熱門平方差公式教案及板書設(shè)計(案例17篇)

字號:

    編寫好的教案可以提供給學(xué)生作為學(xué)習(xí)的參考資料。教案的語言要簡練明了,避免使用過于晦澀難懂的詞匯和句式。以下是小編為大家收集的教案范文,僅供參考,希望對大家有所幫助。這些范文包括了不同學(xué)科、不同年級的教案,內(nèi)容涵蓋了教學(xué)目標(biāo)的設(shè)定、教學(xué)過程的設(shè)計、教學(xué)資源的選擇等,供大家借鑒和參考。希望大家可以根據(jù)自己的實際情況進行適當(dāng)?shù)恼{(diào)整和改進,編寫出符合自己教學(xué)要求的教案。
    平方差公式教案及板書設(shè)計篇一
    平方差公式是多項式乘法運算中一個重要的公式,是特殊的多項式與多項式相乘的一種簡便計算。通過復(fù)習(xí)多項式乘以多項式的計算導(dǎo)入新課,為探究新知識奠定基礎(chǔ)。在重難點處設(shè)計問題:“觀察以上3個算式的特點和運算結(jié)果的特點,對比等號兩邊代數(shù)式的結(jié)構(gòu),你發(fā)現(xiàn)了什么?”讓學(xué)生發(fā)現(xiàn)規(guī)律并嘗試運用自己的語言來描述。
    問題提出后,學(xué)生能積極進行分組討論、交流,各組小組長闡述自己小組討論的結(jié)果。大多數(shù)的學(xué)生能找出規(guī)律,說出大概意思,但是無法用精準(zhǔn)的語言完整的描述出來,語言表達(dá)無條理、含糊。針對這種情況,在以后的課堂教學(xué)過程中要注意加強對學(xué)生的邏輯思維能力和語言表達(dá)能力的.培養(yǎng)。最后經(jīng)過師生的共同努力,得出了平方差公式以及公式的特征。
    在例題展示環(huán)節(jié)中,我通過2道例題的運算,訓(xùn)練學(xué)生正確應(yīng)用公式進行計算,體會公式在簡化運算中的作用。實踐練習(xí)的設(shè)計,使學(xué)生從不同角度認(rèn)識平方差公式,進一步加強學(xué)生對公式的理解。在運用公式時,學(xué)生基本掌握運用平方差公式的步驟:首先要判斷算式是否符合平方差公式特征,然后再尋找算式中的a,b項,最后運用平方差公式運算。
    拓展延伸環(huán)節(jié)中,學(xué)生通過尋找算式中的a,b項,慢慢發(fā)現(xiàn)a,b項不僅可以代表數(shù),也可以代表單項式、多項式等代數(shù)式,這樣設(shè)計可以進一步深化學(xué)生對字母含義的理解。在學(xué)生獨立完成練習(xí)和堂測中,經(jīng)過巡視,我發(fā)現(xiàn)近三分之一的學(xué)生對較復(fù)雜的多項式不能準(zhǔn)確找出a,b項,特別是b項代表多項式時,負(fù)數(shù)去括號時出錯較多。
    最后通過設(shè)計遞進式的問題串,引導(dǎo)學(xué)生自己一步步總結(jié)出本節(jié)課所學(xué)的知識內(nèi)容,從而培養(yǎng)他們的歸納總結(jié)和語言表達(dá)能力。
    本節(jié)課采用學(xué)習(xí)小組討論、交流的學(xué)習(xí)方式,讓學(xué)優(yōu)生帶動學(xué)困生,整體教學(xué)效果良好,學(xué)生基本掌握平方差公式的運用,對于較復(fù)雜的a、b項的運算,在自習(xí)課上將加強練習(xí)。
    平方差公式教案及板書設(shè)計篇二
    《平方差公式》是一節(jié)公式定理課,是各位老師非常熟悉的一個課題,對大家更熟悉,我深深感到一種壓力。但是,無論如何,“新”、“實”是我追求的目標(biāo)。為此,我作了如下努力:
    1、把數(shù)學(xué)問題“蘊藏”在游戲中。
    導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,首先是一個智力搶答,學(xué)生通過搶答初步感知平方差公式,接下來,采用小組合作學(xué)習(xí)的方式,利用“四問”讓學(xué)生進行試驗操作,學(xué)生選擇的字母有很多種,讓它們都有其共性。由此,學(xué)生在探索中驗證自己的猜想,同時也感受和認(rèn)識知識的發(fā)生和發(fā)展的過程,得出(a+b)(a-b)=a2-b2.經(jīng)過不斷的嘗試小組合作學(xué)習(xí)方式的教學(xué),我發(fā)現(xiàn)也真正體會到,只要我們給學(xué)生創(chuàng)造一個自由活動的空間,學(xué)生便會還給我們一個意外的驚喜。
    2、充分重視“自主、合作、探究”的教學(xué)方式的運用。
    把探究的機會留給學(xué)生,讓學(xué)生在動腦思考中構(gòu)建知識,真正成為教學(xué)活動的主體。使他們在活動中進行規(guī)律的總結(jié),并且通過交流練習(xí)、應(yīng)用,深化了對規(guī)律的理解。學(xué)生對知識的掌握往往通過練習(xí)來達(dá)到目的。新授后要有針對性強的有效訓(xùn)練,讓學(xué)生對所學(xué)知識建立初步的表象,以達(dá)到對知識的理解、掌握及應(yīng)用,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的升華。在此設(shè)計了三個層次的有效訓(xùn)練,讓學(xué)生體會平方差公式的特點:第一層次是直接運用公式,第二層次是將式子進行適當(dāng)變形后應(yīng)用公式,第三個層次是平方差公式的靈活應(yīng)用。通過做題學(xué)生歸納出平方差公式的運用技巧。
    3、自置懸念,享受成功
    以四人小組為單位,各小組出兩道具有平方差公式的結(jié)構(gòu)特征的題目,看誰出得有水平。學(xué)生每人都設(shè)計了題目,任意叫了四位學(xué)生在黑板上寫,經(jīng)評價結(jié)果都對了。這種方法,不僅令人耳目一新,而且把學(xué)生引入不協(xié)調(diào)——探究——發(fā)現(xiàn)——解決問題的一個學(xué)習(xí)過程,使學(xué)生獲得思維之趣,參與之樂,成功之悅。
    4、切實落在實效上
    本節(jié)課在采用小組學(xué)習(xí)之后,為了讓學(xué)生的鞏固有效果,采用了學(xué)生上臺講解、作業(yè)實物投影的方式來進行,多種方式的選擇,讓學(xué)生暴露出自己的問題,然后通過生生互動、師生互動解決問題,實現(xiàn)問題及時處理,學(xué)習(xí)效果不錯。
    5、值得注意的是:
    1、節(jié)奏的把握上
    這一節(jié)我覺得不是很順,尤其在從幾何角度解釋平方差公式、例2⑵的其他計算方法等問題上,花了不少時間,節(jié)奏把握的不是很好。
    2、充分發(fā)揮學(xué)生的主體地位上
    這節(jié)課上,我覺得學(xué)生的積極性不很高,回答問題沒有激情,說明我背學(xué)生還不夠,自己想象的比現(xiàn)實的好。
    平方差公式教案及板書設(shè)計篇三
    教學(xué)目標(biāo)
    1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點;使學(xué)生知道把完全平方公式反過來就可以得到相應(yīng)的因式分解。
    2、掌握運用完全平方公式分解因式的`方法,能正確運用完全平方公式把多項式分解因式(直接用公式不超過兩次)
    教學(xué)方法:對比發(fā)現(xiàn)法課型新授課教具投影儀
    教師活動:學(xué)生活動
    新課講解:
    (投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項式因式分解。例如:
    a2+8a+16=a2+2×4a+42=(a+4)2
    a2-8a+16=a2-2×4a+42=(a-4)2
    (要強調(diào)注意符號)
    首先我們來試一試:(投影:牛刀小試)
    1.把下列各式分解因式:
    (1)x2+8x+16;;(2)25a4+10a2+1
    (3)(m+n)2-4(m+n)+4
    (教師強調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯點,及時糾正)
    2.把81x4-72x2y2+16y4分解因式
    (本題用了兩次乘法公式,難度稍大,教師要鼓勵學(xué)生大膽嘗試,敢于創(chuàng)新)
    將乘法公式反過來就得到多項式因式分解的公式。運用這些公式把一個多項式分解因式的方法叫做運用公式法。
    練習(xí):第88頁練一練第1、2題
    平方差公式教案及板書設(shè)計篇四
    1、使學(xué)生理解和掌握平方差公式,并會用公式進行計算;
    2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力,培養(yǎng)應(yīng)用數(shù)學(xué)的意識;
    3、在緊張而輕松地教學(xué)氛圍內(nèi),進一步激發(fā)學(xué)生的學(xué)習(xí)興趣熱情。
    重點是掌握公式的結(jié)構(gòu)特征及正確運用公式。難點是公式推導(dǎo)的理解及字母的廣泛含義。
    以教師的精講、引導(dǎo)為主,輔以引導(dǎo)發(fā)現(xiàn)、合作交流。
    (一)創(chuàng)設(shè)問題情境,引入新課
    1、你會做嗎?
    (1)(x+1)(x—1)=_____=()()
    (3)(3x+2)(3x—2)= _____=()()
    2、能否用簡便方法運算:×(這里需要用到平方差公式,設(shè)疑激發(fā)學(xué)生興趣。)
    (二)探索規(guī)律,歸納平方差公式
    交流上面第1題的答案,引導(dǎo)學(xué)生進一步思考:
    (合作交流,探究新知:兩數(shù)之和與這兩數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于這兩個數(shù)的平方差。)
    我們把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到類似形式的多項式相乘時,就可以直接運用公式進行計算。(在此基礎(chǔ)上,讓學(xué)生用語言敘述公式,并讓學(xué)生熟記。)
    (三)嘗試探究
    (四)鞏固練習(xí)
    1、運用平方差公式計算:
    (l)(x+a)(x—a)
    (2)(m+n)(m—n)(3)(a+3b)(a—3b)
    (4)(1—5y)(l+5y)(5)998×1002
    (6)395×405
    2、直接寫出答案:
    (l)(—a+b)(a+b)
    (2)(a—b)(b+a)
    (3)(—a—b)(—a+b)
    (4)(a—b)(—a—b)(5)999×1001
    (6)×(讓學(xué)生獨立完成,互評互改。)
    (五)小結(jié)
    1.什么是平方差公式?
    2.運用公式要注意什么?
    (1)要符合公式特征才能運用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意分清a、b。
    (學(xué)生回答,教師總結(jié))
    (六)作業(yè)
    p106習(xí)題1—5題
    教學(xué)反思
    通過精心備課,本節(jié)課在教學(xué)中是比較成功的。成功之處在于整個教學(xué)流程環(huán)環(huán)相扣,層層遞進,抓住了學(xué)生思維這條主線,遵循由淺入深,由特殊到一般的認(rèn)知規(guī)律,引起學(xué)生的興趣。使他們能夠積極參與其中,同時,使他們的思維得到了鍛煉和發(fā)展。不足之處:時間安排不是很合理,前松后緊。課堂上沒有給更多的學(xué)生提供展示自己思考結(jié)果的機會,過于注重“收”,而“放”不夠。
    平方差公式教案及板書設(shè)計篇五
    1、了解完全平方公式的特征,會用完全平方公式進行因式分解.
    2、通過整式乘法逆向得出因式分解方法的過程,發(fā)展學(xué)生逆向思維能力和推理能力.
    3、通過猜想、觀察、討論、歸納等活動,培養(yǎng)學(xué)生觀察能力,實踐能力和創(chuàng)新能力.
    學(xué)習(xí)建議教學(xué)重點:
    平方差公式教案及板書設(shè)計篇六
    本節(jié)課是圍繞“引導(dǎo)學(xué)生有效預(yù)習(xí)”的課題設(shè)計的,通過預(yù)設(shè)的問題引發(fā)學(xué)生思考,在學(xué)生的預(yù)習(xí)基礎(chǔ)上回答相關(guān)的'問題,產(chǎn)生對整式的乘法、提公因式法和公式法的對比。
    讓學(xué)生充分自主的對知識產(chǎn)生探究,同時利用數(shù)形結(jié)合的思想驗證平方差公式;再通過質(zhì)疑的方式加深對平方差公式結(jié)構(gòu)特征的認(rèn)識,有助于讓學(xué)生在應(yīng)用平方差公式行分解因式時注意到它的前提條件;通過例題練習(xí)的鞏固,讓學(xué)生把握教材,吃透教材,讓學(xué)生更加熟練、準(zhǔn)確,起到強化、鞏固的作用,讓學(xué)生領(lǐng)會換元的思想,達(dá)到初步發(fā)展學(xué)生綜合應(yīng)用的能力。
    二、教材分析
    本節(jié)課是運用提公因式法后公式法的第一課時——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向應(yīng)用,它是解高次方程的基礎(chǔ),在教材中具有重要的地位。在教材的處理上以學(xué)生的自主探索為主,在原有用平方差公式進行整式乘法計算的知識的基礎(chǔ)上充分認(rèn)識分解因式。明確因式分解是乘法公式的一種恒等變形,讓學(xué)生學(xué)會合情推理的能力,同時也培養(yǎng)了學(xué)生愛思考,善交流的良好學(xué)習(xí)慣。
    三、學(xué)情分析
    四、教學(xué)目標(biāo)
    (一)知識與技能
    1.掌握運用平方差公式分解因式的方法。
    2.掌握提公因式法、平方差公式分解因式的綜合應(yīng)用。
    (二)過程與方法
    1.經(jīng)歷探究分解因式方法的過程,體會整式乘法與分解因式之間的聯(lián)系。
    2.通過乘法公式:(a+b)(a-b)=a2-b2逆向變形,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理地思考及語言表達(dá)能力。
    3.通過活動4,將高次偶數(shù)指數(shù)向下次指數(shù)的轉(zhuǎn)達(dá)化,培養(yǎng)學(xué)生的化歸思想。
    4.通過活動1,發(fā)現(xiàn)并歸納出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2=(a+b)(a-b)。
    5.通過活動4,讓學(xué)生自己發(fā)現(xiàn)問題,提出問題,然后解決問題,體會在解決問題的過程中與他人合作的重要性。
    (三)情感與態(tài)度
    1.通過探究平方差公式,讓學(xué)生獲得成功的體驗,鍛煉克服困難的意志,建立自己信心。
    平方差公式教案及板書設(shè)計篇七
    引例講解:將下列各式分解因式。
    1、x2+6x+92、4x2-20x+25
    問題:這兩題首先怎么分析?
    生14:將9改寫成32,6x正好是x與3的乘積的2倍。(學(xué)生回答,教師板書)
    生15:將4x2寫成(2x)2,25寫成52,20x寫成2×2x×5
    x2+6x+9=x2+2×x×3+32=(x+3)2
    4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2
    (聯(lián)系字母表達(dá)式用箭頭對應(yīng)表示,加深學(xué)生印象。)
    生16:由符號來決定。
    師:能不能具體點。
    生16:由中間一項的符號決定,就是兩個數(shù)乘積2倍這項的符號決定,是正,就是兩個數(shù)的和;是負(fù),就是兩個數(shù)的差。
    師:總之,在分解完全平方式時,要根據(jù)第二項的符號來選擇運用哪一個完全平方公式。
    例題1:把25x4+10x2+1分解因式。
    師:這道題目能否運用以前所學(xué)的方法分解?就題目本身有什么特點?可以怎么分解?
    生17:題目符合完全平方式的特點,可以將25x4改寫成(5x2)2,1就是12,10x2改寫成2×5x2×1。(此學(xué)生板演,過程略)
    例題2:把-x2-4y2+4xy分解因式。
    師:按照常規(guī)我們首先怎么辦?
    生齊答:提取負(fù)號。〔教師板書:-(x2+4y2-4xy)〕以下過程學(xué)生板演。
    師:如果是這道題:4xy-x2-4y2怎么分解呢?(教師改變剛才題型)
    提示:從項的特征進行考慮,怎樣轉(zhuǎn)化比較合理?四人小組討論。
    生18:同樣還是將負(fù)號提取改變成完全平方式的形式。
    師:從這里我們可以發(fā)現(xiàn),只要三項式中能改寫成平方的兩項是同號,且另一項為兩底數(shù)積的2倍,我們都能利用這個公式分解,若這兩項同為正則可直接分解,若同為負(fù)則先提取負(fù)號再分解。
    練習(xí)題:課本p21練習(xí):第1題,學(xué)生板演,教師講解,學(xué)生板演的同時,教師提示注意點、多項式的特征;第2題,學(xué)生口答。
    例題3:把3ax2+6axy+3ay2分解因式。
    師:先觀察,再選擇適當(dāng)?shù)姆椒ā?學(xué)生板演,教師點評)
    練習(xí):課本p22第3題分兩組學(xué)生板演,教師評講、適當(dāng)提示注意點。
    師:這一堂課我們一起研究了完全平方式的有關(guān)知識,同學(xué)們先自查一下自己的收獲,然后請同學(xué)發(fā)表自己的見解。(學(xué)生小聲討論)
    生甲:我學(xué)到了如何將完全平方式分解因式,遇到三項式中有兩項符號相同且能化成平方的形式,另一項為這兩個數(shù)的積的2倍的形式,如果能化成平方項是負(fù)的,首先將負(fù)號提取再分解。第二項是正的就是兩數(shù)的和的平方,第二項是負(fù)的就是兩數(shù)差的平方。
    生乙:有公因式可提取的先提取公因式,然后再分解,同時根據(jù)第二項的符號來選用合適的公式。
    教師布置課堂作業(yè):課本p23習(xí)題8.2a組4~5偶數(shù)題
    課外作業(yè):課本p23習(xí)題8.2a組4~5奇數(shù)題
    下課!
    平方差公式教案及板書設(shè)計篇八
    1.經(jīng)歷探索平方差公式的過程,會推導(dǎo)平方差公式;
    2.能利用平方差公式進行簡單的運算。
    在探索平方差公式的過程中,發(fā)展學(xué)生的符號感和推理能力。在計算的過程中發(fā)現(xiàn)規(guī)律,并能用符號表達(dá),體會數(shù)學(xué)語言的嚴(yán)謹(jǐn)與簡潔。
    激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,鼓勵學(xué)生自己探索,培養(yǎng)學(xué)生的合作意識與創(chuàng)新能力。
    重點
    平方差公式的推導(dǎo)和運用
    難點
    平方差公式的結(jié)構(gòu)特點和靈活運用。
    一、復(fù)習(xí)導(dǎo)入
    1.回顧多項式乘多項式的法則。
    2.創(chuàng)設(shè)情境:你能快速地口算下列式子的值嗎?
    (1);(2).
    師生共同想辦法,想到能否把數(shù)轉(zhuǎn)化成較整的數(shù)?
    變形成:,
    再試試把它當(dāng)成多項式乘法來算算,有什么發(fā)現(xiàn)?
    繼續(xù)用你發(fā)現(xiàn)的方法算算,,,成功了嗎?
    我們把這個有趣的結(jié)論整理并推廣,就可以得到今天要學(xué)習(xí)的一個乘法公式,平方差公式。
    二、新課講解
    探究新知
    1.觀察相乘的兩個多項式有什么特點?運算的結(jié)果有什么特點?
    討論交流后總結(jié)出:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
    2.把式子里具體的數(shù)換成字母表示的數(shù),結(jié)論還成立嗎?
    3.從上面的計算中你有什么發(fā)現(xiàn)呢?
    引導(dǎo)學(xué)生發(fā)現(xiàn)對于不同形式的兩個數(shù),都有它們的和與它們的差的積都等于它們的平方差!用公式表示就是:,這里字母是任意形式的兩個數(shù)。這個公式叫做平方差公式。
    4.你能通過演算推導(dǎo)出平方差公式嗎?
    最終得到平方差公式:
    平方差公式的理解應(yīng)用
    下列多項式乘法中,能用平方差公式計算的是_______________(填寫序號)
    (1);(2);(3);
    (4);(5);(6).
    學(xué)生分組討論交流,歸納什么情況下可以使用平方差公式。通過討論,對平方差公式的理解達(dá)到一個新的高度:所謂兩數(shù)和、兩數(shù)差,從多項式的角度來看,就是有一項相同(),有一項相反(和),只要相乘的兩個多項式具備這樣的特點,都可以用平方差公式計算。不難判斷,上面的式子中(2)、(5)、(6)都可以用平方差公式計算。
    三、典例剖析
    例1運用平方差公式計算:
    師生共同解答,教師板書。初學(xué)運用時要寫清楚步驟。
    例2運用平方差公式計算:
    學(xué)生解答,關(guān)注學(xué)生是否理解平方差公式,能否正確識別乘法公式里的。
    例3.計算:
    學(xué)生解答,教師巡視,關(guān)注學(xué)生能否合理變形,靈活運用公式計算。
    四、課堂練習(xí)
    1.下面各式的計算對不對?如果不對,應(yīng)怎樣改正?
    (1);
    2.運用平方差公式計算:
    (1);(2);
    (3);(4).
    3.計算:
    (1);(2);
    教師要注意發(fā)現(xiàn)學(xué)生的錯誤,組織學(xué)生對錯誤進行分析,對于第1題可以引導(dǎo)學(xué)生分析導(dǎo)致錯誤的原因。
    五、小結(jié)
    師生共同回顧平方差公式的結(jié)構(gòu)特點,體會公式的作用,交流計算的經(jīng)驗。教師對課堂上學(xué)生掌握不夠牢固的知識進行辨析、強調(diào)與補充,學(xué)生也可以談一談個人的學(xué)習(xí)感受。
    六、布置作業(yè)
    p50第1、6題
    平方差公式教案及板書設(shè)計篇九
    (l)(2)(3)(4)
    學(xué)生活動:學(xué)生分組討論,選代表解答.
    練習(xí)三
    甲的計算過程是:原式
    乙的計算過程是:原式
    丙的計算過程是:原式
    丁的計算過程是:原式
    (2)想一想,與相等嗎?為什么?
    與相等嗎?為什么?
    學(xué)生活動:觀察、思考后,回答問題.
    練習(xí)四
    運用乘法公式計算:
    (l)(2)
    (3)(4)
    (四)總結(jié)、擴展
    這節(jié)課我們學(xué)習(xí)了乘法公式中的完全平方公式.
    引導(dǎo)學(xué)生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運用公式時應(yīng)該注意的問題.
    八、布置作業(yè)
    p1331,2.(3)(4).
    參考答案
    略.
    平方差公式教案及板書設(shè)計篇十
    (1)(x+1)(x-1)=_____,
    (2)(+2)(-2)=_____,
    (3)(2x+1)(2x-1)=____,
    (4)(+3z)(-3z)=_____.
    (1)(x+1)(1+x),
    (2)(2x+)(-2x),
    (3)(a-b)(-a+b),
    (4)(-a-b)(-a+b)
    幫助學(xué)生理解公式的特征,掌握公式的特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學(xué)生的認(rèn)知能力有一個過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。
    平方差公式教案及板書設(shè)計篇十一
    湖北口中學(xué)張衍生
    教學(xué)內(nèi)容:p108—110平方差公式例1例2例3
    教學(xué)目的:1、使學(xué)生會推導(dǎo)平方差公式,并掌握公式特征。
    2、使學(xué)生能正確而熟練地運用平方差公式進行計算。
    教學(xué)重點:使學(xué)生會推導(dǎo)平方差公式,掌握公式特征,并能正確而熟
    練地運用平方差公式進行計算。
    教學(xué)難點:掌握平方差公式的特征,并能正確而熟練地運用它進行計
    算。
    教學(xué)過程:
    一、復(fù)習(xí)引入
    1、復(fù)述多項式與多項式的`乘法法則
    2、計算(演板)
    (1)(a+b)(a-b)(2)(m+n)(m-n)
    (3)(x+y)(x-y)(4)(2a+3b)(2a-3b)
    3、引入新課,由2題的計算引導(dǎo)學(xué)生觀察題目特征,結(jié)果特征(引入新課,板書課題)
    二、新課
    1、平方差公式
    由上面的運算,再讓學(xué)生探究
    現(xiàn)在你能很快算出多項式(2m+3n)與多項式(2m-3n)的乘積嗎?引導(dǎo)學(xué)生把2m看成a,3n看成b寫出結(jié)果.
    (2m+3n)(2m-3n)=(2m)2-(3m)2=4m2-9n2
    (a+b)(a-b)=a2-b2
    向?qū)W生說明:我們把
    (a+b)(a-b)=a2-b2(重點強調(diào)公式特征)
    平方差公式教案及板書設(shè)計篇十二
    平方差公式的教學(xué)已經(jīng)是好幾次了,舊教材總是定向于代數(shù)方法,新課程理念同幾何意義探究,這也是對教學(xué)者的一次挑戰(zhàn),通過教學(xué),我從中領(lǐng)會到它所蘊含的新的教學(xué)理念,新的教學(xué)方式和方法。
    1、在教學(xué)設(shè)計時應(yīng)提供充分探索與交流的空間,使學(xué)生進一步經(jīng)歷觀察,實驗、猜測、推理、交流、反思等活動,我在設(shè)計中讓學(xué)生從計算花圃面積入手,要求學(xué)生找出不同的計算方法,學(xué)生欣然接受了挑戰(zhàn),通過交流,給出了兩種方法,繼而通過觀察發(fā)現(xiàn)了面積的求法與乘法公式之間的吻合,激發(fā)了學(xué)生學(xué)習(xí)興趣的同時也激活了學(xué)生的思維,所以這個探究過程是很有效的。
    2、我知道培養(yǎng)學(xué)生數(shù)形結(jié)合思想方法和能力的重要性,通過幾何意義說明平方差方式的探究過程,學(xué)生可以切實感受到兩者之間的聯(lián)系,學(xué)會一些探究的基本方法與思路,并體會到數(shù)學(xué)證明的靈巧間法與和諧美是很有必要的。
    3、加強師生之間的活動也是必要的。在活動中,通過我的組織、引導(dǎo)和鼓勵下,學(xué)生不斷地思考和探究,并積極地進行交流,使活動有序進行,我始終以平等、欣賞、尊重的態(tài)度參與到學(xué)生活動中,營造出了一個和諧,寬松的教學(xué)環(huán)境。
    平方差公式教案及板書設(shè)計篇十三
    教學(xué)目標(biāo):
    一、 知識與技能
    1、 參與探索平方差公式的過程,發(fā)展學(xué)生的推理能力 2、 會運用公式進行簡單的乘法運算。
    二、 過程與方法
    1、 經(jīng)歷探索過程,學(xué)會歸納推導(dǎo)出某種特種特定類型乘法并用簡單的
    數(shù)學(xué)式子表達(dá)出,即給出公式。
    2、 在探索過程的教學(xué)中,培養(yǎng)學(xué)生觀察、歸納的能力,發(fā)展學(xué)生的符
    號感和語言描述能力。
    三、 情感與態(tài)度
    以探索、歸納公式和簡單運用公式這一數(shù)學(xué)情景,加深學(xué)生的體驗,增加學(xué)習(xí)數(shù)學(xué)和使用的信心。培養(yǎng)學(xué)生由觀察-發(fā)現(xiàn)-歸納-驗證-使用這一數(shù)學(xué)方法的逐步形成.
    教學(xué)重點: 公式的簡單運用
    教學(xué)難點: 公式的推導(dǎo)
    教學(xué)方法: 學(xué)生探索歸納與教師講授結(jié)合
    課前準(zhǔn)備:投影儀、幻燈片
    平方差公式教案及板書設(shè)計篇十四
    1、使學(xué)生理解和掌握平方差公式,并會用公式進行計算;
    2、注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力。
    教學(xué)重點和難點
    重點:平方差公式的應(yīng)用。
    難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式。
    教學(xué)過程設(shè)計
    我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子。
    讓學(xué)生動腦、動筆進行探討,并發(fā)表自己的見解。教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進一步思考:
    (當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式。這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了。而它們的積等于乘式中這兩個數(shù)的平方差)
    繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算。以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式。
    在此基礎(chǔ)上,讓學(xué)生用語言敘述公式。
    例1計算(1+2x)(1-2x)。
    解:(1+2x)(1-2x)
    =12-(2x)2
    =1-4x2.
    教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么。
    例2計算(b2+2a3)(2a3-b2)。
    解:(b2+2a3)(2a3-b2)
    =(2a3+b2)(2a3-b2)
    =(2a3)2-(b2)2
    =4a6-b4.
    教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算。
    課堂練習(xí)
    運用平方差公式計算:
    (l)(x+a)(x-a);(2)(m+n)(m-n);
    (3)(a+3b)(a-3b);(4)(1-5y)(l+5y)。
    例3計算(-4a-1)(-4a+1)。
    讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進行板演。
    解法1:(-4a-1)(-4a+1)
    =[-(4a+l)][-(4a-l)]
    =(4a+1)(4a-l)
    =(4a)2-l2
    =16a2-1.
    解法2:(-4a-l)(-4a+l)
    =(-4a)2-l
    =16a2-1.
    根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果。解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果。采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷。因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案。
    課堂練習(xí)
    1、口答下列各題:
    (l)(-a+b)(a+b);(2)(a-b)(b+a);
    (3)(-a-b)(-a+b);(4)(a-b)(-a-b)。
    2、計算下列各題:
    (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
    教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法。
    1、什么是平方差公式?
    2、運用公式要注意什么?
    (1)要符合公式特征才能運用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形。
    1、運用平方差公式計算:
    (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
    (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
    平方差公式教案及板書設(shè)計篇十五
    平方差公式是在學(xué)習(xí)多項式乘法等知識的基礎(chǔ)上,自然過渡到具有特殊形式的多項式的乘法,體現(xiàn)教材從一般到特殊的意圖。教材為學(xué)生在教學(xué)活動中獲得數(shù)學(xué)的思想方法、能力、素質(zhì)提供了良好的契機。對它的學(xué)習(xí)和研究,不僅得到了特殊的多項式乘法的簡便算法,而且為以后的因式分解,分式的化簡、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ),同時也為完全平方公式的學(xué)習(xí)提供了方法,因此,平方差公式在教材中有承上啟下的作用,是初中階段一個重要的公式。
    學(xué)生是在學(xué)習(xí)積的乘方和多項式乘多項式后學(xué)習(xí)平方差公式的,但在進行積的乘方的運算時,底數(shù)是數(shù)與幾個字母的積時往往把括號漏掉,在進行多項式乘法運算時常常會確定錯某些次符號及漏項等問題。學(xué)生學(xué)習(xí)平方差公式的困難在于對公式的結(jié)構(gòu)特征以及公式中字母的廣泛的理解,當(dāng)公式中a、b是式時,要把它括號在平方。
    重點:平方差公式的推導(dǎo)和應(yīng)用.
    難點:理解掌握平方差公式的結(jié)構(gòu)特點以及靈活運用平方差公式解決實際問題.
    平方差公式教案及板書設(shè)計篇十六
    1.使學(xué)生理解和掌握平方差公式,并會用公式進行計算;
    2.注意培養(yǎng)學(xué)生分析、綜合和抽象、概括以及運算能力.
    教學(xué)重點和難點
    重點:平方差公式的應(yīng)用.
    難點:用公式的結(jié)構(gòu)特征判斷題目能否使用公式.
    教學(xué)過程設(shè)計
    一、師生共同研究平方差公式
    我們已經(jīng)學(xué)過了多項式的乘法,兩個二項式相乘,在合并同類項前應(yīng)該有幾項?合并同類項以后,積可能會是三項嗎?積可能是二項嗎?請舉出例子.
    讓學(xué)生動腦、動筆進行探討,并發(fā)表自己的見解.教師根據(jù)學(xué)生的回答,引導(dǎo)學(xué)生進一步思考:
    (當(dāng)乘式是兩個數(shù)之和以及這兩個數(shù)之差相乘時,積是二項式.這是因為具備這樣特點的兩個二項式相乘,積的四項中,會出現(xiàn)互為相反數(shù)的兩項,合并這兩項的結(jié)果為零,于是就剩下兩項了.而它們的積等于乘式中這兩個數(shù)的平方差)
    繼而指出,在多項式的乘法中,對于某些特殊形式的多項式相乘,我們把它寫成公式,并加以熟記,以便遇到類似形式的多項式相乘時就可以直接運用公式進行計算.以后經(jīng)常遇到(a+b)(a-b)這種乘法,所以把(a+b)(a-b)=a2-b2作為公式,叫做乘法的平方差公式.
    在此基礎(chǔ)上,讓學(xué)生用語言敘述公式.
    二、運用舉例變式練習(xí)
    例1計算(1+2x)(1-2x).
    解:(1+2x)(1-2x)
    =12-(2x)2
    =1-4x2.
    教師引導(dǎo)學(xué)生分析題目條件是否符合平方差公式特征,并讓學(xué)生說出本題中a,b分別表示什么.
    例2計算(b2+2a3)(2a3-b2).
    解:(b2+2a3)(2a3-b2)
    =(2a3+b2)(2a3-b2)
    =(2a3)2-(b2)2
    =4a6-b4.
    教師引導(dǎo)學(xué)生發(fā)現(xiàn),只需將(b2+2a3)中的兩項交換位置,就可用平方差公式進行計算.
    課堂練習(xí)
    運用平方差公式計算:
    (l)(x+a)(x-a);(2)(m+n)(m-n);
    (3)(a+3b)(a-3b);(4)(1-5y)(l+5y).
    例3計算(-4a-1)(-4a+1).
    讓學(xué)生在練習(xí)本上計算,教師巡視學(xué)生解題情況,讓采用不同解法的兩個學(xué)生進行板演.
    解法1:(-4a-1)(-4a+1)
    =[-(4a+l)][-(4a-l)]
    =(4a+1)(4a-l)
    =(4a)2-l2
    =16a2-1.
    解法2:(-4a-l)(-4a+l)
    =(-4a)2-l
    =16a2-1.
    根據(jù)學(xué)生板演,教師指出兩種解法都很正確,解法1先用了提出負(fù)號的辦法,使兩乘式首項都變成正的,而后看出兩數(shù)的和與這兩數(shù)的差相乘的形式,應(yīng)用平方差公式,寫出結(jié)果.解法2把-4a看成一個數(shù),把1看成另一個數(shù),直接寫出(-4a)2-l2后得出結(jié)果.采用解法2的同學(xué)比較注意平方差公式的特征,能看到問題的本質(zhì),運算簡捷.因此,我們在計算中,先要分析題目的數(shù)字特征,然后正確應(yīng)用平方差公式,就能比較簡捷地得到答案.
    課堂練習(xí)
    1.口答下列各題:
    (l)(-a+b)(a+b);(2)(a-b)(b+a);
    (3)(-a-b)(-a+b);(4)(a-b)(-a-b).
    2.計算下列各題:
    (1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);
    教師巡視學(xué)生練習(xí)情況,請不同解法的學(xué)生,或發(fā)生錯誤的學(xué)生板演,教師和學(xué)生一起分析解法.
    三、小結(jié)
    1.什么是平方差公式?
    2.運用公式要注意什么?
    (1)要符合公式特征才能運用平方差公式;
    (2)有些式子表面不能應(yīng)用公式,但實質(zhì)能應(yīng)用公式,要注意變形.
    四、作業(yè)
    1.運用平方差公式計算:
    (l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);
    (3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);
    2.計算:
    (3)x(x-3)-(x+7)(x-7);(4)(2x-5)(x-2)+(3x-4)(3x+4).
    平方差公式教案及板書設(shè)計篇十七
    學(xué)生已經(jīng)掌握了多項式與多項式相乘,但是對于某些特殊的多項式相乘,可以寫成公式的形式,直接寫出結(jié)果,乘法公式應(yīng)用十分廣泛,也是本章重點內(nèi)容之一。
    平方差公式是第一個乘法公式,教學(xué)時,我是這樣引入新課的,先計算下列各題,看誰做的又對又快?(1)(x+1)(x―1)=_____,(2)(m+2)(m―2)=_____,(3)(2x+1)(2x―1)=____,(4)(y+3z)(y―3z)=_____。激發(fā)學(xué)生的好勝心并為進一步探索新知搭建好有力的平臺,然后我又讓學(xué)生討論交流上面幾個等式左、右兩邊各有什么特點,你能用字母表示你發(fā)現(xiàn)的規(guī)律嗎?你能用語言敘述這個規(guī)律嗎?給學(xué)生充分的觀察、分析、討論交流的時間,老師應(yīng)及時的給與必要的指導(dǎo)、鼓勵和由衷的贊美,這一點我做的還很不夠,今后要多多注意。
    然后我有設(shè)計了這樣一道題:下列多項式乘法中可以用平方差公式計算的是(1)(x+1)(1+x),(2)(2x+y)(y―2x),(3)(a―b)(―a+b),(4)(―a―b)(―a+b)幫助學(xué)生理解公式的特征,掌握公式的。特征是正確運用公式的關(guān)鍵,除了掌握公式的特征外還有必要理解公式中的字母a、b具有廣泛的含義,幾字母a、b可以表示具體的數(shù)、也可以表示單項式或多項式,由于學(xué)生的認(rèn)知能力有一個過程,教學(xué)中應(yīng)由易到難逐步安排學(xué)習(xí)這方面的內(nèi)容。