課前檢測、新課導入、新課講解、課堂練習、小結、形成性檢測、反饋拓展、作業(yè)布置)。
    內容設計意圖。
    (一般地,如果兩個變量x、y之間的關系可以表示成y=(k為常數(shù),k0)的形式,那么稱y是x的反比例函數(shù)。)。
    2.反比例函數(shù)的定義中需要注意什么?
    (1)k為常數(shù),k0。
    (2)從y=中可知x作為分母,所以x不能為零。
    問題1:對于一次函數(shù)y=kx+b(k0)的圖象與性質,我們是如何研究的?
    y=kx+by=kx。
    k0一、二、三一、三。
    b0一、三、四。
    k0一、二、四二、四。
    b0二、三、四。
    可以。
    問題3:畫圖象的步驟有哪些呢?
    (1)列表。
    (2)描點。
    (3)連線。
    (教學片斷:
    師:上一節(jié)課我們研究了反比例函數(shù),今天我們繼續(xù)研究反比例函數(shù),下面哪位同學說一下自己對反比例函數(shù)的了解。
    生:我知道反比例函數(shù)來源于生活,生活中的許多問題都屬于反比例函數(shù)問題,例如,在勻速運動中當路程一定時,且路程不等于零,則速度與時間成反比例函數(shù)關系。
    生:我知道反比例函數(shù)的解析式為且k不等于0。
    師:現(xiàn)在給大家?guī)追昼姷臅r間探討一下反比例函數(shù)圖象該怎么畫?
    學生思考、交流、回答。
    提問:你能畫出的圖象嗎?
    學生動手畫圖,相互觀摩。
    (1)列表(取值的特殊與有效性)。
    x-8-4-2-1-1/21/21248。
    (2)描點(描點的準確)。
    (3)連線(注意光滑曲線)。
    議一議。
    (1)你認為作反比例函數(shù)圖象時應注意哪些問題?與同伴進行交流。
    (2)如果在列表時所選取的數(shù)值不同,那么圖象的形狀是否相同?
    (3)連接時能否連成折線?為什么必須用光滑的曲線連接各點?
    (4)曲線的發(fā)展趨勢如何?
    曲線無限接近坐標軸但不與坐標軸相交。
    學生先分四人小組進行討論,而后小組匯報。
    做一做。
    學生動手畫圖,相互觀摩。
    想一想。
    觀察和的圖象,它們有什么相同點和不同點?
    學生小組討論,弄清上述兩個圖象的異同點。
    相同點:(1)圖象分別都是由兩支曲線組成(2)都不與坐標軸相交(3)都是軸對稱圖形(y=x、y=-x)和中心對稱圖形(對稱中心(0,0)即坐標原點)。
    不同點:第一個圖象位于一、三象限;第二個圖象位于二、四象限。
    反比例函數(shù)y=有下列性質:反比例函數(shù)的圖象y=是由兩支曲線組成的。
    (1)當k0時,兩支曲線分別位于第___、___象限,
    (2)當k0時,兩支曲線分別位于第___、___象限。
    (1)。
    (1)已知函數(shù)的圖象分布在第二、四象限內,則的取值范圍是_________。
    (2)若ab0,則函數(shù)與在同一坐標系內的圖象大致可能是下圖中的()。
    (a)(b)(c)(d)。
    (3)畫和的圖象。
    在同一坐標系中作出函數(shù)y=2/x與函數(shù)y=x-1的圖象,并利用圖象求它們的交點坐標。
    (1)作反比例函數(shù)y=2/x,y=4/x,y=6/x的圖象。
    (2)習題5.2.1。
    復習上節(jié)主要內容。
    (3分鐘)。
    (5分鐘)。
    運用類比研究一次函數(shù)性質的方法,來研究反比例函數(shù)圖象與性質。
    由于初中學生屬于義務教育階段,沒有經(jīng)過入學選拔,所以兩極分化比較嚴重,上面提出的問題帶有一定的開放性,面向各層次的學生,使不同層次的學生都有一定的問題可答,從而激發(fā)起不同層次學生的學習積極性。
    數(shù)學教學重要目的之一是使學生學會學習,利用這個問題可以使學生學會尋找研究的方向,會提出研究的課題,提高學習的能力。
    數(shù)學學習活動是學生對自己頭腦中已有知識的重新建構,所以利用學生頭腦中已有的一次函數(shù)圖象與性質,及研究一次函數(shù)圖象與性質的方法,創(chuàng)設問題情境,可以激發(fā)學習研究的熱情,點燃學生思維的火花,并使學生知道如何研究新問題,使學生在探究過程中實現(xiàn)知識的遷移,形成新的認知結構。
    (12分鐘)。
    引導學生正確畫出反比例函數(shù)圖象,并能歸納反比例函數(shù)圖象的有關性質。
    在畫第一個圖象時,教師要在黑板上用三角板一步一步的示范,在重要地方再重點強調,直到整個圖象的完成。只有以身示范,同學學習才有樣可依,有了正確標準的樣板,學生學習也變得容易。這樣可以培養(yǎng)學生嚴謹與嚴密的做題步驟以及做題的規(guī)范性。
    注:(1)x取絕對值相等符號相反的數(shù)值。
    (2)x取值要盡可能多,而且有代表性。
    (3)連線時用光滑曲線從小到大依次連接。
    (4)圖象不與坐標軸相交。
    在此學生若是回答圖象是軸對稱圖象或者中心對稱圖象都要予以肯定,這些內容留給學生課下探討,并鼓勵提出問題的學生繼續(xù)探索不要放棄。
    (3分鐘)。
    此時圖象由學生仿照第一個在下邊自己獨立畫出,并且監(jiān)督學生,在有學生畫的不對的地方及時指出,并使其改正后鼓勵。最后在黑板上畫出正確的圖象,使學生自己畫的圖象與黑板對比。
    (5分鐘)。
    (4分鐘)。
    培養(yǎng)學生歸納,語言表達能力。
    此中注意分類討論思想的應用。
    (2分鐘)。
    與新課較接近的簡化檢測可以再次回顧所學內容,以及內容重點。這類題多為口算或口答,題目簡單不過所學內容可以全部體現(xiàn)。
    (5分鐘)。
    這類練習要求動筆計算或者畫圖,有一定難度,可以深化所學內容。
    (4分鐘)。
    此題既是對函數(shù)圖象畫法的復習又是對方程求解的深化。其中蘊含了數(shù)形結合思想。
    (1分鐘)。
    鞏固作反比例函數(shù)圖象的步驟,預習下一節(jié)課內容。
    本節(jié)課通過學生自主探索,合作交流,自主畫圖,以認知規(guī)律為主線,以發(fā)展能力為目標,以從直觀感受到分析歸納為手段,培養(yǎng)學生的合情推理能力和積極的情感態(tài)度,促進良好的數(shù)學觀的形成。培養(yǎng)了學生的抽象思維能力,同時也向學生滲透了歸納類比,數(shù)形結合以及分類討論的數(shù)學思想方法。
    由于此節(jié)課是動手畫圖,限于器材以及教學設備,圖象顯示不能用幾何畫板和投影儀,不過一筆一筆的教學生一個范例,既可給學生思考也可有學習的空間。
    在由圖象獲取性質的時候有一些不足,以后教課時要注意引導,使學生較快獲得有效信息,從而歸納出要得到的性質和結論。在這節(jié)課要多強調光滑曲線以及畫法。
    (1)列表(取值的特殊與有效性)。
    x-8-4-2-1-1/21/21248。
    (2)描點(描點的準確)。
    (3)連線(注意光滑曲線)。
    注:(1)x取絕對值相等符號相反的數(shù)值。
    (2)x取值要盡可能多,而且有代表性三:練習。
    (3)連線時用光滑曲線從小到大依次連接。
    (4)圖象不與坐標軸相交。
    (1)當k0時,兩支曲線分別位于第一、三象限,
    (2)當k0時,兩支曲線分別位于第二、四象限。
    反比例函數(shù)的意義教學設計篇十一
    1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。
    2、通過引導學生討論探究,分析合作,使學生進一步認識事物之間的聯(lián)系和發(fā)展變化的規(guī)律。
    3、初步滲透函數(shù)思想。
    教學重點:引導學生總結出成反比例的量,是相關的兩種量中相對應的兩個數(shù)積一定,進而抽象概括出成反比例的關系式。
    教學難點:利用反比例的意義,正確判斷兩個量是否成反比例。
    反比例函數(shù)的意義教學設計篇十二
    2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式。
    3.能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想。
    二、重、難點。
    1.重點:理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式。
    3.難點的突破方法:
    (2)注意引導學生對反比例函數(shù)概念的理解,看形式,等號左邊是函數(shù)y,等號右邊是一個分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x0的一切實數(shù);看函數(shù)y的取值范圍,因為k0,且x0,所以函數(shù)值y也不可能為0。講解時可對照正比例函數(shù)y=kx(k0),比較二者解析式的相同點和不同點。
    (3)(k0)還可以寫成(k0)或xy=k(k0)的形式。
    三、例題的意圖分析。
    教材第46頁的思考題是為引入反比例函數(shù)的概念而設置的,目的是讓學生從實際問題出發(fā),探索其中的數(shù)量關系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。
    教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學生進一步體會函數(shù)所蘊含的變化與對應的思想,特別是函數(shù)與自變量之間的單值對應關系。
    補充例1、例2都是常見的題型,能幫助學生更好地理解反比例函數(shù)的概念。補充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關系式,有一定難度,但能提高學生分析、解決問題的能力。
    反比例函數(shù)的意義教學設計篇十三
    購買練習本的價錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
    2、成正比例的量有什么特征?
    二、探究新知。
    1、導入新課:這節(jié)課我們繼續(xù)學習常見的數(shù)量關系中的另一種特征成反比例的量。
    2、教學p42例3。
    (1)引導學生觀察上表內數(shù)據(jù),然后回答下面問題:
    a、表中有哪兩種量?這兩種量相關聯(lián)嗎?為什么?
    b、水的高度是否隨著底面積的變化而變化?怎樣變化的?
    d、這個積表示什么?寫出表示它們之間的數(shù)量關系式。
    (2)從中你發(fā)現(xiàn)了什么?這與復習題相比有什么不同?
    a、學生討論交流。
    b、引導學生回答:
    (3)教師引導學生明確:因為水的體積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關系,高度和底面積叫做成反比例的量。
    (4)如果用字母x和y表示兩種相關的量,用k表示它們的積一定,反比例可以用一個什么樣的式子表示?板書:xy=k(一定)。
    三、鞏固練習。
    1、想一想:成反比例的量應具備什么條件?
    2、判斷下面每題中的兩個量是不是成反比例,并說明理由。
    (1)路程一定,速度和時間。
    (2)小明從家到學校,每分走的速度和所需時間。
    (3)平行四邊形面積一定,底和高。
    (4)小林做10道數(shù)學題,已做的題和沒有做的題。
    (5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
    (6)你能舉一個反比例的例子嗎?
    四、全課小節(jié)。
    這節(jié)課我們學習了成反比例的量,知道了什么樣的'兩個量是成反比例的兩個量,也學會了怎樣判斷兩種量是不是成反比例。
    五、課堂練習。
    p45~46練習七第6~11題。
    反比例函數(shù)的意義教學設計篇十四
    1.回顧、梳理本章的知識:
    如同已經(jīng)學過的有關方程、函數(shù)的內容一樣,本章內容分為3塊:
    (1)從生活到數(shù)學:從問題到反比例函數(shù),即建構實際問題的數(shù)學模型;
    (3)用數(shù)學解決問題:反比例函數(shù)的應用.。
    2.可以設計一組問題,重點歸納、整理反比例函數(shù)的圖象與性質,進一步感受形數(shù)結合的數(shù)學思想方法.例如:
    (3)形數(shù)結合——函數(shù)的圖象與性質的綜合應用。
    例如:為了預防“非典”,某學校對教室采用藥薰法進行消毒.已知藥物燃燒時.室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例(如圖).現(xiàn)測得藥物8min燃畢,此時室內空氣中每立方米含藥量為6mg。
    (1)寫出藥物燃燒前、后y與x的函數(shù)關系式;
    反比例函數(shù)的意義教學設計篇十五
    教學目標:
    教學重點:
    教學程序:
    一、新授:
    1、實例1:(1)用含s的代數(shù)式表示p,p是s的反比例函數(shù)嗎?為什么?
    (2)、當木板面積為0.2m2時,壓強是多少?
    答:p=3000pa。
    (3)、如果要求壓強不超過6000pa,木板的面積至少要多少?
    答:2。
    (4)、在直角坐標系中,作出相應的函數(shù)圖象。
    (5)、請利用圖象(2)和(3)作出直觀解釋,并與同伴進行交流。
    二、做一做。
    1、(1)蓄電池的電壓為定值,使用此電源時,電流i(a)與電阻r()之間的函數(shù)關系如圖5-8所示。
    (2)蓄電池的電壓是多少?你以寫出這一函數(shù)的表達式嗎?
    電壓u=36v,i=60k。
    r()345678910。
    i(a)。
    3、如圖5-9,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=60k的圖象相交于a、b兩點,其中點a的坐標為(3,23)。
    (1)分別寫出這兩個函數(shù)的表達式;。
    (2)你能求出點b的坐標嗎?你是怎樣求的?與同伴進行交流;。
    隨堂練習:
    p145~1461、2、3、4、5。
    作業(yè):p146習題5.41、2。
    反比例函數(shù)的意義教學設計篇十六
    1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會反比例函數(shù)的含義,理解反比例函數(shù)的概念。
    2、理解反比例函數(shù)的意義,根據(jù)題目條件會求對應量的值,能用待定系數(shù)法求反比例函數(shù)關系。
    3、讓學生經(jīng)歷在實際問題中探索數(shù)量關系的過程,養(yǎng)成用數(shù)學思維方式解決實際問題的習慣,體會數(shù)學在解決實際問題中的作用。
    【學習難點】反比例函數(shù)的解析式的確定。
    【學法指導】自主、合作、探究。
    教學互動設計。
    【自主學習,基礎過關】。
    一、自主學習:
    (一)復習鞏固。
    1.在一個變化的過程中,如果有兩個變量x和y,當x在其取值范圍內任意取一個值時,y,則稱x為,y叫x的.
    2.一次函數(shù)的解析式是:;當時,稱為正比例函數(shù).
    3.一條直線經(jīng)過點(2,3)、(4,7),求該直線的解析式.
    以上這種求函數(shù)解析式的方法叫:
    (二)自主探究。
    提出問題:下列問題中,變量間的對應關?可用怎樣的函數(shù)關系式表示?
    (2)某住宅小區(qū)要。
    反比例函數(shù)的意義教學設計篇十七
    1、理解反比例的意義。
    2、能根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
    3、培養(yǎng)學生的抽象概括能力和判斷推理能力。
    引導學生理解反比例的意義。
    利用反比例的意義,正確判斷兩種量是否成反比例。
    一、復習鋪墊。
    1、成正比例的量有什么特征?
    2、下表中的兩種量是不是成正比例?為什么?
    二、自主探究。
    (一)教學例1。
    1、出示例1,提出觀察思考要求:
    從表中你發(fā)現(xiàn)了什么?這個表同復習的表相比,有什么不同?
    (1)表中的兩種量是每小時加工的數(shù)量和所需的加工時間。
    教師板書:每小時加工數(shù)和加工時間。
    (2)每小時加工的數(shù)量擴大,所需的加工時間反而縮?。幻啃r加工的數(shù)量縮小,所需的加工時間反而擴大。
    教師追問:這是兩種相關聯(lián)的量嗎?為什么?
    (3)每兩個相對應的數(shù)的乘積都是600.
    教師板書:零件總數(shù)。
    每小時加工數(shù)×加工時間=零件總數(shù)。
    3、小結。
    通過剛才的研究,我們知道,每小時加工數(shù)和加工時間是兩種相關聯(lián)的量,每小時加工數(shù)變化,加工時間也隨著變化,每小時加工數(shù)乘以加工時間等于零件總數(shù),這里的`零件總數(shù)是一定的。
    (二)教學例2。
    1、出示例2,根據(jù)題意,學生口述填表。
    2、教師提問:
    (1)表中有哪兩種量?是相關聯(lián)的量嗎?
    教師板書:每本張數(shù)和裝訂本數(shù)。
    (2)裝訂的本數(shù)是怎樣隨著每本的張數(shù)變化的?
    (3)表中的兩種量有什么變化規(guī)律?
    (三)比較例1和例2,概括反比例的意義。
    1、請你比較例1和例2,它們有什么相同點?
    (1)都有兩種相關聯(lián)的量。
    (2)都是一種量變化,另一種量也隨著變化。
    (3)都是兩種量中相對應的兩個數(shù)的積一定。
    2、教師小結。
    像這樣的兩種量,我們就把它們叫做成反比例的量,它們的關系叫做反比例關系。
    教師板書:xy=k(一定)。
    三、課堂小結。
    1、這節(jié)課我們學習了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學會了怎樣判斷兩種量是不是成反比例。在判斷時,同學們要按照反比例的意義,認真分析,做出正確的判斷。
    2、通過今天的學習,正比例關系和反比例關系有什么相同點和不同點?
    四、課堂練習。
    完成教材43頁做一做。
    五、課后作業(yè)。
    練習七6、7、8、9題。
    反比例函數(shù)的意義教學設計篇十八
    由對現(xiàn)實問題的討論抽象出反比例函數(shù)的概念,通過對問題的解決進一步明確:1.反比例函數(shù)的意義;2.反比例函數(shù)的概念;3.反比例函數(shù)的一般形式。
    1.從現(xiàn)實情境和已有的知識、經(jīng)驗出發(fā),討論兩個變量之間的相依關系,加深對函數(shù)概念的理解。
    2.經(jīng)歷抽象反比例函數(shù)概念的過程,領會反比例函數(shù)的意義,表述反比例函數(shù)的概念。
    1.經(jīng)歷對兩個變量之間相依關系的討論,培養(yǎng)辯證唯物主義觀點。
    2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展抽象思維能力,提高數(shù)學化意識。
    1.認識到數(shù)學知識是有聯(lián)系的,逐步感受數(shù)學內容的系統(tǒng)性;
    2.通過分組討論,培養(yǎng)合作交流意識和探索精神。
    啟發(fā)引導、分組討論。
    1課時。
    課件。
    復習引入。
    2.在上一學段,我們研究了現(xiàn)實生活中成反比例的兩個量。
    反比例函數(shù)的意義教學設計篇十九
    2.滲透數(shù)形結合思想,提高學生用函數(shù)觀點解決問題的能力。
    二、重點、難點。
    1.重點:利用反比例函數(shù)的知識分析、解決實際問題。
    2.難點:分析實際問題中的數(shù)量關系,正確寫出函數(shù)解析式。
    三、
    例題的意圖分析。
    教材第57頁的例1,數(shù)量關系比較簡單,學生根據(jù)基本公式很容易寫出函數(shù)關系式,此題實際上是利用了反比例函數(shù)的定義,同時也是要讓學生學會分析問題的方法。
    教材第58頁的例2是一道利用反比例函數(shù)的定義和性質來解決的實際問題,此題的實際背景較例1稍復雜些,目的是為了提高學生將實際問題抽象成數(shù)學問題的能力,掌握用函數(shù)觀點去分析和解決問題的思路。
    四、課堂引入。
    五、例習題分析。
    例1.見教材第57頁。
    例2.見教材第58頁。
    例1.(補充)某氣球內充滿了一定質量的氣體,當溫度不變時,氣球內氣體的氣壓p(千帕)是氣體體積v(立方米)的反比例函數(shù),其圖像如圖所示(千帕是一種壓強單位)。
    (1)寫出這個函數(shù)的解析式;。
    (2)當氣球的體積是0.8立方米時,氣球內的氣壓是多少千帕?
    六、隨堂練習。
    答案:=,當v=2時,=7.15。