在日常生活中,我們經常需要處理各種各樣的問題,有時候需要總結一下我們的經驗和教訓。在寫總結時,要注重客觀真實、簡明扼要。通過閱讀這些范文,我們可以提升自己的寫作水平和文采。
三角形的三邊關系教學設計一等獎篇一
探索三角形內角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。
教學目標:
1、通過測量、撕拼、折疊等探索活動,使學生發(fā)現(xiàn)三角形內角和的度數(shù)是180?
2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
3、培養(yǎng)學生動手實踐,動腦思考的習慣。
教學重點:
了解三角形三個內角的度數(shù)。
教學難點:
理解三角形三個內角大小的關系。
教具學具準備:
課件三角形若干量角器剪刀。
教材與學生
教材創(chuàng)設了一個有趣的問題情境,通過對大小兩個三角形內角和的大小比較來激發(fā)學生探索的興趣。教材為了得到三角形內角和是180的結論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。
學生在已有的會用量角器來度量一個角的度數(shù)的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結論。
教學過程:
一、呈現(xiàn)真實狀態(tài)。
學生各抒己見。
二、提出問題:
師;剛才我們觀察三角形哪個內角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。
(1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內角和度數(shù),并做好記錄,記錄每個內角的度數(shù)。
(2)組內交流。
(3)全班交流。由小組匯報測出結果(三角形內角和)
(4)師小結:我們通過測量發(fā)現(xiàn),每個三角形的內角和測出結果接近180。
三。自主探索、研究問題、歸納總結:
師引導提問:三角形的內角和會不會就是180呢?
(一)組內探索:
(1)以小組為單位探索更好的辦法。
(2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結果。
(有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發(fā)現(xiàn)結果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學生學習到良好的學習方法)
(3)把你沒有想到的方法動手做一次
(使學生更直觀地理解三角形的內角和是180的證明過程)
(4)根據(jù)學生的反饋情況教師進行操作演示。
(二)教師演示
撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示
2.師:這三個內角放在一起你有什么發(fā)現(xiàn)?
生:發(fā)現(xiàn)三個內角拼成一個平角。
師:平角是多少度呢?說明什么?
生:180?說明三個內角和剛好等于180。
師:這種方法是不是適用各種三角形呢?
進行實驗后,結果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內角和是180。
折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內角剛好拼成一個平角,進一步說明三個內角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。
你們也來試一試好嗎?
在學生完成這一實踐后肯定這一發(fā)現(xiàn)
三角形三個內角和等于180?
四。鞏固練習,知識升華。
1.完成課本第28頁的“試一試”第三題。
2.想一想:鈍角三角形最多有幾個鈍角?為什么?
銳角三角形中的兩個內角和能小于90嗎?
3.有一個四邊形,你能不用量角器而算出它的四個內角和嗎?
試一試,看誰算得快。
師:誰來說說自己的計算過程?
生:它們的內角和都是180度。
[回答可能有二]:
(一種全部說是:)
師:請問,你們是怎么想的,為什么這么認為?
生:……
師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧!(師在課題“內角和”下面劃上橫線,打上問號)
(一種有一部分同學說是,有一部分同學說不是:)
師:看來,大家的意見不一致,想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧?。◣熢谡n題“內角和”下面劃上橫線,打上問號)
(二)動手操作,探究新知
師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?
生:我準備用量的方法。
師:然后呢?
生:然后把它們三個內角的度數(shù)相加起來,就知道了三角形的內角和是多少?
師:說的真不錯,還有沒有其它的方法?
生:我是把三角形的三個角剪下來,拼在一起(師鼓勵:你的想法很有創(chuàng)意,等一會兒用你的行動來驗證你的猜想吧!)
生:……
(如生一時想不到,師可引導:他是把三個內角的度數(shù)相加在一起,我們能不能想辦法把三個內角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)
師:好啦,老師相信咱們班的同學個個都是小數(shù)學家,一定能找出更多的方法的,請你們在研究之前,也像老師一樣,在三個內角上編上序號,角一、角二、角三,現(xiàn)在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!
開始吧?。▽W生研究,師巡回指導)預設時間:5分鐘
師:老師看各小組已經研究好了,哪位同學愿意上來交流一下?
師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結果?
(預設:如果第一類同學說的是量的方法)
師:你是用什么來研究的?
生:量角器。
師:那請你說一下你度量的結果好嗎?
(生匯報度量結果)
生:180度。
師:那到底三角形的內角和是不是180度呢?還有哪位同學有其它的方法進行驗證嗎?
生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們三個角組成的度數(shù)。
師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點擊flash:把三角形按照三個內角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調個頭,插在角一角二的中間,這樣它們三個內角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)
生:我們還用了折的方法(生介紹方法)
師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點擊flash:先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向對邊對折,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們三個內角就形成了一個大角,這個大角是個什么角呢?)
生:是個平角。180度。
師:請這位同學來說給大家聽聽吧!
生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內角和是360度,那么一個三角形的內角和就是180度。
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內角和也將是180度。
生:三角形的內角和是180度。(師板書)
師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
(三)拓展應用,深化認識
師:請看老師手上的這兩個三角形,左邊這個內角和是多少度?(生:180度)右邊呢(生:也是180度)
師:現(xiàn)在老師把它們拼在一起,這個大三角形的內角和又是多少度呢?
(生答后師引導歸納得出:三角形的內角和與形狀大小無關,組成的大三角形的內角和依然是180度。)
師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧?。ǔ鍪菊n件,課件內容:一個大一些的直角三角形說:“我的個頭比你大,我的內角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)
師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!
師:好,請看大屏幕!
(出示基礎練習)在一個三角形中角一是140度,角三是25度,求角二的度數(shù)。
生答后,師提問:你是怎樣想的?
生陳述后,師鼓勵:說的真好!
出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。
師:同學們,今天我們一起學習了三角形的內角和,你有哪些收獲呢?
師:嗯,真不錯,你們知道嗎?三角形的內角和等于180度是法國著名的數(shù)學家帕斯卡在1635年他12歲時獨自發(fā)現(xiàn)的,今天憑著同學們的聰明智慧也研究出了三角形的內角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!
師:好,下課!同學們再見!
三角形的三邊關系教學設計一等獎篇二
教學目標
(一)知識與技能:掌握“三角形內角和定理”的證明及其簡單應用,讓學生探索發(fā)現(xiàn)三角形的內角和是180。
(二)過程與方法:通過量算、撕拼、折拼等活動培養(yǎng)學生觀察、操作、探究、歸納、概括、反思等能力和初步的空間想象力,感受數(shù)學的轉化思想;發(fā)展學生的空間觀念和初步的邏輯思維能力;能運用所學知識解決簡單的問題,訓練學生對所學知識的運用能力。
(三)情感態(tài)度與價值觀:
1、滲透轉化遷移思想,培養(yǎng)學生大膽質疑的勇氣和嚴謹科學的精神,及與他人合作交流的意識。
2、讓學生切實感受到從實驗中得到的現(xiàn)象,經過簡單的推理證明以后可以成為我們的一般公理,初步感受從個別到一般的思維過程。
教學重點:
讓學生經歷“三角形內角和是180度”這一知識的形成、發(fā)展和應用的全過程;知道三角形的內角和是180度并且能應用。
教學難點:
三角形內角和是180度的探索和驗證過程。
教學過程:
一、激趣引入
1、畫三角形
2、畫有兩個直角的三角形
3、認識三角形的內角,猜測內角和。
二、探究新知
(一)研究特殊三角形的內角和(三角尺)
60°+30°+90°=180°
45°+45°+90°=180°
(二)操作、驗證完成一般三角形的內角和是180度的.證明。
1、小組合作完成
2、匯報
第一種:通過度量完成。
第二種:通過撕拼或者折拼完成。
第三類:通過長方形推算得出。
其他類。
3、小結:
(課件演示)剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出,無論是什么樣的三角形的內角和都是180°,你們真不錯,讓我們帶著自豪的語氣大聲地讀出“三角形的內角和是180°”
4、知識升華:
大小不一的三角形的內角和各是多少?
一個三角形分成兩個三角形,他們的內角和各是多少?
三、實踐檢驗
2、老師不小心把墨水倒在了三角形上,你知道它的度數(shù)嗎?
3、數(shù)學日記。
四、評價樹
你對自己的評價。
結束語:
三角形是一棵大樹,內家和只是它的一片葉子;
數(shù)學是一棵大樹,三角形只是它的一片葉子;
生活是一棵大樹,數(shù)學只是它的一片葉子,
讓我們欣賞著、享受著三角形為生活添得美!
三角形的三邊關系教學設計一等獎篇三
學生:想!
師:下面請同學們分小組開始活動。
(學生分小組活動)
師:每個小組利用桌上的六根木條共搭建了幾個三角形?
學生:我們搭建了一個三角形。
師:剩下的三根木條能搭建成一個三角形嗎?
學生:不能。
師:你們知道剩下的三根木條為什么不能搭建成一個三角形嗎?你發(fā)現(xiàn)了什么?
學生1:我發(fā)現(xiàn)剩下的三根木條怎么連也連不到一起。
學生2:我們也是這樣的。
學生1:我們將較短的兩根木條連接在一起與最長的一根木條相比較,發(fā)現(xiàn)較短的兩根木條和起來還沒有另外一根木條長。
學生2:我們把較短的兩根木條連接在一起與最長的一根木條相比較,發(fā)現(xiàn)較短的兩根木條和起來不是沒有另外一根木條長,而是同另外一根一樣長。
學生3:我們發(fā)現(xiàn)的結論與學生(1)相同,我們是通過用直尺分別度量這三根木條的長度,再計算、比較后發(fā)現(xiàn)的。
學生4:我們發(fā)現(xiàn)的結論與學生(2)相同,我們也是通過用直尺分別度量這三根木條的長度,再計算、比較后發(fā)現(xiàn)的。
(學生活動后匯報)
學生1:我發(fā)現(xiàn)較短的兩條邊加起來比最長的一條邊長,同剛才的結論正好相反。
學生2:我發(fā)現(xiàn)我這個三角形的任意兩邊加起來的和都比第三邊長。
學生3:我的發(fā)現(xiàn)同學生(2)一樣,也是這個三角形的任意兩邊加起來的和都比第三邊長。
學生4:“任意兩邊”是什么意思?我不太懂。
學生5:“任意兩邊”就是指三角形三邊中的每兩條邊加起來的`長度都比剩下來的第三條邊的長度長。
學生4:原來是這樣的。
(學生都有同感)
學生6:也就是說,任意一個三角形,它的三條邊都存在這樣一個特征:三角形的任意兩邊之和都大于第三邊。
學生7:我想應該是這樣的吧。因為我們的三角形不一樣,但我們得到的結論都是一樣的。
學生8:我看到書上也有同樣的結論。
(學生都翻書看)
[反思]:蘇霍姆林斯基曾說:“在人的心理深處都有一種根深蒂固的需要,這就是希望自己是一個開拓者、研究者和探索者。而在兒童的精神世界中,這種需要特別強烈?!苯虒W中,教師有意設置這些動手操作,共同探討的活動,既滿足了學生的這種需要,由讓學生在高昂的學習興趣中學到了知識,體驗到了成功。
[片斷二]:及時練習,形成能力
學生:能!
師:請同學們翻書到第86頁,自己獨立做第4題。
(學生做完后匯報展示,并說明判斷的方法)
學生1:(1)、(2)、(4)這三組中的線段能拼成一個三角形,(3)中的線段不能拼成一個三角形,我是把每組中的三條線段兩兩相加,再與剩下的第三條線段相比較,其中(1)、(2)、(4)這三組中的線段每兩條線段之和都大于第三條線段,所以它們能拼成一個三角形,而(3)中2+2〈6,所以這組中的三條線段不能拼成一個三角形。
學生2:我的結論同學生(1)一樣,但我的判斷方法與他不同,我是先找出較短的兩條邊,比較它們的和與剩下的第三條邊的大小,如果和大一些,則能拼成三角形,如果和小一些,則不能拼成三角形。
學生3:學生(2)的方法只是一種巧合,他沒有判斷任意兩邊之和大于第三邊,所以這種方法不行。
(學生對學生(2)的方法產生了爭論,學生討論一會兒后)
學生4:學生(2)的方法是對的,因為較短的兩條邊之和如果大于第三條邊,則說明任意一條較短的邊與最長的一邊之和肯定大于第三條邊,這也就更進一步說明這個三角形的任意兩邊之和大于第三邊。
學生5:看來在判斷某三條邊能否拼成一個三角形時,用學生(2)的方法既快又對。
[反思]:課堂練習的目的是為了讓學生及時掌握知識,形成能力。教學中老師充分注意到了這一點,即讓學生用所學內容來說明為什么這一環(huán)節(jié)。同時我們也欣喜地發(fā)現(xiàn),通過練習,學生還在原來所學內容的基礎上,對原知識又有發(fā)展,找到了最佳的判斷方法。學生的能力不可限量啊!
[片斷三]:結合實際,學會運用
學生:他會走中間這條路。
師:你們是怎樣判斷的?
學生1:因為中間這條路是直的,其它的路是彎的,所以中間這條路最短。
學生2:如果小明走通過郵局到學校這條路上學,小明家、郵局、學校則構成一個三角形,由三角形的三邊關系可以知道,小明家到郵局,郵局到學校這兩條邊之和一定大于第三邊,即中間這條路,所以中間這條路最短。
學生:線段最短。
[反思]:教材是學習的載體,教學中教師應充分發(fā)揮教材的育人作用,挖掘教材的教育功能,而不要把教材撇開一邊。從上面可以看出,這副圖既能讓學生領悟知識與實際的結合,又能從中學到另外的知識,可謂一舉多得。
[片斷四]:拓展延伸,豐富充實
師:通過上面的學習,老師欣喜地發(fā)現(xiàn)同學們不僅能自主、能動地學習新知,而且能將所學的知識用于解決實際問題之中。下面老師這兒有幾道題不知怎樣解答,誰能幫一幫老師?(電腦出示題目)
學生1:長度分別是3cm、5cm的兩條線段中任意一條線段能與a、b組成一個三角形,因為3+2.53.5,2.5+3.55。
學生2:長度分別是1cm、6cm、9cm的三條線段中任意一條線段不能與a、b組成一個三角形,因為1+2.5=3.5;2.5+3.5=6;2.5+3.59。
學生1:我用長度為2cm、6cm、6cm三條線段能拼成一個三角形,這個三角形有兩條邊的長度相等。
學生2:我用長度為6cm、6cm、6cm三條線段能拼成一個三角形,這個三角形三條邊的長度都相等。
學生3:我用長度為2cm、2cm、6cm三條線段不能拼成一個三角形,因為2+26,所以他們不能拼成三角形。
師:剛才學生1、學生2所說的三角形是兩種較特殊的三角形,這些三角形我們將在下次課中學習研究。
題目三:用15根等長的火柴棒擺成的三角形中,最長邊最多可以由幾根火柴棒組成?
學生1:我想最多可以由9根火柴棒組成。
學生2:我覺得最多可以由8根火柴棒組成。
師:同學們敢于大膽猜想,勇于發(fā)表自己的意見,這很好。不過同學們如果能通過實踐,講究事實依據(jù),用理由來說服人那就更好了!
(學生分小組討論、拼擺)
學生1:我們通過實踐知道,最長邊最多可以由7根火柴棒組成。
學生2:我們通過討論知道,最長邊最多可以由7根火柴棒組成。此時另外兩條較短的兩條邊的和為8,大于最長邊7,根據(jù)三角形三邊的關系可知,此時能拼成三角形,且最長邊由7根火柴棒組成,為最多。
師:同學們今天表現(xiàn)非常棒,不僅能猜想,而且能通過實踐,利用所學知識解決實際問題,老師為你們驕傲,我相信,只要同學們一如既往,燦爛的明天一定會與你擁抱。
[反思]:數(shù)學教師的課堂教學應該是敢于放手,盡可能多地給學生創(chuàng)造展示自己的思維空間和時間,如此定會別有洞天。
[點評與拓展]:良好的教育一定要致力于學生用自己的眼睛去觀察,用自己的心靈去感悟,用自己的頭腦去判別,用自己的語言去表達,要能使一個人成為真正的人,成為他自己,成為一個不可替代的大寫的“人”。本節(jié)課,授課教師在教學中充分體現(xiàn)了這一觀點。先是設計了“拼三角形”這一環(huán)節(jié),讓學生在動手操作中用自己的眼睛去觀察,接著設計匯報展示這一環(huán)節(jié),讓學生用自己的語言去表達,在聽別的同學匯報時,讓學生用自己的頭腦去判別,用自己的心靈去感悟。在后面的教學中,該教師繼續(xù)抓住這一教育思想對學生施教,讓學生在學習中感受到了生命的存在與價值,體驗到了自己主動建構知識的快樂,取得了滿意的教育效果。
三角形的三邊關系教學設計一等獎篇四
1.理解用一元一次方程解工程問題的本質規(guī)律;通過對“工程問題”的分析進一步培養(yǎng)學生用代數(shù)方法解決實際問題的能力。
2.理解和掌握基本的數(shù)學知識、技能、數(shù)學思想方法,獲得廣泛的數(shù)學活動經驗,提高解決問題的能力。
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
1.一件工作,如果甲單獨做2小時完成,那么甲獨做i小時完成全
部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
閱讀教科書第18頁中的問題6。
分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么?已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
師傅完成的工作量為=,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現(xiàn)
由甲獨做10小時;
請你提出問題,并加以解答。
例如(1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
1.本節(jié)課主要分析了工作問題中工作量、工作效率和工作時間之
間的關系,即工作量=工作效率×工作時間
工作效率=工作時間=
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
教科書習題6.3.3第1、2題。
三角形的三邊關系教學設計一等獎篇五
北師大版小學數(shù)學四年級下冊《三角形三條邊之間的關系》
1、通過量一量、擺一擺、算一算等實驗活動,探索并發(fā)現(xiàn)三角形任意兩邊之和大于第三邊,并應用這關系解釋一些生活現(xiàn)象,解決一些簡單的生活問題。
2、在實驗過程中培養(yǎng)學生的猜想意識、自主探索、合作交流的能力。
探索并發(fā)現(xiàn)三角形任意兩邊之和大于第三邊。
學生、老師各準備幾個長短不等的小棒、直尺、探究報告單。
一、擺一擺,激發(fā)探究欲望
師:前一節(jié)課我們學習了三角形,給你三根小棒,誰能到黑板上圍成一個三角形?
(指兩名同學到黑板上來。提供的小棒一組能擺成三角形,另一組擺不成三角形。)
在學生擺不出來時,引導學生發(fā)現(xiàn)不是任意三根小棒都能擺出三角形來。
師:若想再擺個三角形,你有解決的辦法嗎?
看來,要想擺成一個三角形,對三條邊的長度是有要求的。這節(jié)課我們就來研究三角形邊的關系。(板書課題)
師:誰來猜一猜,這三條邊究竟有什么樣的關系呢?
師:你的猜想是否正確呢,我們還是用實驗來驗證吧。
[反思]這個環(huán)節(jié),我首先讓學生圍三角形,第一名學生不費吹灰之力很順利地圍成了三角形,第二名學生怎么也圍不成。這樣使學生在具體的操作過程中產生思維沖突,從而提出“數(shù)學問題”,有效地激發(fā)了學生的探究欲望。課一開始,就牢牢的抓住了學生的心,讓學生饒有興趣的投入到下一輪的學習中去。
二、操作驗證,揭示三邊關系
(一)分組研究,四人小組長拿出準備好的四組小棒。
出示實驗要求:
1、量出每組小棒的長度。
2、將三根小棒首尾相接,看是否能圍成三角形。
3、把任意兩條邊的長度加起來,再與第三邊進行比較。(用式子表示)
4、小組討論,你發(fā)現(xiàn)了什么?將實驗結果填寫在探究報告單上。
(二)小組匯報交流實驗結果
結論:三角形任意兩邊的和大于第三邊。(引導學生理解“任意”的意思)
再用這個結論解釋實驗中圍不成三角形的原因。
[反思]:蘇霍姆林斯基曾說:“在人的心理深處都有一種根深蒂固的需要,這就是希望自己是一個開拓者、研究者和探索者。而在兒童的精神世界中,這種需要特別強烈?!苯虒W中,我有意設置這些動手操作,共同探討的活動,既滿足了學生的這種需要,由讓學生在高昂的學習興趣中學到了知識,體驗到了成功。
三、應用與拓展
1、判斷下面幾組線段能否圍成三角形,為什么?
(引導學生理解快速判斷的方法)
(1)1厘米、3厘米、5厘米
(2)3厘米、5厘米、2厘米
(3)11厘米、6厘米、7厘米
[反思]:課堂練習的目的是為了讓學生及時掌握知識,形成能力。教學中我充分注意到了這一點,即讓學生用所學內容來說明為什么這一環(huán)節(jié)。同時我們引導學生發(fā)現(xiàn),快速判斷的方法,使學生在原來所學內容的基礎上,對原知識又有發(fā)展,找到了最佳的判斷方法。
2、小華上學走哪條路近?為什么?(引導學生從多角度解釋)
書店
學校
小華家
[反思]:教材是學習的載體,我充分挖掘教材知識之間的聯(lián)系,。這副情境圖既能靠直覺來判斷,又能用三角形三條邊的關系來解釋,還可以用“連接兩點的線中,線段最短”來解釋。這樣既拓展了學生思維的空間,感受到解決問題方法多樣性,又領悟到知識與實際的結合,從而使學生認識到生活中處處有數(shù)學。
3、一個三角形,其中兩條邊長是4厘米和6厘米,第三條邊長是多少厘米?
(引導學生探究第三邊的取值范圍)
[反思]:此題設計目的是引導學生發(fā)現(xiàn)三角形第三邊的取值范圍是大于另兩邊的差,小于另兩邊的和。教學中開始學生逐漸答出了3厘米、4厘米、5厘米、6厘米、7厘米、8厘米、9厘米,接著就沉默了,我就提出了9.2厘米行不行?學生略一思考得出結論:行。于是他們的思維又活躍起來,9.6厘米、9.9厘米……當學生發(fā)現(xiàn)小數(shù)部分是無限的時,得出結論第三邊小于10厘米大于3厘米就可以,于是我又提出問題:現(xiàn)在同學們找到的最小答案是3厘米,2.5厘米行不行?學生經過思考得出答案:第三邊要小于10而大于2。由于時間關系,當時我有些著急,直接將我想要學生了解的“第三邊的取值范圍要大于另兩邊的差,小于另兩邊的和”這個結論直接說了出來,結果效果并不是太好。不如讓學生自己課下探究“三角形兩邊之差與第三邊的關系”更好。雖然此處處理并不是很恰當,但在這道題中師生、生生之間思維的碰撞,激發(fā)了學生探究的意識,培養(yǎng)了學生的質疑探究的能力。
4、兒童樂園要建一個涼亭,亭子上部是三角形木架,現(xiàn)在已經準備了兩根3米長的木料,假如你是設計師第三根木料會準備多長?并說明理由。
(引導學生實際生活中要講究美觀、實用)
[反思]此題是上一道題的延伸,是培養(yǎng)學生應用數(shù)學知識合理解決生活問題的能力。
5、用15根等長的火柴棒擺成的三角形中,最長邊最多可以由幾根火柴棒組成?
[反思]這是一道要同學動手探究的問題,作為家庭作業(yè)學生更愿意做這樣的題。
三角形的三邊關系教學設計一等獎篇六
教學內容:
教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
教學目標:
1、通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。
2、能運用三角形的內角和是180°這一結論,求三角形中未知角的度數(shù)。
3、培養(yǎng)學生動手動腦及分析推理能力。
重點難點:
掌握三角形的內角和是180°。
教學準備:
三角形卡片、量角器、直尺。
導學過程
一、復習
1、什么是平角?平角是多少度?
2、計算角的度數(shù)。
3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)
二、新知
(設計意圖:讓學生經歷質疑驗證結論這樣的思維過程,真正整體感知三角形內角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學生的綜合素養(yǎng))
1、讀學卡的學習目標、任務目標,做到心里有數(shù)。
2、揭題:課件演示什么是三角形的內角和。
3、猜想:三角形的內角和是多少度。
4、驗證:
(1)初證:用一副三角板說明直角三角形的內角和是180°。
(2)質疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內角和是180°(師巡視)
(4)匯報結論(清楚明白的給小組加優(yōu)秀10分)
5、結論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說明三角形無論大小它的內角和都是180°(課件演示)
7、看微課感知“偉大的發(fā)現(xiàn)”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)
三、知識運用(課件出示練習題,生解答)
1、填空
(1)一個三角形,它的兩個內角度數(shù)之和是110,第三個內角是、
(2)一個直角三角形的一個銳角是50,則另一個銳角是()。
(3)等邊三角形的3個內角都是()。
(4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
(5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
2、判斷
(1)一個三角形中最多有兩個直角。()
(2)銳角三角形任意兩個內角的和大于90。()
(3)有一個角是60的等腰三角形不一定是等邊三角形。()
(4)三角形任意兩個內角的和都大于第三個內角。()
(5)直角三角形中的兩個銳角的和等于90。()
四、拓展探究
根據(jù)所學的知識,你能想辦法求出四邊形、五邊形的內角和嗎?
1、小組討論。2、匯報結果。3、課件提示幫助理解。
五、自我評價根據(jù)學卡要求給自己評出“優(yōu)”“良好”“合格”。
三角形的三邊關系教學設計一等獎篇七
教學內容:
教學目標:
1、探究、發(fā)現(xiàn)三角形任意兩邊的和大于第三邊,初步理解三角形三邊的關系。
2、經歷操作、發(fā)現(xiàn)、應用的過程,滲透數(shù)學思想與方法,積累數(shù)學活動經驗,培養(yǎng)自主探究、合作交流的能力。
3、激發(fā)學生探究愿望和興趣,培養(yǎng)參與數(shù)學活動的積極性和嚴謹?shù)目茖W態(tài)度。
教學重點:探究、發(fā)現(xiàn)三角形任意兩邊的和大于第三邊。
教學難點:應用數(shù)據(jù)發(fā)現(xiàn)三角形三邊的關系,理解“任意”的含義。
教學設計思路:這節(jié)課,精心設計了一系列的數(shù)學活動,讓學生“在參與中體驗,在活動中發(fā)展”。課堂上,學生通過自主操作、自主估猜、自主探究、自主遷移,深入認識三角形。通過課上師生之間、生生之間充分交流合作,學生自然、自主、自由地發(fā)展。
教學過程:
1、 出示各種三角形。(這些是什么圖形,什么是三角形?)
2、 出示三根紙條紅、藍、黑。
師:我們把這三根紙條看成三條線段,你能把它圍成三角形嗎?
生代表上來圍。師:你們覺得他圍得怎么樣?生補充圍。我真佩服你的細心。紙條要頂點對著頂點,首尾相連,這樣才能真正用上了這三根紙條的長度。
3、圍三角形比賽,(看來同學們都會圍了,現(xiàn)在我們來進行一場比賽吧。從信封拿出紙條1號袋紅3cm,藍6cm,黑11cm。2號袋紅3cm,藍6cm,黑5cm。
4、討論
為什么有些能圍成有些圍不成,板書(圍不成) (圍成)它可能跟什么有關系呢?我們來猜想一下,你說:
生1:可能跟邊有關。
生2:跟邊的長短有關系。
師:那么三角形三邊長短之間到底有怎樣的關系呢?這就是這節(jié)課我們要探究的課題:出示課題《三角形三邊的關系》。
1、動手操作:
生:11厘米太長了,那兩根太短了。
師:上面這兩根和下面這根比,你發(fā)現(xiàn)了什么?
生:我發(fā)現(xiàn)兩根小棒之和小于第三根。
師:從你的回答,我聽到了智慧的聲音,以前我們總是考慮一根和另一根去比長,而現(xiàn)在卻考慮用兩根的和去與第三根進行比較,真了不起!
能不能用一個算式來表示呢?
生;3+6﹤11。
生:兩邊的和大于第三邊。
生:兩邊的和等于第三邊。
(過渡)同學們有不同的猜想,生活當中許多重大發(fā)現(xiàn)都從猜想開始,但是光猜還不行,我們還得從實踐中加以驗證,接下來我們從探究驗證我們的想法,我們把3cm和6cm兩邊的和不變縮短黑邊的長度,為了便于研究,我們移到整厘米,注意刻度線對刻度線。一邊圍一邊想,這兩個結論是否正確,找到規(guī)律就可以不用每個刻度都要試,即動手又動腦,才是高效的探究。現(xiàn)在小組一起,可分工不同移動的刻度,要有一個同學作記錄。(活動教師巡視指導)
2、匯報交流
教師:下面請同學們來匯報一下你的操作結果。
請不同的學生匯報,教師在課件中輸入數(shù)據(jù)和結果。
師:長度是9厘米時,有爭議,圖形有些特殊我們重點研究它,請不能圍成的同學上來說說不能圍成的原因。
生:只要將紙條3cm或6cm稍微抬高一些,紙條3cm和6cm就不能首尾相連了。師:利用課件演示。問能圍成的同學此刻的想法。(善于思考能接納同學的建議很會學習)
生:兩邊之和大于第三邊時能圍成,用3cm、6cm和7cm展示。
師:這個猜想對不對呢?這需要進行驗證,看看這些能圍成三角形的邊是不是具備這樣的關系?3+6﹥7還有誰也得出這樣的結論?指名說。
生:用3cm、6cm、11cm不能圍成三角形,它也有兩條邊的和大于第三邊板書(3+11﹥6)
師:那這個結論正不正確,除了這兩個算式還能寫出第三個算試嗎?
生:6+11﹥3 圍成的呢,3+7﹥6 7+6﹥3。
師:還有別的算式嗎?(沒有)在圍成三角形當中每兩邊的和都大于第三邊,而不能圍成的只有兩組兩邊的和大于第三邊。在數(shù)學中,每兩邊的和都大于第三邊的,叫做任意兩邊的和大于第三邊(板書)
師:什么叫任意?
師:在判斷能不能圍成三角形的時候有沒有更簡單的方法?是不是每次都要計算三組啊?在小組內想一想,說一說;引導學生發(fā)現(xiàn),因為較小的兩邊的和都大于最長的邊了,那么用最長的邊加一條較短的邊,就一定大于另一條短邊了,所以呢?只要把較小的兩條邊,加起來與第三邊進行判斷,就可以了。
三角形的三邊關系教學設計一等獎篇八
《三角形三邊關系》教學內容:“三角形任意兩邊長度之和大于第三邊”是三角形的重要性質。了解這一知識,不僅可以更好地理解和掌握三角形的特征,而且可以利用它解決很多日常生活問題。
特級教師吳正憲提出,要讓學生享受既有“營養(yǎng)”又“好吃”的數(shù)學學習,單調的練習題如何烹飪成適合學生的美味?教學三角形三邊關系,以前的我選擇是給3根小棒讓學生來探究。而這一次我選擇了給他們一張普普通通的紙條,需要學生忽視其寬度,重視其長度,把它“想成”只有長度的線段。這就有了“數(shù)學化”的味道。變”學數(shù)學“為”做數(shù)學“。讓學生在自主探索中總結得到三角形的三邊關系。讓學生能夠接受學習內容,提高學習興趣。使學生在課堂上樂于學數(shù)學、做數(shù)學、用數(shù)學。除此之外我還采用了創(chuàng)設實驗情境――動手操作――合作探究――揭示規(guī)律――畫圖驗證這種探究方法來完成本節(jié)課,目的是讓學生體會理論和實踐相結合才是嚴密的論證方法。
課堂及時捕捉學生思維的成果。當學生用紙條擺出結果后,我用手機照相功能把學生的作品保存下來,投放到課件之中,學生的學習興趣一下高漲起來,把他們不同的成果進行展示,并且進行比較分析,得到了良好的效果。
巧設練習,促進思維的發(fā)展,體驗數(shù)學的意義和價值。在練習中設計了幾組線段,讓學生判斷能否圍成三角形,分析這幾組數(shù)據(jù),得出只要比較較短的兩條線段之和是否大于第三條邊就可以判斷能否圍成三角形了。并根據(jù)這一發(fā)現(xiàn)解決四組線段能否圍成三角形的問題。這一過程使學生鞏固了基本的知識點,強化教學重點和難點,提高學生對組成三角形的規(guī)律的認識,掌握更好的判斷方法――較小兩條線段之和大于第三條線段,便可構成三角形。
三角形的三邊關系教學設計一等獎篇九
通過《三角形的三邊關系》的教材學習,我對此總結出以下幾點:
(1)學生的獨立思考與合作交流結合在一起。
在組織活動之前,我提出問題“如何圍成一個三角形"讓學生有了自己的認識后,在小組合作解決,最后全班共同交流看法,使學生學會了怎樣去解決問題,并在這一過程中學會了怎樣表達于怎樣傾聽。
(2)在實際應用方面,提供空間讓學生發(fā)揮自己的方法解決問題,并對他提供展示的機會,由于學生的思考角度不同,解決問題的方法也是多樣化的,讓學生通過思考交流,比較各自方法的特點,選擇一種適合自己的方法,去解決問題。
(3)用學生喜歡的游戲作練習,吸引學生的興趣,在快樂的氛圍中學到了知識。體驗學習數(shù)學的挑戰(zhàn)性和數(shù)學結果的確定性。
整個教學過程某些環(huán)節(jié)確實需要進一步的改進于思考。如:
(1)讓學生在自主計算、親身比較的過程中,感受銳角三角形兩遍之和大于第三邊在這個環(huán)節(jié)我下的力度有一點大,使課堂有一點延時。
(2)有的學生對給出的小棒沒能充分運用,說明孩子們在解決問題時有時思考是不靈活的。在平日的教學中我們就要多鼓勵學生發(fā)表自己的意見,不規(guī)定固定的模式。
本節(jié)課的小組合作我用了兩次,卻都能切實體現(xiàn)到小組合作的實效性。新授課中的小組合作“擺三角形”,學生分工明確,參與性強,而練習中的小組合作卻能集眾人智慧,全面考慮,在有限的時間內完成學習任務。
三角形的三邊關系教學設計一等獎篇十
本節(jié)課的一個突出特點就在于學生的實際動手操作上,具體體現(xiàn)在以下兩個環(huán)節(jié):一是導入部分:學生從5根小棒中任意拿出3根,擺一擺,可能出現(xiàn)什么情況?結果有的學生擺成了三角形,而有的學生沒有擺成三角形,此時,老師接過話題:能否擺成三角形估計與三角形的“邊的長度”有關系,它們之間有著怎樣的關系呢?今天我們就一起來研究這個問題。這樣很自然地就導入了新課,為后面的新課做了鋪墊。二是新授部分:學生用手中的小棒按老師的要求來擺三角形,并且做好記錄。這個過程必須得每個學生親自動手,在此基礎上觀察、發(fā)現(xiàn)、比較,從而得出結論。蘇霍姆林斯基曾說:“在人的心理深處都有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者和探索者。而在兒童的精神世界中,這種需要特別強烈?!苯虒W中,我有意設置這些實際動手操作、共同探討的活動,既滿足了學生的精神需要,又讓學生在濃烈的學習興趣中學到了知識,體驗到了成功的快樂。
二、練習設計層層深入
評價一節(jié)數(shù)學課,最直接有效的方式就是通過練習得到的反饋。而學生之間參差不齊,為了能兼顧全班學生的整體水平,我在練習設計上主要采用了層層深入的原則,先是基礎知識的練習;然后用三角形的知識解決實際問題;最后增加拓展延伸題,讓優(yōu)等生在這個知識點上的學習更進一步。而每一道題都運用了本節(jié)課的知識,每一道題目的呈現(xiàn)方式又都不同。這樣既能讓后進生跟得上,又能讓優(yōu)等生吃得飽,從而讓全班同學共同進步。
但是從教學過程中我也反思了自己的不足之處。沒有及時捕捉學生的智慧。學生在思考“能圍成三角形三條邊的關系”時,其中有一個學生說“我發(fā)現(xiàn)兩條短邊的和比另外一條邊長時,就能圍成三角形?!碑敃r由于我考慮到為后面的“任意”二字做鋪墊,并沒有對學生的這個答案做過多的評價。其實這是判斷三角形三條邊的關系時一種最優(yōu)化的方法。在教學中,我們不能束縛在教材的條條框框中,而忽視了班上少部分同學的靈感和智慧。在課堂中,如果我能及時捕捉這一信息,并因勢利導,我相信本節(jié)課,不僅能找出三角形三條邊的關系,還能找出能否三角形的三條線段的最優(yōu)化方法,一定會為本節(jié)課增色不少。
從練習反饋中發(fā)現(xiàn)學生易錯點,犯錯的原因主要是學生未能認真審題。所以在以后審題教學中重視學抓關鍵詞、培養(yǎng)審題習慣,提高解題效率。
三角形的三邊關系教學設計一等獎篇十一
本節(jié)微課視頻是蘇教版數(shù)學教科書四年級下冊第78~79頁的教學內容。在教學之前,學生已經掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經構成學生進一步學習的認知基礎?!度切蔚膬冉呛汀肥侨切蔚囊粋€重要性質。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經能得出結論:三角形的內角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結論,而是驗證結論的過程。教材組織學生對不同形狀、不同大小的三角形的內角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內角和都是180度”的規(guī)律,從而進一步發(fā)展學生的空間觀念,提高學生的自主學習能力和推理能力。
下面就具體談談微課的教學設計:
一、教學目標
1、通過測量、轉化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內角和是180度”的規(guī)律,并且能利用這一結論解決求三角形中未知角的度數(shù)等實際問題。
2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學生的'聯(lián)想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。
3、使學生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學生積極主動學習數(shù)學的興趣。
二、教學重點和難點
重點:讓學生親自驗證并總結出三角形的內角和是180度的結論
難點:對不同驗證方法的理解和掌握。
三、教學過程
(一)質疑――發(fā)現(xiàn)問題,提出問題
交流:不同三角尺的內角和都是一樣的嗎?三角尺的內角和有什么特征?
引導學生得出三角尺的三個內角的度數(shù)和是180度。
提問:三角尺的形狀是什么三角形?三角尺的內角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內角和是180度。)
你有什么辦法驗證這一結論呢?(動手操作,尋找答案)
方法一:拿出不同的直角三角形,分別測量三個內角的度數(shù),再求和。(提示存在誤差,但三個內角的和都在180度左右)
方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內角和是360度,因此能得出一個直角三角形的三個內角和是180度。
(二)探究――分析問題,解決問題
出示三個三角形:直角三角形、銳角三角形和鈍角三角形。
引導:直角三角形的內角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內角和也有可能是180度。
提問:你有什么辦法來驗證這一猜想呢?
拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。
方法一:可以像上面那樣先測量每個三角形的三個內角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學生測量計算,教師巡視指導。
引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。
方法二:既然是求三角形的內角和,我們就可以想辦法把三角形的3個內角拼在一起,看看拼成了什么角。那怎樣才能把3個內角拼在一起呢?我們可以將三角形中的3個內角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。
方法三:把三角形的三個內角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。
方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內角和是180度進行推理。180+180=360度,360-90-90=180度。
(三)歸納――獲得結論
交流:回顧以上3個三角形的內角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?
總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內角和都是180度這一結論。
(四)拓展――鞏固練習
1、將一個大三角形剪成兩個小三角形,每個小三角形的內角和是多少度?
2、在一個三角形中,根據(jù)兩個內角的度數(shù),求第三個內角的度數(shù)?
三角形的三邊關系教學設計一等獎篇十二
《三角形三邊的關系》是人教版義務教育課程標準實驗教科書《數(shù)學》第八冊第82頁的教學內容,屬于“空間與圖形”的領域。這部分內容是在學生知道了三角形有三條邊、三個角和具有穩(wěn)定性的基礎上探索三角形三邊的關系。大家知道,在平面圖形里,三角形是由3條線段圍成的,但并不意味著任意三條線段都能圍成三角形。所以掌握這部分內容,可以進一步豐富學生對三角形的認識和理解;它既是對所學知識的延續(xù),又是后繼學習多邊形的基礎,在知識體系上具有承上啟下的作用。
幾何初步知識無論是線、面、體還是圖形的特征、性質,對于小學生來說都比較抽象,要解決數(shù)學的抽象性和小學生思維之間的矛盾,就要充分運用直觀性進行教學,讓學生動手做數(shù)學,而不是用耳朵聽數(shù)學,讓學生經歷“數(shù)學化”、“做數(shù)學”等過程,強調在教師的引導作用下,由“獲得知識結論快樂”轉變?yōu)椤疤骄堪l(fā)現(xiàn)知識快樂”,并注重與生活實際緊密聯(lián)系,讓學生獲得良好的數(shù)學教育。依據(jù)新課標的精神、結合學生的知識現(xiàn)狀和年齡特點,以及這一教學內容在教材中所處的地位與作用,我制定了以下教學目標:
(一)教學目標
1、認知目標:通過創(chuàng)設情景、實物操作、觀察比較,發(fā)現(xiàn)三角形任意兩邊之和大于第三邊。
2、能力目標:培養(yǎng)學生自主探究、觀察、比較和概括能力以及小組合作的意識,能根據(jù)三角形三邊關系解釋生活中的現(xiàn)象,提高解決問題的能力。
3、情感目標:結合教學內容,滲透數(shù)學文化、思想、方法的教育。
(二)說教學重難點
探究發(fā)現(xiàn)“三角形任意兩條邊的和大于第三邊”是教學重點,而理解“任意兩邊”是本節(jié)課的教學難點。
接下來說說這節(jié)課的教法與學法
有效的數(shù)學學習活動不是單純的依賴模仿與記憶,而是一個有目的、主動建構知識的過程,動手操作法、觀察發(fā)現(xiàn)法、自主探究法、合作交流法是這一節(jié)課的學習方法。整節(jié)課讓學生體驗“做數(shù)學”的過程。
以下是我的而教學流程。
第一環(huán)節(jié):矛盾沖突。
興趣是最好的老師,上課一開始,我給學生變魔術,用長度分別是15厘米,13厘米10厘米的三根小棒首尾相接圍成三角形,在學生認為我的魔術太簡單而不屑一顧時,我讓一個學生也上來變一個(給表演的學生提供長度是15厘米,9厘米,26厘米的小棒)學生圍不了三角形。我說,他沒能圍出一個三角形,你能嗎?(不能)問題到底出在哪?學生估計會把注意力集中在第三根小棒上,認為第三根小棒太長了,如果是這樣,我就把第三根小棒換成5厘米的,還是圍不了,此時,教師引導學生提出疑問:怎么就圍不起來的呢?看來,看來,三根小棒是否能圍成三角形跟它們的長度有關,這節(jié)課,老師和你們一起來研究三角形三邊的關系。(板書課題)
在教師能變魔術,而學生卻變不成的矛盾沖突中,可能已經有大部分學生開始這節(jié)課的數(shù)學思考了。此處“魔術”的價值不僅僅在于激發(fā)學生學習的興趣,還在于成功地將學生引入到數(shù)學思考之中。
第二環(huán)節(jié):初建模型。
新課標強調要從學生已有的生活經驗出發(fā),讓學生動起來,活起來,讓他們在猜想、質疑、驗證、探究、問題解決等過程中,經歷擺一擺、圍一圍、比一比、想一想、議一議等活動,努力營造協(xié)作互動、大膽表達課堂教學氛圍,將課堂真正還給學生,讓學生在自主活動中得以發(fā)展。
給學生提供研究的材料,(5根小棒,不同顏色長度不同,紅色(2根)3厘米,綠色5厘米,藍色7厘米,黃色8厘米。)并提出操作要求(ppt出示)
(1)從這5根小棒中任意選取3根圍一個三角形;
(2)同桌2人合作,共同擺小棒。
(3)擺完后共同觀察,并把結果記錄在表格中。
(4)音樂響起開始,音樂停止時活動結束。
看哪一組完成最多最好。
這一環(huán)節(jié)是要發(fā)揮每個人的。作用,全員參與,人人有事做,避免小組合作流于形式。
反饋(1)335(2)337
(3)338(4)357
(5)358(6)378
(7)578(ppt出示表格)
觀察:三根小棒在什么情況下能圍城三角形呢?
最后引導歸納:三角形兩條邊的和大于第三條邊(師板書)
隨著教學活動的逐步展開,教師圍繞“核心知識”精心設疑,引導學生操作觀察比較,使學生的思考沿著教學目標不斷深入。
第三個環(huán)節(jié),完善模型。
完善性質:三角形任意兩邊的和大于第三邊
第四環(huán)節(jié):驗證模型。
驗證:讓學生畫出任意三角形,量出三條邊的長短再算一算,三邊之間的關系。
引導學生經歷從特殊到一般的數(shù)學思考過程,讓學生猜想,發(fā)現(xiàn),歸納,驗證,尋找反例等數(shù)學活動中思考、辨析、釋疑、概括、推理,有效滲透從特殊到一般的數(shù)學思想,為學生構建了一種結構嚴謹、邏輯嚴密的數(shù)學思維模式。
第五環(huán)節(jié):應用模型。
判斷下面的小棒能否圍成三角形
(1)2厘米3厘米8厘米
(2)4厘米7厘米8厘米()
(3)6厘米5厘米8厘米()
(4)5厘米14厘米9厘米()
(5)5厘米9厘米13厘米()
第六環(huán)節(jié):優(yōu)化模型、并體會極限思想。
——優(yōu)化
有的學生很快做出判斷,他們有什么訣竅?
——極限思想
讓學生重點觀察(4)中的數(shù)據(jù)
提問:5厘米和9厘米能與多長的小棒圍成三角形?
學生思考:第三邊不比4厘米短,不能超過14厘米(課件演示)
這一環(huán)節(jié)是通過直觀操作讓學生感悟數(shù)學的極限思想,讓學生感受當兩邊的長度是5厘米和9厘米時,第三邊的長度在4與14厘米之間,感受當?shù)谌呑兂?厘米或14厘米時,三角形便不存在,將成為一條直線,感受量變到質變的過程,充滿理性的思考的數(shù)學課堂才是真正扎實有效甚至高效的數(shù)學課堂。
第七個環(huán)節(jié)、走進生活
老師要去小雨家家訪,走哪條路近?請你用今天學習的知識來解釋
《三角形三邊關系》說課
走小路近(讓學生說明理由)
(ppt顯示草坪)
還走這條路嗎?
這一環(huán)節(jié)的設計不僅使學生深化了對三角形三邊關系的理解,還讓學生感知作為人還應該有一份社會責任,有一份人文情懷,彰顯數(shù)學的大教育觀。)
第八個環(huán)節(jié):課后延伸。
播放《將軍飲馬》的故事(課件呈現(xiàn)圖)
板書設計力求做到重點突出,一目了然。
縱觀本節(jié)課,體驗是學生學習的前提,是學生學習數(shù)學的本職與要求,可以說,沒有體驗就沒有真正意義上的學習,慢慢跟著學生的腳步,讓學經歷的探索過程,在這一過程中,學生參與、經歷、思考、反思、發(fā)展,作為教者,我們一路傾聽花開的聲音。
三角形的三邊關系教學設計一等獎篇一
探索三角形內角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。
教學目標:
1、通過測量、撕拼、折疊等探索活動,使學生發(fā)現(xiàn)三角形內角和的度數(shù)是180?
2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
3、培養(yǎng)學生動手實踐,動腦思考的習慣。
教學重點:
了解三角形三個內角的度數(shù)。
教學難點:
理解三角形三個內角大小的關系。
教具學具準備:
課件三角形若干量角器剪刀。
教材與學生
教材創(chuàng)設了一個有趣的問題情境,通過對大小兩個三角形內角和的大小比較來激發(fā)學生探索的興趣。教材為了得到三角形內角和是180的結論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。
學生在已有的會用量角器來度量一個角的度數(shù)的基礎上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結論。
教學過程:
一、呈現(xiàn)真實狀態(tài)。
學生各抒己見。
二、提出問題:
師;剛才我們觀察三角形哪個內角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。
(1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內角和度數(shù),并做好記錄,記錄每個內角的度數(shù)。
(2)組內交流。
(3)全班交流。由小組匯報測出結果(三角形內角和)
(4)師小結:我們通過測量發(fā)現(xiàn),每個三角形的內角和測出結果接近180。
三。自主探索、研究問題、歸納總結:
師引導提問:三角形的內角和會不會就是180呢?
(一)組內探索:
(1)以小組為單位探索更好的辦法。
(2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結果。
(有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發(fā)現(xiàn)結果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學生學習到良好的學習方法)
(3)把你沒有想到的方法動手做一次
(使學生更直觀地理解三角形的內角和是180的證明過程)
(4)根據(jù)學生的反饋情況教師進行操作演示。
(二)教師演示
撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示
2.師:這三個內角放在一起你有什么發(fā)現(xiàn)?
生:發(fā)現(xiàn)三個內角拼成一個平角。
師:平角是多少度呢?說明什么?
生:180?說明三個內角和剛好等于180。
師:這種方法是不是適用各種三角形呢?
進行實驗后,結果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內角和是180。
折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內角剛好拼成一個平角,進一步說明三個內角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。
你們也來試一試好嗎?
在學生完成這一實踐后肯定這一發(fā)現(xiàn)
三角形三個內角和等于180?
四。鞏固練習,知識升華。
1.完成課本第28頁的“試一試”第三題。
2.想一想:鈍角三角形最多有幾個鈍角?為什么?
銳角三角形中的兩個內角和能小于90嗎?
3.有一個四邊形,你能不用量角器而算出它的四個內角和嗎?
試一試,看誰算得快。
師:誰來說說自己的計算過程?
生:它們的內角和都是180度。
[回答可能有二]:
(一種全部說是:)
師:請問,你們是怎么想的,為什么這么認為?
生:……
師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧!(師在課題“內角和”下面劃上橫線,打上問號)
(一種有一部分同學說是,有一部分同學說不是:)
師:看來,大家的意見不一致,想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內角和的秘密吧?。◣熢谡n題“內角和”下面劃上橫線,打上問號)
(二)動手操作,探究新知
師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?
生:我準備用量的方法。
師:然后呢?
生:然后把它們三個內角的度數(shù)相加起來,就知道了三角形的內角和是多少?
師:說的真不錯,還有沒有其它的方法?
生:我是把三角形的三個角剪下來,拼在一起(師鼓勵:你的想法很有創(chuàng)意,等一會兒用你的行動來驗證你的猜想吧!)
生:……
(如生一時想不到,師可引導:他是把三個內角的度數(shù)相加在一起,我們能不能想辦法把三個內角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)
師:好啦,老師相信咱們班的同學個個都是小數(shù)學家,一定能找出更多的方法的,請你們在研究之前,也像老師一樣,在三個內角上編上序號,角一、角二、角三,現(xiàn)在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!
開始吧?。▽W生研究,師巡回指導)預設時間:5分鐘
師:老師看各小組已經研究好了,哪位同學愿意上來交流一下?
師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結果?
(預設:如果第一類同學說的是量的方法)
師:你是用什么來研究的?
生:量角器。
師:那請你說一下你度量的結果好嗎?
(生匯報度量結果)
生:180度。
師:那到底三角形的內角和是不是180度呢?還有哪位同學有其它的方法進行驗證嗎?
生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們三個角組成的度數(shù)。
師:他演示的真好,你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點擊flash:把三角形按照三個內角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調個頭,插在角一角二的中間,這樣它們三個內角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)
生:我們還用了折的方法(生介紹方法)
師:你們聽明白了嗎?李老師把他的過程給大家在大屏幕上演示一下。
(師邊講解邊點擊flash:先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向對邊對折,再把角二向里對折,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們三個內角就形成了一個大角,這個大角是個什么角呢?)
生:是個平角。180度。
師:請這位同學來說給大家聽聽吧!
生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內角和是360度,那么一個三角形的內角和就是180度。
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內角和也將是180度。
生:三角形的內角和是180度。(師板書)
師:把你們偉大的發(fā)現(xiàn)讀一讀吧!
(三)拓展應用,深化認識
師:請看老師手上的這兩個三角形,左邊這個內角和是多少度?(生:180度)右邊呢(生:也是180度)
師:現(xiàn)在老師把它們拼在一起,這個大三角形的內角和又是多少度呢?
(生答后師引導歸納得出:三角形的內角和與形狀大小無關,組成的大三角形的內角和依然是180度。)
師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧?。ǔ鍪菊n件,課件內容:一個大一些的直角三角形說:“我的個頭比你大,我的內角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)
師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!
師:好,請看大屏幕!
(出示基礎練習)在一個三角形中角一是140度,角三是25度,求角二的度數(shù)。
生答后,師提問:你是怎樣想的?
生陳述后,師鼓勵:說的真好!
出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。
師:同學們,今天我們一起學習了三角形的內角和,你有哪些收獲呢?
師:嗯,真不錯,你們知道嗎?三角形的內角和等于180度是法國著名的數(shù)學家帕斯卡在1635年他12歲時獨自發(fā)現(xiàn)的,今天憑著同學們的聰明智慧也研究出了三角形的內角和是180度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!
師:好,下課!同學們再見!
三角形的三邊關系教學設計一等獎篇二
教學目標
(一)知識與技能:掌握“三角形內角和定理”的證明及其簡單應用,讓學生探索發(fā)現(xiàn)三角形的內角和是180。
(二)過程與方法:通過量算、撕拼、折拼等活動培養(yǎng)學生觀察、操作、探究、歸納、概括、反思等能力和初步的空間想象力,感受數(shù)學的轉化思想;發(fā)展學生的空間觀念和初步的邏輯思維能力;能運用所學知識解決簡單的問題,訓練學生對所學知識的運用能力。
(三)情感態(tài)度與價值觀:
1、滲透轉化遷移思想,培養(yǎng)學生大膽質疑的勇氣和嚴謹科學的精神,及與他人合作交流的意識。
2、讓學生切實感受到從實驗中得到的現(xiàn)象,經過簡單的推理證明以后可以成為我們的一般公理,初步感受從個別到一般的思維過程。
教學重點:
讓學生經歷“三角形內角和是180度”這一知識的形成、發(fā)展和應用的全過程;知道三角形的內角和是180度并且能應用。
教學難點:
三角形內角和是180度的探索和驗證過程。
教學過程:
一、激趣引入
1、畫三角形
2、畫有兩個直角的三角形
3、認識三角形的內角,猜測內角和。
二、探究新知
(一)研究特殊三角形的內角和(三角尺)
60°+30°+90°=180°
45°+45°+90°=180°
(二)操作、驗證完成一般三角形的內角和是180度的.證明。
1、小組合作完成
2、匯報
第一種:通過度量完成。
第二種:通過撕拼或者折拼完成。
第三類:通過長方形推算得出。
其他類。
3、小結:
(課件演示)剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出,無論是什么樣的三角形的內角和都是180°,你們真不錯,讓我們帶著自豪的語氣大聲地讀出“三角形的內角和是180°”
4、知識升華:
大小不一的三角形的內角和各是多少?
一個三角形分成兩個三角形,他們的內角和各是多少?
三、實踐檢驗
2、老師不小心把墨水倒在了三角形上,你知道它的度數(shù)嗎?
3、數(shù)學日記。
四、評價樹
你對自己的評價。
結束語:
三角形是一棵大樹,內家和只是它的一片葉子;
數(shù)學是一棵大樹,三角形只是它的一片葉子;
生活是一棵大樹,數(shù)學只是它的一片葉子,
讓我們欣賞著、享受著三角形為生活添得美!
三角形的三邊關系教學設計一等獎篇三
學生:想!
師:下面請同學們分小組開始活動。
(學生分小組活動)
師:每個小組利用桌上的六根木條共搭建了幾個三角形?
學生:我們搭建了一個三角形。
師:剩下的三根木條能搭建成一個三角形嗎?
學生:不能。
師:你們知道剩下的三根木條為什么不能搭建成一個三角形嗎?你發(fā)現(xiàn)了什么?
學生1:我發(fā)現(xiàn)剩下的三根木條怎么連也連不到一起。
學生2:我們也是這樣的。
學生1:我們將較短的兩根木條連接在一起與最長的一根木條相比較,發(fā)現(xiàn)較短的兩根木條和起來還沒有另外一根木條長。
學生2:我們把較短的兩根木條連接在一起與最長的一根木條相比較,發(fā)現(xiàn)較短的兩根木條和起來不是沒有另外一根木條長,而是同另外一根一樣長。
學生3:我們發(fā)現(xiàn)的結論與學生(1)相同,我們是通過用直尺分別度量這三根木條的長度,再計算、比較后發(fā)現(xiàn)的。
學生4:我們發(fā)現(xiàn)的結論與學生(2)相同,我們也是通過用直尺分別度量這三根木條的長度,再計算、比較后發(fā)現(xiàn)的。
(學生活動后匯報)
學生1:我發(fā)現(xiàn)較短的兩條邊加起來比最長的一條邊長,同剛才的結論正好相反。
學生2:我發(fā)現(xiàn)我這個三角形的任意兩邊加起來的和都比第三邊長。
學生3:我的發(fā)現(xiàn)同學生(2)一樣,也是這個三角形的任意兩邊加起來的和都比第三邊長。
學生4:“任意兩邊”是什么意思?我不太懂。
學生5:“任意兩邊”就是指三角形三邊中的每兩條邊加起來的`長度都比剩下來的第三條邊的長度長。
學生4:原來是這樣的。
(學生都有同感)
學生6:也就是說,任意一個三角形,它的三條邊都存在這樣一個特征:三角形的任意兩邊之和都大于第三邊。
學生7:我想應該是這樣的吧。因為我們的三角形不一樣,但我們得到的結論都是一樣的。
學生8:我看到書上也有同樣的結論。
(學生都翻書看)
[反思]:蘇霍姆林斯基曾說:“在人的心理深處都有一種根深蒂固的需要,這就是希望自己是一個開拓者、研究者和探索者。而在兒童的精神世界中,這種需要特別強烈?!苯虒W中,教師有意設置這些動手操作,共同探討的活動,既滿足了學生的這種需要,由讓學生在高昂的學習興趣中學到了知識,體驗到了成功。
[片斷二]:及時練習,形成能力
學生:能!
師:請同學們翻書到第86頁,自己獨立做第4題。
(學生做完后匯報展示,并說明判斷的方法)
學生1:(1)、(2)、(4)這三組中的線段能拼成一個三角形,(3)中的線段不能拼成一個三角形,我是把每組中的三條線段兩兩相加,再與剩下的第三條線段相比較,其中(1)、(2)、(4)這三組中的線段每兩條線段之和都大于第三條線段,所以它們能拼成一個三角形,而(3)中2+2〈6,所以這組中的三條線段不能拼成一個三角形。
學生2:我的結論同學生(1)一樣,但我的判斷方法與他不同,我是先找出較短的兩條邊,比較它們的和與剩下的第三條邊的大小,如果和大一些,則能拼成三角形,如果和小一些,則不能拼成三角形。
學生3:學生(2)的方法只是一種巧合,他沒有判斷任意兩邊之和大于第三邊,所以這種方法不行。
(學生對學生(2)的方法產生了爭論,學生討論一會兒后)
學生4:學生(2)的方法是對的,因為較短的兩條邊之和如果大于第三條邊,則說明任意一條較短的邊與最長的一邊之和肯定大于第三條邊,這也就更進一步說明這個三角形的任意兩邊之和大于第三邊。
學生5:看來在判斷某三條邊能否拼成一個三角形時,用學生(2)的方法既快又對。
[反思]:課堂練習的目的是為了讓學生及時掌握知識,形成能力。教學中老師充分注意到了這一點,即讓學生用所學內容來說明為什么這一環(huán)節(jié)。同時我們也欣喜地發(fā)現(xiàn),通過練習,學生還在原來所學內容的基礎上,對原知識又有發(fā)展,找到了最佳的判斷方法。學生的能力不可限量啊!
[片斷三]:結合實際,學會運用
學生:他會走中間這條路。
師:你們是怎樣判斷的?
學生1:因為中間這條路是直的,其它的路是彎的,所以中間這條路最短。
學生2:如果小明走通過郵局到學校這條路上學,小明家、郵局、學校則構成一個三角形,由三角形的三邊關系可以知道,小明家到郵局,郵局到學校這兩條邊之和一定大于第三邊,即中間這條路,所以中間這條路最短。
學生:線段最短。
[反思]:教材是學習的載體,教學中教師應充分發(fā)揮教材的育人作用,挖掘教材的教育功能,而不要把教材撇開一邊。從上面可以看出,這副圖既能讓學生領悟知識與實際的結合,又能從中學到另外的知識,可謂一舉多得。
[片斷四]:拓展延伸,豐富充實
師:通過上面的學習,老師欣喜地發(fā)現(xiàn)同學們不僅能自主、能動地學習新知,而且能將所學的知識用于解決實際問題之中。下面老師這兒有幾道題不知怎樣解答,誰能幫一幫老師?(電腦出示題目)
學生1:長度分別是3cm、5cm的兩條線段中任意一條線段能與a、b組成一個三角形,因為3+2.53.5,2.5+3.55。
學生2:長度分別是1cm、6cm、9cm的三條線段中任意一條線段不能與a、b組成一個三角形,因為1+2.5=3.5;2.5+3.5=6;2.5+3.59。
學生1:我用長度為2cm、6cm、6cm三條線段能拼成一個三角形,這個三角形有兩條邊的長度相等。
學生2:我用長度為6cm、6cm、6cm三條線段能拼成一個三角形,這個三角形三條邊的長度都相等。
學生3:我用長度為2cm、2cm、6cm三條線段不能拼成一個三角形,因為2+26,所以他們不能拼成三角形。
師:剛才學生1、學生2所說的三角形是兩種較特殊的三角形,這些三角形我們將在下次課中學習研究。
題目三:用15根等長的火柴棒擺成的三角形中,最長邊最多可以由幾根火柴棒組成?
學生1:我想最多可以由9根火柴棒組成。
學生2:我覺得最多可以由8根火柴棒組成。
師:同學們敢于大膽猜想,勇于發(fā)表自己的意見,這很好。不過同學們如果能通過實踐,講究事實依據(jù),用理由來說服人那就更好了!
(學生分小組討論、拼擺)
學生1:我們通過實踐知道,最長邊最多可以由7根火柴棒組成。
學生2:我們通過討論知道,最長邊最多可以由7根火柴棒組成。此時另外兩條較短的兩條邊的和為8,大于最長邊7,根據(jù)三角形三邊的關系可知,此時能拼成三角形,且最長邊由7根火柴棒組成,為最多。
師:同學們今天表現(xiàn)非常棒,不僅能猜想,而且能通過實踐,利用所學知識解決實際問題,老師為你們驕傲,我相信,只要同學們一如既往,燦爛的明天一定會與你擁抱。
[反思]:數(shù)學教師的課堂教學應該是敢于放手,盡可能多地給學生創(chuàng)造展示自己的思維空間和時間,如此定會別有洞天。
[點評與拓展]:良好的教育一定要致力于學生用自己的眼睛去觀察,用自己的心靈去感悟,用自己的頭腦去判別,用自己的語言去表達,要能使一個人成為真正的人,成為他自己,成為一個不可替代的大寫的“人”。本節(jié)課,授課教師在教學中充分體現(xiàn)了這一觀點。先是設計了“拼三角形”這一環(huán)節(jié),讓學生在動手操作中用自己的眼睛去觀察,接著設計匯報展示這一環(huán)節(jié),讓學生用自己的語言去表達,在聽別的同學匯報時,讓學生用自己的頭腦去判別,用自己的心靈去感悟。在后面的教學中,該教師繼續(xù)抓住這一教育思想對學生施教,讓學生在學習中感受到了生命的存在與價值,體驗到了自己主動建構知識的快樂,取得了滿意的教育效果。
三角形的三邊關系教學設計一等獎篇四
1.理解用一元一次方程解工程問題的本質規(guī)律;通過對“工程問題”的分析進一步培養(yǎng)學生用代數(shù)方法解決實際問題的能力。
2.理解和掌握基本的數(shù)學知識、技能、數(shù)學思想方法,獲得廣泛的數(shù)學活動經驗,提高解決問題的能力。
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
1.一件工作,如果甲單獨做2小時完成,那么甲獨做i小時完成全
部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
閱讀教科書第18頁中的問題6。
分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么?已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
師傅完成的工作量為=,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現(xiàn)
由甲獨做10小時;
請你提出問題,并加以解答。
例如(1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
1.本節(jié)課主要分析了工作問題中工作量、工作效率和工作時間之
間的關系,即工作量=工作效率×工作時間
工作效率=工作時間=
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
教科書習題6.3.3第1、2題。
三角形的三邊關系教學設計一等獎篇五
北師大版小學數(shù)學四年級下冊《三角形三條邊之間的關系》
1、通過量一量、擺一擺、算一算等實驗活動,探索并發(fā)現(xiàn)三角形任意兩邊之和大于第三邊,并應用這關系解釋一些生活現(xiàn)象,解決一些簡單的生活問題。
2、在實驗過程中培養(yǎng)學生的猜想意識、自主探索、合作交流的能力。
探索并發(fā)現(xiàn)三角形任意兩邊之和大于第三邊。
學生、老師各準備幾個長短不等的小棒、直尺、探究報告單。
一、擺一擺,激發(fā)探究欲望
師:前一節(jié)課我們學習了三角形,給你三根小棒,誰能到黑板上圍成一個三角形?
(指兩名同學到黑板上來。提供的小棒一組能擺成三角形,另一組擺不成三角形。)
在學生擺不出來時,引導學生發(fā)現(xiàn)不是任意三根小棒都能擺出三角形來。
師:若想再擺個三角形,你有解決的辦法嗎?
看來,要想擺成一個三角形,對三條邊的長度是有要求的。這節(jié)課我們就來研究三角形邊的關系。(板書課題)
師:誰來猜一猜,這三條邊究竟有什么樣的關系呢?
師:你的猜想是否正確呢,我們還是用實驗來驗證吧。
[反思]這個環(huán)節(jié),我首先讓學生圍三角形,第一名學生不費吹灰之力很順利地圍成了三角形,第二名學生怎么也圍不成。這樣使學生在具體的操作過程中產生思維沖突,從而提出“數(shù)學問題”,有效地激發(fā)了學生的探究欲望。課一開始,就牢牢的抓住了學生的心,讓學生饒有興趣的投入到下一輪的學習中去。
二、操作驗證,揭示三邊關系
(一)分組研究,四人小組長拿出準備好的四組小棒。
出示實驗要求:
1、量出每組小棒的長度。
2、將三根小棒首尾相接,看是否能圍成三角形。
3、把任意兩條邊的長度加起來,再與第三邊進行比較。(用式子表示)
4、小組討論,你發(fā)現(xiàn)了什么?將實驗結果填寫在探究報告單上。
(二)小組匯報交流實驗結果
結論:三角形任意兩邊的和大于第三邊。(引導學生理解“任意”的意思)
再用這個結論解釋實驗中圍不成三角形的原因。
[反思]:蘇霍姆林斯基曾說:“在人的心理深處都有一種根深蒂固的需要,這就是希望自己是一個開拓者、研究者和探索者。而在兒童的精神世界中,這種需要特別強烈?!苯虒W中,我有意設置這些動手操作,共同探討的活動,既滿足了學生的這種需要,由讓學生在高昂的學習興趣中學到了知識,體驗到了成功。
三、應用與拓展
1、判斷下面幾組線段能否圍成三角形,為什么?
(引導學生理解快速判斷的方法)
(1)1厘米、3厘米、5厘米
(2)3厘米、5厘米、2厘米
(3)11厘米、6厘米、7厘米
[反思]:課堂練習的目的是為了讓學生及時掌握知識,形成能力。教學中我充分注意到了這一點,即讓學生用所學內容來說明為什么這一環(huán)節(jié)。同時我們引導學生發(fā)現(xiàn),快速判斷的方法,使學生在原來所學內容的基礎上,對原知識又有發(fā)展,找到了最佳的判斷方法。
2、小華上學走哪條路近?為什么?(引導學生從多角度解釋)
書店
學校
小華家
[反思]:教材是學習的載體,我充分挖掘教材知識之間的聯(lián)系,。這副情境圖既能靠直覺來判斷,又能用三角形三條邊的關系來解釋,還可以用“連接兩點的線中,線段最短”來解釋。這樣既拓展了學生思維的空間,感受到解決問題方法多樣性,又領悟到知識與實際的結合,從而使學生認識到生活中處處有數(shù)學。
3、一個三角形,其中兩條邊長是4厘米和6厘米,第三條邊長是多少厘米?
(引導學生探究第三邊的取值范圍)
[反思]:此題設計目的是引導學生發(fā)現(xiàn)三角形第三邊的取值范圍是大于另兩邊的差,小于另兩邊的和。教學中開始學生逐漸答出了3厘米、4厘米、5厘米、6厘米、7厘米、8厘米、9厘米,接著就沉默了,我就提出了9.2厘米行不行?學生略一思考得出結論:行。于是他們的思維又活躍起來,9.6厘米、9.9厘米……當學生發(fā)現(xiàn)小數(shù)部分是無限的時,得出結論第三邊小于10厘米大于3厘米就可以,于是我又提出問題:現(xiàn)在同學們找到的最小答案是3厘米,2.5厘米行不行?學生經過思考得出答案:第三邊要小于10而大于2。由于時間關系,當時我有些著急,直接將我想要學生了解的“第三邊的取值范圍要大于另兩邊的差,小于另兩邊的和”這個結論直接說了出來,結果效果并不是太好。不如讓學生自己課下探究“三角形兩邊之差與第三邊的關系”更好。雖然此處處理并不是很恰當,但在這道題中師生、生生之間思維的碰撞,激發(fā)了學生探究的意識,培養(yǎng)了學生的質疑探究的能力。
4、兒童樂園要建一個涼亭,亭子上部是三角形木架,現(xiàn)在已經準備了兩根3米長的木料,假如你是設計師第三根木料會準備多長?并說明理由。
(引導學生實際生活中要講究美觀、實用)
[反思]此題是上一道題的延伸,是培養(yǎng)學生應用數(shù)學知識合理解決生活問題的能力。
5、用15根等長的火柴棒擺成的三角形中,最長邊最多可以由幾根火柴棒組成?
[反思]這是一道要同學動手探究的問題,作為家庭作業(yè)學生更愿意做這樣的題。
三角形的三邊關系教學設計一等獎篇六
教學內容:
教材第67頁例6、“做一做”及教材第69頁練習十六第1~3題。
教學目標:
1、通過動手操作,使學生理解并掌握三角形的內角和是180°的結論。
2、能運用三角形的內角和是180°這一結論,求三角形中未知角的度數(shù)。
3、培養(yǎng)學生動手動腦及分析推理能力。
重點難點:
掌握三角形的內角和是180°。
教學準備:
三角形卡片、量角器、直尺。
導學過程
一、復習
1、什么是平角?平角是多少度?
2、計算角的度數(shù)。
3、回憶三角形的相關知識。(出示直角三角形、銳角三角形、鈍角三角形)
二、新知
(設計意圖:讓學生經歷質疑驗證結論這樣的思維過程,真正整體感知三角形內角和的知識,真正驗證了“實踐出真知”的道理,這樣的教學,將三角形內角和置于平面圖形內角和的大背景中,拓展了三角形內角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學生的綜合素養(yǎng))
1、讀學卡的學習目標、任務目標,做到心里有數(shù)。
2、揭題:課件演示什么是三角形的內角和。
3、猜想:三角形的內角和是多少度。
4、驗證:
(1)初證:用一副三角板說明直角三角形的內角和是180°。
(2)質疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再證:請按學卡提示,拿出學具,選擇自己喜歡的方式驗證三角形的內角和是180°(師巡視)
(4)匯報結論(清楚明白的給小組加優(yōu)秀10分)
5、結論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內角和是多少?說明三角形無論大小它的內角和都是180°(課件演示)
7、看微課感知“偉大的發(fā)現(xiàn)”(設計意圖:讓學生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)
三、知識運用(課件出示練習題,生解答)
1、填空
(1)一個三角形,它的兩個內角度數(shù)之和是110,第三個內角是、
(2)一個直角三角形的一個銳角是50,則另一個銳角是()。
(3)等邊三角形的3個內角都是()。
(4)一個等腰三角形,它的一個底角是50,那么它的頂角是()。
(5)一個等腰三角形的頂角是60,這個三角形也是()三角形。
2、判斷
(1)一個三角形中最多有兩個直角。()
(2)銳角三角形任意兩個內角的和大于90。()
(3)有一個角是60的等腰三角形不一定是等邊三角形。()
(4)三角形任意兩個內角的和都大于第三個內角。()
(5)直角三角形中的兩個銳角的和等于90。()
四、拓展探究
根據(jù)所學的知識,你能想辦法求出四邊形、五邊形的內角和嗎?
1、小組討論。2、匯報結果。3、課件提示幫助理解。
五、自我評價根據(jù)學卡要求給自己評出“優(yōu)”“良好”“合格”。
三角形的三邊關系教學設計一等獎篇七
教學內容:
教學目標:
1、探究、發(fā)現(xiàn)三角形任意兩邊的和大于第三邊,初步理解三角形三邊的關系。
2、經歷操作、發(fā)現(xiàn)、應用的過程,滲透數(shù)學思想與方法,積累數(shù)學活動經驗,培養(yǎng)自主探究、合作交流的能力。
3、激發(fā)學生探究愿望和興趣,培養(yǎng)參與數(shù)學活動的積極性和嚴謹?shù)目茖W態(tài)度。
教學重點:探究、發(fā)現(xiàn)三角形任意兩邊的和大于第三邊。
教學難點:應用數(shù)據(jù)發(fā)現(xiàn)三角形三邊的關系,理解“任意”的含義。
教學設計思路:這節(jié)課,精心設計了一系列的數(shù)學活動,讓學生“在參與中體驗,在活動中發(fā)展”。課堂上,學生通過自主操作、自主估猜、自主探究、自主遷移,深入認識三角形。通過課上師生之間、生生之間充分交流合作,學生自然、自主、自由地發(fā)展。
教學過程:
1、 出示各種三角形。(這些是什么圖形,什么是三角形?)
2、 出示三根紙條紅、藍、黑。
師:我們把這三根紙條看成三條線段,你能把它圍成三角形嗎?
生代表上來圍。師:你們覺得他圍得怎么樣?生補充圍。我真佩服你的細心。紙條要頂點對著頂點,首尾相連,這樣才能真正用上了這三根紙條的長度。
3、圍三角形比賽,(看來同學們都會圍了,現(xiàn)在我們來進行一場比賽吧。從信封拿出紙條1號袋紅3cm,藍6cm,黑11cm。2號袋紅3cm,藍6cm,黑5cm。
4、討論
為什么有些能圍成有些圍不成,板書(圍不成) (圍成)它可能跟什么有關系呢?我們來猜想一下,你說:
生1:可能跟邊有關。
生2:跟邊的長短有關系。
師:那么三角形三邊長短之間到底有怎樣的關系呢?這就是這節(jié)課我們要探究的課題:出示課題《三角形三邊的關系》。
1、動手操作:
生:11厘米太長了,那兩根太短了。
師:上面這兩根和下面這根比,你發(fā)現(xiàn)了什么?
生:我發(fā)現(xiàn)兩根小棒之和小于第三根。
師:從你的回答,我聽到了智慧的聲音,以前我們總是考慮一根和另一根去比長,而現(xiàn)在卻考慮用兩根的和去與第三根進行比較,真了不起!
能不能用一個算式來表示呢?
生;3+6﹤11。
生:兩邊的和大于第三邊。
生:兩邊的和等于第三邊。
(過渡)同學們有不同的猜想,生活當中許多重大發(fā)現(xiàn)都從猜想開始,但是光猜還不行,我們還得從實踐中加以驗證,接下來我們從探究驗證我們的想法,我們把3cm和6cm兩邊的和不變縮短黑邊的長度,為了便于研究,我們移到整厘米,注意刻度線對刻度線。一邊圍一邊想,這兩個結論是否正確,找到規(guī)律就可以不用每個刻度都要試,即動手又動腦,才是高效的探究。現(xiàn)在小組一起,可分工不同移動的刻度,要有一個同學作記錄。(活動教師巡視指導)
2、匯報交流
教師:下面請同學們來匯報一下你的操作結果。
請不同的學生匯報,教師在課件中輸入數(shù)據(jù)和結果。
師:長度是9厘米時,有爭議,圖形有些特殊我們重點研究它,請不能圍成的同學上來說說不能圍成的原因。
生:只要將紙條3cm或6cm稍微抬高一些,紙條3cm和6cm就不能首尾相連了。師:利用課件演示。問能圍成的同學此刻的想法。(善于思考能接納同學的建議很會學習)
生:兩邊之和大于第三邊時能圍成,用3cm、6cm和7cm展示。
師:這個猜想對不對呢?這需要進行驗證,看看這些能圍成三角形的邊是不是具備這樣的關系?3+6﹥7還有誰也得出這樣的結論?指名說。
生:用3cm、6cm、11cm不能圍成三角形,它也有兩條邊的和大于第三邊板書(3+11﹥6)
師:那這個結論正不正確,除了這兩個算式還能寫出第三個算試嗎?
生:6+11﹥3 圍成的呢,3+7﹥6 7+6﹥3。
師:還有別的算式嗎?(沒有)在圍成三角形當中每兩邊的和都大于第三邊,而不能圍成的只有兩組兩邊的和大于第三邊。在數(shù)學中,每兩邊的和都大于第三邊的,叫做任意兩邊的和大于第三邊(板書)
師:什么叫任意?
師:在判斷能不能圍成三角形的時候有沒有更簡單的方法?是不是每次都要計算三組啊?在小組內想一想,說一說;引導學生發(fā)現(xiàn),因為較小的兩邊的和都大于最長的邊了,那么用最長的邊加一條較短的邊,就一定大于另一條短邊了,所以呢?只要把較小的兩條邊,加起來與第三邊進行判斷,就可以了。
三角形的三邊關系教學設計一等獎篇八
《三角形三邊關系》教學內容:“三角形任意兩邊長度之和大于第三邊”是三角形的重要性質。了解這一知識,不僅可以更好地理解和掌握三角形的特征,而且可以利用它解決很多日常生活問題。
特級教師吳正憲提出,要讓學生享受既有“營養(yǎng)”又“好吃”的數(shù)學學習,單調的練習題如何烹飪成適合學生的美味?教學三角形三邊關系,以前的我選擇是給3根小棒讓學生來探究。而這一次我選擇了給他們一張普普通通的紙條,需要學生忽視其寬度,重視其長度,把它“想成”只有長度的線段。這就有了“數(shù)學化”的味道。變”學數(shù)學“為”做數(shù)學“。讓學生在自主探索中總結得到三角形的三邊關系。讓學生能夠接受學習內容,提高學習興趣。使學生在課堂上樂于學數(shù)學、做數(shù)學、用數(shù)學。除此之外我還采用了創(chuàng)設實驗情境――動手操作――合作探究――揭示規(guī)律――畫圖驗證這種探究方法來完成本節(jié)課,目的是讓學生體會理論和實踐相結合才是嚴密的論證方法。
課堂及時捕捉學生思維的成果。當學生用紙條擺出結果后,我用手機照相功能把學生的作品保存下來,投放到課件之中,學生的學習興趣一下高漲起來,把他們不同的成果進行展示,并且進行比較分析,得到了良好的效果。
巧設練習,促進思維的發(fā)展,體驗數(shù)學的意義和價值。在練習中設計了幾組線段,讓學生判斷能否圍成三角形,分析這幾組數(shù)據(jù),得出只要比較較短的兩條線段之和是否大于第三條邊就可以判斷能否圍成三角形了。并根據(jù)這一發(fā)現(xiàn)解決四組線段能否圍成三角形的問題。這一過程使學生鞏固了基本的知識點,強化教學重點和難點,提高學生對組成三角形的規(guī)律的認識,掌握更好的判斷方法――較小兩條線段之和大于第三條線段,便可構成三角形。
三角形的三邊關系教學設計一等獎篇九
通過《三角形的三邊關系》的教材學習,我對此總結出以下幾點:
(1)學生的獨立思考與合作交流結合在一起。
在組織活動之前,我提出問題“如何圍成一個三角形"讓學生有了自己的認識后,在小組合作解決,最后全班共同交流看法,使學生學會了怎樣去解決問題,并在這一過程中學會了怎樣表達于怎樣傾聽。
(2)在實際應用方面,提供空間讓學生發(fā)揮自己的方法解決問題,并對他提供展示的機會,由于學生的思考角度不同,解決問題的方法也是多樣化的,讓學生通過思考交流,比較各自方法的特點,選擇一種適合自己的方法,去解決問題。
(3)用學生喜歡的游戲作練習,吸引學生的興趣,在快樂的氛圍中學到了知識。體驗學習數(shù)學的挑戰(zhàn)性和數(shù)學結果的確定性。
整個教學過程某些環(huán)節(jié)確實需要進一步的改進于思考。如:
(1)讓學生在自主計算、親身比較的過程中,感受銳角三角形兩遍之和大于第三邊在這個環(huán)節(jié)我下的力度有一點大,使課堂有一點延時。
(2)有的學生對給出的小棒沒能充分運用,說明孩子們在解決問題時有時思考是不靈活的。在平日的教學中我們就要多鼓勵學生發(fā)表自己的意見,不規(guī)定固定的模式。
本節(jié)課的小組合作我用了兩次,卻都能切實體現(xiàn)到小組合作的實效性。新授課中的小組合作“擺三角形”,學生分工明確,參與性強,而練習中的小組合作卻能集眾人智慧,全面考慮,在有限的時間內完成學習任務。
三角形的三邊關系教學設計一等獎篇十
本節(jié)課的一個突出特點就在于學生的實際動手操作上,具體體現(xiàn)在以下兩個環(huán)節(jié):一是導入部分:學生從5根小棒中任意拿出3根,擺一擺,可能出現(xiàn)什么情況?結果有的學生擺成了三角形,而有的學生沒有擺成三角形,此時,老師接過話題:能否擺成三角形估計與三角形的“邊的長度”有關系,它們之間有著怎樣的關系呢?今天我們就一起來研究這個問題。這樣很自然地就導入了新課,為后面的新課做了鋪墊。二是新授部分:學生用手中的小棒按老師的要求來擺三角形,并且做好記錄。這個過程必須得每個學生親自動手,在此基礎上觀察、發(fā)現(xiàn)、比較,從而得出結論。蘇霍姆林斯基曾說:“在人的心理深處都有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者和探索者。而在兒童的精神世界中,這種需要特別強烈?!苯虒W中,我有意設置這些實際動手操作、共同探討的活動,既滿足了學生的精神需要,又讓學生在濃烈的學習興趣中學到了知識,體驗到了成功的快樂。
二、練習設計層層深入
評價一節(jié)數(shù)學課,最直接有效的方式就是通過練習得到的反饋。而學生之間參差不齊,為了能兼顧全班學生的整體水平,我在練習設計上主要采用了層層深入的原則,先是基礎知識的練習;然后用三角形的知識解決實際問題;最后增加拓展延伸題,讓優(yōu)等生在這個知識點上的學習更進一步。而每一道題都運用了本節(jié)課的知識,每一道題目的呈現(xiàn)方式又都不同。這樣既能讓后進生跟得上,又能讓優(yōu)等生吃得飽,從而讓全班同學共同進步。
但是從教學過程中我也反思了自己的不足之處。沒有及時捕捉學生的智慧。學生在思考“能圍成三角形三條邊的關系”時,其中有一個學生說“我發(fā)現(xiàn)兩條短邊的和比另外一條邊長時,就能圍成三角形?!碑敃r由于我考慮到為后面的“任意”二字做鋪墊,并沒有對學生的這個答案做過多的評價。其實這是判斷三角形三條邊的關系時一種最優(yōu)化的方法。在教學中,我們不能束縛在教材的條條框框中,而忽視了班上少部分同學的靈感和智慧。在課堂中,如果我能及時捕捉這一信息,并因勢利導,我相信本節(jié)課,不僅能找出三角形三條邊的關系,還能找出能否三角形的三條線段的最優(yōu)化方法,一定會為本節(jié)課增色不少。
從練習反饋中發(fā)現(xiàn)學生易錯點,犯錯的原因主要是學生未能認真審題。所以在以后審題教學中重視學抓關鍵詞、培養(yǎng)審題習慣,提高解題效率。
三角形的三邊關系教學設計一等獎篇十一
本節(jié)微課視頻是蘇教版數(shù)學教科書四年級下冊第78~79頁的教學內容。在教學之前,學生已經掌握了角的概念、角的分類和角的測量;認識了三角形,知道三角形是由三條線段首尾相接圍成的圖形,有三個頂點、三條邊和三個角。這些已經構成學生進一步學習的認知基礎?!度切蔚膬冉呛汀肥侨切蔚囊粋€重要性質。學生在學習四年級上冊“角的度量”時,通過測量三角尺三個角的度數(shù),知道三角尺三個角加起來的和是180度,再加上課前的預習,大部分的學生已經能得出結論:三角形的內角和是180度,只不過他們不清楚其中的道理,只是機械性的記憶。因此,本節(jié)課的重點不是結論,而是驗證結論的過程。教材組織學生對不同形狀、不同大小的三角形的內角和進行探索,通過轉化、推理、比較、操作和驗證,總結概括出“所有三角形的內角和都是180度”的規(guī)律,從而進一步發(fā)展學生的空間觀念,提高學生的自主學習能力和推理能力。
下面就具體談談微課的教學設計:
一、教學目標
1、通過測量、轉化、觀察和比較等活動探索發(fā)現(xiàn)并驗證“三角形的內角和是180度”的規(guī)律,并且能利用這一結論解決求三角形中未知角的度數(shù)等實際問題。
2、通過折一折、拼一拼和剪一剪等一系列的操作活動培養(yǎng)學生的'聯(lián)想意識和動手操作能力。體驗驗證結論的過程與方法,提高學生分析和解決問題的能力。
3、使學生通過操作的過程獲得發(fā)現(xiàn)規(guī)律的喜悅,獲得成就感,從而激發(fā)學生積極主動學習數(shù)學的興趣。
二、教學重點和難點
重點:讓學生親自驗證并總結出三角形的內角和是180度的結論
難點:對不同驗證方法的理解和掌握。
三、教學過程
(一)質疑――發(fā)現(xiàn)問題,提出問題
交流:不同三角尺的內角和都是一樣的嗎?三角尺的內角和有什么特征?
引導學生得出三角尺的三個內角的度數(shù)和是180度。
提問:三角尺的形狀是什么三角形?三角尺的內角和是180度,我們還可以說成是什么?(得出結論:直角三角形的內角和是180度。)
你有什么辦法驗證這一結論呢?(動手操作,尋找答案)
方法一:拿出不同的直角三角形,分別測量三個內角的度數(shù),再求和。(提示存在誤差,但三個內角的和都在180度左右)
方法二:用兩個相同的直角三角形拼成一個長方形,由于長方形的四個內角和是360度,因此能得出一個直角三角形的三個內角和是180度。
(二)探究――分析問題,解決問題
出示三個三角形:直角三角形、銳角三角形和鈍角三角形。
引導:直角三角形的內角和是180度了,由此我們聯(lián)想到銳角三角形和鈍角三角形的內角和也有可能是180度。
提問:你有什么辦法來驗證這一猜想呢?
拿出事先從課本第113頁剪下來的3個三角形,動手操作,自主探索,發(fā)現(xiàn)規(guī)律。
方法一:可以像上面那樣先測量每個三角形的三個內角的度數(shù),再計算出它們的和,看看能發(fā)現(xiàn)什么規(guī)律。學生測量計算,教師巡視指導。
引導:測量時要盡量做到準確,測量是存在誤差的,對于測量的不準的同學要重新測定和確認,計算出它們的和,發(fā)現(xiàn)其中的規(guī)律。
方法二:既然是求三角形的內角和,我們就可以想辦法把三角形的3個內角拼在一起,看看拼成了什么角。那怎樣才能把3個內角拼在一起呢?我們可以將三角形中的3個內角撕下來,再拼在一起,會發(fā)現(xiàn)拼成了一個平角,是180度。
方法三:把三角形的三個內角撕下來,雖然能將他們拼在一起,但是原有的三角形被破壞了。因此,我們還可以通過折一折的方法,把三個內角折過來拼在一起,同樣會發(fā)現(xiàn)拼成一個平角,是180度。
方法四:將銳角三角形和鈍角三角形分別分成兩個直角三角形,利用直角三角形內角和是180度進行推理。180+180=360度,360-90-90=180度。
(三)歸納――獲得結論
交流:回顧以上3個三角形的內角和的探索過程,你發(fā)現(xiàn)了什么規(guī)律?
總結:通過測量計算、拼一拼和折一折的方法,我們可以消除心中的問號,肯定得說出所有三角形的內角和都是180度這一結論。
(四)拓展――鞏固練習
1、將一個大三角形剪成兩個小三角形,每個小三角形的內角和是多少度?
2、在一個三角形中,根據(jù)兩個內角的度數(shù),求第三個內角的度數(shù)?
三角形的三邊關系教學設計一等獎篇十二
《三角形三邊的關系》是人教版義務教育課程標準實驗教科書《數(shù)學》第八冊第82頁的教學內容,屬于“空間與圖形”的領域。這部分內容是在學生知道了三角形有三條邊、三個角和具有穩(wěn)定性的基礎上探索三角形三邊的關系。大家知道,在平面圖形里,三角形是由3條線段圍成的,但并不意味著任意三條線段都能圍成三角形。所以掌握這部分內容,可以進一步豐富學生對三角形的認識和理解;它既是對所學知識的延續(xù),又是后繼學習多邊形的基礎,在知識體系上具有承上啟下的作用。
幾何初步知識無論是線、面、體還是圖形的特征、性質,對于小學生來說都比較抽象,要解決數(shù)學的抽象性和小學生思維之間的矛盾,就要充分運用直觀性進行教學,讓學生動手做數(shù)學,而不是用耳朵聽數(shù)學,讓學生經歷“數(shù)學化”、“做數(shù)學”等過程,強調在教師的引導作用下,由“獲得知識結論快樂”轉變?yōu)椤疤骄堪l(fā)現(xiàn)知識快樂”,并注重與生活實際緊密聯(lián)系,讓學生獲得良好的數(shù)學教育。依據(jù)新課標的精神、結合學生的知識現(xiàn)狀和年齡特點,以及這一教學內容在教材中所處的地位與作用,我制定了以下教學目標:
(一)教學目標
1、認知目標:通過創(chuàng)設情景、實物操作、觀察比較,發(fā)現(xiàn)三角形任意兩邊之和大于第三邊。
2、能力目標:培養(yǎng)學生自主探究、觀察、比較和概括能力以及小組合作的意識,能根據(jù)三角形三邊關系解釋生活中的現(xiàn)象,提高解決問題的能力。
3、情感目標:結合教學內容,滲透數(shù)學文化、思想、方法的教育。
(二)說教學重難點
探究發(fā)現(xiàn)“三角形任意兩條邊的和大于第三邊”是教學重點,而理解“任意兩邊”是本節(jié)課的教學難點。
接下來說說這節(jié)課的教法與學法
有效的數(shù)學學習活動不是單純的依賴模仿與記憶,而是一個有目的、主動建構知識的過程,動手操作法、觀察發(fā)現(xiàn)法、自主探究法、合作交流法是這一節(jié)課的學習方法。整節(jié)課讓學生體驗“做數(shù)學”的過程。
以下是我的而教學流程。
第一環(huán)節(jié):矛盾沖突。
興趣是最好的老師,上課一開始,我給學生變魔術,用長度分別是15厘米,13厘米10厘米的三根小棒首尾相接圍成三角形,在學生認為我的魔術太簡單而不屑一顧時,我讓一個學生也上來變一個(給表演的學生提供長度是15厘米,9厘米,26厘米的小棒)學生圍不了三角形。我說,他沒能圍出一個三角形,你能嗎?(不能)問題到底出在哪?學生估計會把注意力集中在第三根小棒上,認為第三根小棒太長了,如果是這樣,我就把第三根小棒換成5厘米的,還是圍不了,此時,教師引導學生提出疑問:怎么就圍不起來的呢?看來,看來,三根小棒是否能圍成三角形跟它們的長度有關,這節(jié)課,老師和你們一起來研究三角形三邊的關系。(板書課題)
在教師能變魔術,而學生卻變不成的矛盾沖突中,可能已經有大部分學生開始這節(jié)課的數(shù)學思考了。此處“魔術”的價值不僅僅在于激發(fā)學生學習的興趣,還在于成功地將學生引入到數(shù)學思考之中。
第二環(huán)節(jié):初建模型。
新課標強調要從學生已有的生活經驗出發(fā),讓學生動起來,活起來,讓他們在猜想、質疑、驗證、探究、問題解決等過程中,經歷擺一擺、圍一圍、比一比、想一想、議一議等活動,努力營造協(xié)作互動、大膽表達課堂教學氛圍,將課堂真正還給學生,讓學生在自主活動中得以發(fā)展。
給學生提供研究的材料,(5根小棒,不同顏色長度不同,紅色(2根)3厘米,綠色5厘米,藍色7厘米,黃色8厘米。)并提出操作要求(ppt出示)
(1)從這5根小棒中任意選取3根圍一個三角形;
(2)同桌2人合作,共同擺小棒。
(3)擺完后共同觀察,并把結果記錄在表格中。
(4)音樂響起開始,音樂停止時活動結束。
看哪一組完成最多最好。
這一環(huán)節(jié)是要發(fā)揮每個人的。作用,全員參與,人人有事做,避免小組合作流于形式。
反饋(1)335(2)337
(3)338(4)357
(5)358(6)378
(7)578(ppt出示表格)
觀察:三根小棒在什么情況下能圍城三角形呢?
最后引導歸納:三角形兩條邊的和大于第三條邊(師板書)
隨著教學活動的逐步展開,教師圍繞“核心知識”精心設疑,引導學生操作觀察比較,使學生的思考沿著教學目標不斷深入。
第三個環(huán)節(jié),完善模型。
完善性質:三角形任意兩邊的和大于第三邊
第四環(huán)節(jié):驗證模型。
驗證:讓學生畫出任意三角形,量出三條邊的長短再算一算,三邊之間的關系。
引導學生經歷從特殊到一般的數(shù)學思考過程,讓學生猜想,發(fā)現(xiàn),歸納,驗證,尋找反例等數(shù)學活動中思考、辨析、釋疑、概括、推理,有效滲透從特殊到一般的數(shù)學思想,為學生構建了一種結構嚴謹、邏輯嚴密的數(shù)學思維模式。
第五環(huán)節(jié):應用模型。
判斷下面的小棒能否圍成三角形
(1)2厘米3厘米8厘米
(2)4厘米7厘米8厘米()
(3)6厘米5厘米8厘米()
(4)5厘米14厘米9厘米()
(5)5厘米9厘米13厘米()
第六環(huán)節(jié):優(yōu)化模型、并體會極限思想。
——優(yōu)化
有的學生很快做出判斷,他們有什么訣竅?
——極限思想
讓學生重點觀察(4)中的數(shù)據(jù)
提問:5厘米和9厘米能與多長的小棒圍成三角形?
學生思考:第三邊不比4厘米短,不能超過14厘米(課件演示)
這一環(huán)節(jié)是通過直觀操作讓學生感悟數(shù)學的極限思想,讓學生感受當兩邊的長度是5厘米和9厘米時,第三邊的長度在4與14厘米之間,感受當?shù)谌呑兂?厘米或14厘米時,三角形便不存在,將成為一條直線,感受量變到質變的過程,充滿理性的思考的數(shù)學課堂才是真正扎實有效甚至高效的數(shù)學課堂。
第七個環(huán)節(jié)、走進生活
老師要去小雨家家訪,走哪條路近?請你用今天學習的知識來解釋
《三角形三邊關系》說課
走小路近(讓學生說明理由)
(ppt顯示草坪)
還走這條路嗎?
這一環(huán)節(jié)的設計不僅使學生深化了對三角形三邊關系的理解,還讓學生感知作為人還應該有一份社會責任,有一份人文情懷,彰顯數(shù)學的大教育觀。)
第八個環(huán)節(jié):課后延伸。
播放《將軍飲馬》的故事(課件呈現(xiàn)圖)
板書設計力求做到重點突出,一目了然。
縱觀本節(jié)課,體驗是學生學習的前提,是學生學習數(shù)學的本職與要求,可以說,沒有體驗就沒有真正意義上的學習,慢慢跟著學生的腳步,讓學經歷的探索過程,在這一過程中,學生參與、經歷、思考、反思、發(fā)展,作為教者,我們一路傾聽花開的聲音。