總結(jié)是我們對過去一段時間工作和生活的回顧,是對自己成長的一種評估。怎樣才能將復(fù)雜的問題簡潔明了地總結(jié)出來,讓讀者更易于理解呢?下面是一些值得借鑒的總結(jié)寫作技巧和經(jīng)驗分享。
大學(xué)生數(shù)學(xué)建模論文篇一
全國大學(xué)生數(shù)學(xué)建模競賽是由教育部高等教育司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會聯(lián)合舉辦,面向全國大學(xué)生的一年一屆的群眾性科技創(chuàng)新活動。數(shù)學(xué)建模競賽由最初的1992年的79所高校314個參賽隊發(fā)展到2011年來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))以及新加坡和澳大利亞的1197所高校的17317個參賽隊,成為了全國高校中規(guī)模最大,在國內(nèi)外都具影響的大學(xué)生課外科技活動。且數(shù)學(xué)建模不再是要求學(xué)生生硬地記住幾條數(shù)學(xué)公式解決幾道應(yīng)用題,它的應(yīng)用性強,應(yīng)用領(lǐng)域廣泛,所涉及的學(xué)科眾多,有化學(xué)、生物、經(jīng)濟、金融、信息、材料、環(huán)境、能源等,所以不僅要求學(xué)生能將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,更要求學(xué)生能靈活地運用數(shù)學(xué)、計算機及其他學(xué)科的知識來解決問題,而且參賽形式是3人組隊,利用開放的圖書館、互聯(lián)網(wǎng)等資源共同完成,最后提交一篇論文,學(xué)生在這樣的學(xué)習(xí)和競賽中既能提高自身的學(xué)習(xí)能力、應(yīng)用能力、創(chuàng)新能力,又能提高溝通技能、團隊協(xié)作能力及論文寫作能力。
1、數(shù)據(jù)統(tǒng)計
從表中可以看到雖然西北賽區(qū)參賽隊數(shù)占全國賽區(qū)參賽隊數(shù)的`比例都有所上升,卻仍然低于全國年增加參賽隊占全國賽區(qū)總參賽隊的比例。由此我們可以得出西北高校的大學(xué)生參與數(shù)學(xué)建模競賽的積極性較低。
2、原因分析
造成西北高校大學(xué)生參與數(shù)學(xué)建模競賽的積極性較低的原因是多方面的:(1)學(xué)生缺乏應(yīng)有的積極性與學(xué)生本身的學(xué)習(xí)能力有一定的關(guān)系,與內(nèi)地高校大學(xué)生相比,西北高校大學(xué)生的基礎(chǔ)較差,專業(yè)理論功底薄,動手能力相對較差,而且數(shù)學(xué)建模對學(xué)生的能力要求較高,不僅要求學(xué)生能將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,更要求學(xué)生能靈活地運用數(shù)學(xué),計算機及其他學(xué)科的知識來解決問題。因此,有些學(xué)生雖然對數(shù)學(xué)建模競賽有參與的想法,且在對數(shù)學(xué)建模不夠了解的情況下參與,而在參與過程中受到知識結(jié)構(gòu)和水平,客觀條件的限制,不得不中途退出。(2)學(xué)校對數(shù)學(xué)建模重視不夠,對數(shù)學(xué)建模競賽活動的宣傳、推廣、組織力度不到位,以青海大學(xué)為例,青海大學(xué)近三年的參賽隊都只有幾隊,而且都是教師通過數(shù)模選修課選拔出進行參賽的,每年競賽學(xué)校都未發(fā)過通知,而且學(xué)校很少舉辦有關(guān)建模的講座,以及開展此類活動,數(shù)學(xué)建模協(xié)會也是在近幾年才創(chuàng)辦的,由于學(xué)校對數(shù)學(xué)建模不夠重視,數(shù)學(xué)建模的發(fā)展失去了最關(guān)鍵的引力,學(xué)生由此對數(shù)學(xué)建模反應(yīng)冷淡。(3)教師的參與面窄也影響了學(xué)生參與數(shù)學(xué)建模競賽及活動的積極性,目前數(shù)學(xué)建模的指導(dǎo)工作大多依靠數(shù)學(xué)系的老師,而且其他專業(yè)的教師對數(shù)學(xué)建模了解甚少,教師的參與面窄,指導(dǎo)力度非常有限,而且很多學(xué)校都是在臨近競賽了才對學(xué)生進行一個月左右的集中培訓(xùn),然而數(shù)學(xué)建模本身是一項系統(tǒng)工程,牽涉的知識面廣,不是短時間的“集中培訓(xùn)”突擊應(yīng)試教育就可以奏效的,這樣的指導(dǎo)對學(xué)生的作用不大。
二、提高大學(xué)生參與數(shù)學(xué)建模競賽的積極性的有效途徑
1、學(xué)校應(yīng)提高對數(shù)學(xué)建模的重視程度,積極宣傳和組織數(shù)學(xué)建?;顒?BR> 西北高校大多都將數(shù)學(xué)建模作為選修課開設(shè),對學(xué)生該課程的考核也很簡單,所以筆者建議學(xué)校能將數(shù)學(xué)建模作為一門必修課開設(shè),提前讓學(xué)生有機會接觸,掌握一些數(shù)學(xué)建模的理論基礎(chǔ),并同時開設(shè)數(shù)學(xué)實驗課,要求學(xué)生掌握多種數(shù)學(xué)軟件。學(xué)校還可通過學(xué)校網(wǎng)站,學(xué)生社團舉辦活動定期宣傳數(shù)學(xué)建模,擴大數(shù)學(xué)建模競賽的影響力,圍繞數(shù)學(xué)建模開展學(xué)術(shù)交流,邀請專家及有經(jīng)驗的老師開展數(shù)學(xué)建模講座,由此營造一種良好的數(shù)學(xué)建模氣氛。
2、學(xué)生應(yīng)注重自身各方面能力的培養(yǎng),積極主動地參與數(shù)學(xué)建模競賽
學(xué)生應(yīng)有意識地通過各種渠道盡可能多地去了解數(shù)學(xué)建模競賽,并在平常的學(xué)習(xí)過程中豐富自己數(shù)學(xué)、計算機、工程等各方面的知識,并能將單科知識相互聯(lián)系和滲透,同時利用互聯(lián)網(wǎng)了解更多的學(xué)科前沿及社會熱點,將書本知識應(yīng)用于這些未解決的社會熱點問題上,通過這樣長時間的實踐,自身的學(xué)習(xí)能力、創(chuàng)造能力、“應(yīng)用”數(shù)學(xué)的能力真正能得到提高,進而加深對數(shù)學(xué)的熱愛。
3、學(xué)校教師應(yīng)增強對數(shù)學(xué)建模教學(xué)的熱情,引導(dǎo)學(xué)生積極參與數(shù)學(xué)建模活動
數(shù)學(xué)建模不僅對學(xué)生的能力要求較高,對參與的教師的要求更高,因此教師應(yīng)該不斷地進行知識的擴充,創(chuàng)造性地從事教學(xué),做到將學(xué)科前沿及社會熱點融入到教學(xué)中來,并在學(xué)生日常的數(shù)學(xué)建模活動中給予指導(dǎo),主動地與學(xué)生共同去探討,教師和學(xué)生能相互啟發(fā),相互促進,共同提高其能力。
三、結(jié)束語
由于西北高校的數(shù)學(xué)建模競賽起步晚,且學(xué)生的基礎(chǔ)較差,專業(yè)理論功底薄,加上學(xué)校對數(shù)學(xué)建模重視不夠,以及教師的參與面窄,指導(dǎo)積極性不高,勢必造成數(shù)學(xué)建模在校內(nèi)影響和學(xué)生的認(rèn)知面極其有限的境地,且培養(yǎng)學(xué)生數(shù)學(xué)建模能力也是一項長期而艱巨的任務(wù),因此我們必須堅持不懈,通過學(xué)校、學(xué)生、教師的共同努力將數(shù)學(xué)建模競賽在西北高校中更有效的推廣,促使更多的學(xué)生積極參與到數(shù)學(xué)建模競賽中來,更好地完成學(xué)校承載的培養(yǎng)高素質(zhì),高技能人才的教育目標(biāo)。
【參考文獻】
大學(xué)生數(shù)學(xué)建模論文篇二
計算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預(yù)見。數(shù)學(xué)建模可以說和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
1.數(shù)學(xué)建模對教學(xué)過程的作用
1.1數(shù)學(xué)建模引進大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點,借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識教學(xué)內(nèi)容從而認(rèn)識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識科學(xué),理解科學(xué),從而指導(dǎo)實踐,促進學(xué)生的德智體美勞全面的進步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實踐的能力。再次建模結(jié)果對現(xiàn)實生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實踐,從而為科學(xué)的進步和人才綜合水平的提高提供可能。
2.數(shù)學(xué)建模對當(dāng)代大學(xué)生的作用
2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨的數(shù)學(xué)家變成經(jīng)濟學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運用數(shù)學(xué)科學(xué)去分析和解決實際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運用數(shù)學(xué)的思維和方法,利用現(xiàn)代計算機科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
3.數(shù)學(xué)建模對大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時代的進步,是時代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運用數(shù)學(xué)科學(xué)解決現(xiàn)實問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進步,得到了認(rèn)可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計算機科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計算機學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進步發(fā)展的方向和原動力。
參考文獻:
[1]李進華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
大學(xué)生數(shù)學(xué)建模論文篇三
一.?dāng)?shù)學(xué)建模協(xié)會簡介
數(shù)學(xué)建模協(xié)會作為一個參加競賽兼有學(xué)術(shù)理論性的社團,本著以學(xué)術(shù)為主,深入鉆研的原則,以”創(chuàng)新意識,團隊精神,重在參與,公平競爭”為指導(dǎo)思想,已”將平常所學(xué)的抽象的數(shù)學(xué)知識應(yīng)用到實踐或生活中,將平常所學(xué)的電腦知識趣味化為特色,以集中對數(shù)學(xué)建模有興趣的同學(xué),引導(dǎo)他們學(xué)習(xí)應(yīng)用數(shù)學(xué)領(lǐng)域內(nèi)各方面知識,培養(yǎng)他們運用理論解決實際問題的能力和團隊合作精神,激發(fā)他們?nèi)W(xué)習(xí)從未接觸過的知識,培養(yǎng)他們動手動腦的積極性,提高學(xué)生程序設(shè)計和應(yīng)用計算機解決實際問題的能力,使他們在協(xié)會中得到更好的鍛煉與發(fā)展,挖掘?qū)W生中的數(shù)學(xué)建模人才,為參加更高層次數(shù)學(xué)建模競賽選拔精英的目的.
近十年來,大學(xué)生數(shù)學(xué)建模競賽在培養(yǎng)學(xué)子的創(chuàng)新精神,實踐能力,團隊精神的同時,逐漸成為各高校教學(xué)能力的重要評測指標(biāo)..我們堅信,數(shù)學(xué)建模協(xié)會在團委的關(guān)心支持和自身的不懈努力下,一定年選拔和培養(yǎng)更多的數(shù)學(xué)建模人才,讓我院學(xué)生在高層次數(shù)學(xué)建模競賽中取得更好的成績.
二.?dāng)?shù)模背景
近半個多世紀(jì)以來,隨著計算機技術(shù)的迅速發(fā)展,數(shù)學(xué)的應(yīng)用不僅在工程技術(shù)、自然科學(xué)等領(lǐng)域發(fā)揮著越來越重要的作用,而且以空前的廣度和深度向經(jīng)濟、金融、生物、醫(yī)學(xué)、環(huán)境、地質(zhì)、人口、交通等新的領(lǐng)域滲透,所謂數(shù)學(xué)技術(shù)已經(jīng)成為當(dāng)代高新技術(shù)的重要組成部分。
不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實際問題,還是與其它學(xué)科相結(jié)合形成交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計算求解。數(shù)學(xué)建模和計算機技術(shù)在知識經(jīng)濟時代的作用可謂是如虎添翼。
數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué),在它產(chǎn)生和發(fā)展的歷史長河中,一直是和各種各樣的應(yīng)用問題緊密相關(guān)的。數(shù)學(xué)的特點不僅在于概念的抽象性、邏輯的嚴(yán)密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性,進入20世紀(jì)以來,隨著科學(xué)技術(shù)的迅速發(fā)展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數(shù)學(xué)的應(yīng)用越來越廣泛和深入,特別是在即將進入21世紀(jì)的知識經(jīng)濟時代,數(shù)學(xué)科學(xué)的地位會發(fā)生巨大的變化,它正在從國或經(jīng)濟和科技的后備走到了前沿。經(jīng)濟發(fā)展的全球化、計算機的迅猛發(fā)展,數(shù)理論與方法的不斷擴充使得數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個重要組成部分和思想庫,數(shù)學(xué)已經(jīng)成為一種能夠普遍實施的技術(shù)。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力已經(jīng)成為數(shù)學(xué)教學(xué)的一個重要方面。
三.?dāng)?shù)學(xué)建模的定義
當(dāng)需要從定量的角度分析和研究一個實際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言,把它表述為數(shù)學(xué)式子,也就是數(shù)學(xué)模型,然后用通過計算得到的模型結(jié)果來解釋實際問題,并接受實際的檢驗。這個建立數(shù)學(xué)模型的全過程就稱為數(shù)學(xué)建模。
數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并“解決”實際問題的一種強有力的數(shù)學(xué)手段。
數(shù)學(xué)建模就是用數(shù)學(xué)語言描述實際現(xiàn)象的過程。這里的實際現(xiàn)象既包涵具體的自然現(xiàn)象比如自由落體現(xiàn)象,也包涵抽象的現(xiàn)象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態(tài),內(nèi)在機制的描述,也包括預(yù)測,試驗和解釋實際現(xiàn)象等內(nèi)容。
我們也可以這樣直觀地理解這個概念:數(shù)學(xué)建模是一個讓純粹數(shù)學(xué)家(指只懂?dāng)?shù)學(xué)不懂?dāng)?shù)學(xué)在實際中的應(yīng)用的數(shù)學(xué)家)變成物理學(xué)家,生物學(xué)家,經(jīng)濟學(xué)家甚至心理學(xué)家等等的過程。
數(shù)學(xué)模型一般是實際事物的一種數(shù)學(xué)簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質(zhì)的區(qū)別。要描述一個實際現(xiàn)象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。使用數(shù)學(xué)語言描述的事物就稱為數(shù)學(xué)模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數(shù)學(xué)模型作為實際物體的代替而進行相應(yīng)的實驗,實驗本身也是實際操作的一種理論替代。
四.活動背景
本次數(shù)模競賽是學(xué)院數(shù)學(xué)建模協(xié)會為響應(yīng)中國礦業(yè)大學(xué)“行健杯”的號召,舉辦的競賽項目。數(shù)學(xué)建模作為當(dāng)代中國大學(xué)生普遍喜愛和樂于參加的競賽,已經(jīng)成為大學(xué)生競賽中專業(yè)性最強技術(shù)含量最高的競賽項目之一。隨著數(shù)模競賽的普及率越來越高,影響力越來越達(dá),各地高校紛紛培養(yǎng)數(shù)模人才。
五.活動目的
(1)數(shù)學(xué)建模競賽作為科技競賽一種,要體現(xiàn)出科技運動會的價值,展示出社團及礦大學(xué)子的風(fēng)采。
(2)通過本次競賽,使同學(xué)們對數(shù)學(xué)的本質(zhì),數(shù)學(xué)的價值與數(shù)學(xué)的作用有更深切的理解與體會。培養(yǎng)同學(xué)們數(shù)學(xué)化的思維方式,從而提升同學(xué)們的數(shù)學(xué)修為,熟悉數(shù)學(xué)化的符號表達(dá),提升同學(xué)們的論文水平,為蘇北賽打下扎實的基礎(chǔ)。
大學(xué)生數(shù)學(xué)建模論文篇四
【摘 要】本文重點分析了數(shù)學(xué)建模對當(dāng)前數(shù)學(xué)教育教學(xué)改革的現(xiàn)實意義,探討了數(shù)學(xué)建模對學(xué)生應(yīng)用數(shù)學(xué)能力的培養(yǎng),闡述了計算機在數(shù)學(xué)建模競賽中的作用和地位,最后介紹了數(shù)學(xué)建模對數(shù)學(xué)教學(xué)改革的啟示意義。
【關(guān)鍵詞】數(shù)學(xué)建模;綜合素質(zhì);教學(xué)改革
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強調(diào)對定義、定理、法則、公式等知識的灌輸與講授,不注重這些知識的應(yīng)用,割斷了理論與實際的聯(lián)系,造成學(xué)與用的嚴(yán)重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴(yán)重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識掌握得還可以,但應(yīng)用知識的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時上手速度慢,面對新的數(shù)學(xué)問題時束手無策,不能將所學(xué)的知識靈活運用到實際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實意義。
1 數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識,從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實的基礎(chǔ)知識,使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解,通過積極主動的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對解做出評價,必要時對模型做出改進。這一過程包括了歸納、整理、推理、深化等活動,因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識僵化、學(xué)而不用的局面,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實際問題的能力。
3 數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實際,錯綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,必須積極動腦,而且常常需要另辟蹊徑,在這里,常常會迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實踐活動,可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們在頭腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識。在從實際問題中抽象出數(shù)學(xué)模型的過程中,須把實際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個過程。
4 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運用計算機的能力
5 數(shù)學(xué)建??梢栽鰪姶髮W(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對不同的實際問題,如何進行分析、推理、概括以及如何利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對實際問題進行反復(fù)多次的研究、分析、觀察和對模型進行反復(fù)多次的計算、論證及修改等,整個過程是一個非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅韌不拔的毅力、遭遇挫折后較強的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時數(shù)學(xué)建模一般都是由幾個人組成的團隊來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團隊精神,這些對他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點,不斷修正自己的教育內(nèi)容和方法。學(xué)生要對教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強烈的理科特點:重基礎(chǔ)理論、輕實踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對新興科技知識的傳授,拓寬了學(xué)生的知識面。這些特點對于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識面和對新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競賽與學(xué)生畢業(yè)以后工作時的條件非常相近,是對學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識,這項活動的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競賽[j].工程數(shù)學(xué)學(xué)報,2008(25):1-2.
大學(xué)生數(shù)學(xué)建模論文篇五
1、海選和優(yōu)選有機結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進行數(shù)學(xué)建模競賽的宣傳,對其作用以及影響進行充分的講解,鼓勵校園內(nèi)的同學(xué)來積極的進行參加。倘若想要參與其中的同學(xué)人數(shù)過多時,畢竟參賽名額是有一定限制的,可以利用面試的方式對其進行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績把大家劃分為正式參賽隊和業(yè)余參賽隊。
2、充分利用現(xiàn)有資源在進行數(shù)學(xué)建模競賽組隊時,應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊伍中不同人員屬于什么年級,其次了解她們的每個人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來說,同一隊伍中的每個人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來大家可以做到取長補短,理論知識與實踐動手兩手抓,一個團隊里需要出眾的知識更需要過人的文筆。如此一來才能保證隊伍的整體實力,力爭在建模競賽中取得好成績。
3、重點培訓(xùn)在對學(xué)生進行賽前相關(guān)培訓(xùn)時,在培訓(xùn)的過程中,教師可根據(jù)自身的擅長專題,來進行相關(guān)內(nèi)容的講解,與此同時結(jié)合不同隊伍的自身特點劃設(shè)側(cè)重點,同學(xué)之間的接受能力也是各不同的,能力強的可以開小灶,沒有相關(guān)競賽經(jīng)驗的要進行重點培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。
4、合理分工密切合作在參加數(shù)學(xué)建模競賽的同學(xué)得到競賽試題之后,老師應(yīng)該及時幫助學(xué)生進行試題分析與指導(dǎo),根據(jù)團隊內(nèi)不同人員的實際情況以及試題的具體內(nèi)容難易,進行針對性的講解從而對同學(xué)們進行合理分工,確保每個人所負(fù)責(zé)的部分都是自己相較于其他人而言是最擅長的。值得注意的是,雖然進行分工,但這并不是絕對的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競賽中需要的是團隊協(xié)作,而不是英雄主義。
5、堅持可持續(xù)發(fā)展培訓(xùn)師資隊伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊伍既要有身經(jīng)百戰(zhàn)經(jīng)驗豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長,從而保證師資隊伍的可持續(xù)發(fā)展。
二、大學(xué)生數(shù)學(xué)建模競賽組織和管理方式的探索
1、進行課程教學(xué)并給出有效的教學(xué)計劃每個學(xué)生的知識儲備都有著各自的特點,借助良好的教育對學(xué)生們的知識架構(gòu)進行完善,實現(xiàn)培養(yǎng)出學(xué)生強大能力的目標(biāo),數(shù)學(xué)建模對學(xué)生來說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進行課程開展的時候,要根據(jù)不同的培訓(xùn)對象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競賽課程,選修課程所面向的群體為整個學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競賽課程,必修課就要有針對性,因為并不是所有的學(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當(dāng)?shù)恼{(diào)整。
2、利用建模教學(xué)實現(xiàn)知識與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競賽好成績的最佳途徑,但是教學(xué)的過程中要注重數(shù)學(xué)知識與實踐能力的均衡共同培養(yǎng),不能過分的注重知識的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競賽中取得良好的成績。
3、數(shù)學(xué)建模競賽隊員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時間來參加培訓(xùn)。以上述條件為基礎(chǔ),報名之后通過面試的測試,然后再從中篩選出相對優(yōu)秀的學(xué)生組成參賽隊伍,在篩選的時候要充分的考慮到團隊整體知識的涵蓋面,不同人之間所擅長的專業(yè)不同為最佳。
4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級階段,這一階段所注重的是對相關(guān)知識的培訓(xùn)。從初等模型、簡單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請建模專家進行系統(tǒng)的講解,并結(jié)合精典范例進行深入剖析,在擴大學(xué)生的知識面和視野的同時提升學(xué)生的建模能力。
三、結(jié)語
通過以上的一系列論述,我們已經(jīng)對大學(xué)數(shù)學(xué)建模競賽的隊伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競賽對于大學(xué)生來說好處頗多,一方面能夠使學(xué)生們對學(xué)習(xí)的數(shù)學(xué)知識有更深的理解與更為靈活的應(yīng)用,另一方面,通過競賽中的組隊讓大家感受到合作的重要性,為以后步入社會的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?shù)學(xué)建模的研究有一定的借鑒作用!
參考文獻:
[1]韓成標(biāo),賈進濤、高職院校參加數(shù)學(xué)建模競賽大有可為[j]、工程數(shù)學(xué)學(xué)報,(8)
[2]全國大學(xué)生數(shù)學(xué)建模競賽賽題講評與經(jīng)驗交流會在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)
[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競賽隊員選拔和組隊問題[j]、信息與電腦:理論版,(3)
[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報,2017(2)
大學(xué)生數(shù)學(xué)建模論文篇六
1.數(shù)學(xué)建模對學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實際問題,很多都是當(dāng)前社會比較關(guān)注的熱點問題,比如開放性小區(qū)的建立,人工智能機器人在工作中的應(yīng)用,這些問題開放性比較強,有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計終于派上了用場。數(shù)學(xué)建模課程會結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會經(jīng)常涉及到物理,工程,經(jīng)濟,金融,農(nóng)林等各個領(lǐng)域各個學(xué)科,從不同的學(xué)科中找最熱門最真實的案例進行教學(xué),這要求學(xué)生有很強的自學(xué)能力,要不得學(xué)習(xí)新知識,新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識把自己學(xué)科的專業(yè)知識轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢,以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對學(xué)生的知識體系起到了完善的作用。在整個競賽中從模型建立與求解到寫作,都是由學(xué)生獨立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團隊合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競賽是由三個人組成一個小團隊共同處理一個問題,在這個團隊中每個人都各有分工,有的人擅長建立模型,有的人擅長計算機編程求解模型,有的人擅長寫作,這三個人缺一不可,任何一個人都發(fā)揮著舉足輕重的作用。通常我們還會設(shè)一個隊長能協(xié)調(diào)隊員之間的關(guān)系和對題目的把控。每個人都有不同的性格,能力,學(xué)識,知識結(jié)構(gòu),在做題的過程中會產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會有很多的不同,所以每個成員都要有團隊精神、相互信任、相互溝通、相互尊重、取長補短、充分發(fā)揮集體的力量共同完成一個項目。同時每年無論在培訓(xùn)還是正式比賽過程中由于高強度的腦力活動,強大的心理壓力以及隊員之間的不和睦都會造成中途退賽,這樣無疑是最可惜的。所以,在競賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識和團隊合作精神,還培養(yǎng)了大家的心理承受能力,強大的意志力以及與他人溝通交往的能力,是對自己綜合素質(zhì)的一個提高,對未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時還培養(yǎng)了他們應(yīng)用計算機去處理各種問題的科技能力。他們學(xué)會了各種軟件、語言,很多同學(xué)會數(shù)據(jù)挖掘、機器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識的學(xué)習(xí),更重要的是理論與實踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進培養(yǎng)模式和方法,爭取通過數(shù)學(xué)建模平臺使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻:
[2]韋程東.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,.
大學(xué)生數(shù)學(xué)建模論文篇七
我們仔細(xì)閱讀了西北民族大學(xué)研究生數(shù)學(xué)建模競賽的競賽規(guī)則。
我們完全明白,在競賽開始后參賽隊員不能以任何方式(包括電話、電子郵件、網(wǎng)上咨詢等)與隊外的任何人(包括指導(dǎo)教師)研究、討論與賽題有關(guān)的問題。
我們知道,抄襲別人的成果是違反競賽規(guī)則的',如果引用別人的成果或其他公開的資料(包括網(wǎng)上查到的資料),必須按照規(guī)定的參考文獻的表述方式在正文引用處和參考文獻中明確列出。
我們鄭重承諾,嚴(yán)格遵守競賽規(guī)則,以保證競賽的公正、公平性。如有違反競賽規(guī)則的行為,我們將受到嚴(yán)肅處理。
我們參賽選擇的題號是(從a/b/c中選擇一項填寫):
我們的參賽論文題目是:
參賽隊員(打?。?BR> 隊員1姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
隊員2姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
隊員3姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
參賽隊員簽名:1;2;3。
日期:年月日
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
大學(xué)生數(shù)學(xué)建模論文篇八
1.數(shù)學(xué)建模對學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實際問題,很多都是當(dāng)前社會比較關(guān)注的熱點問題,比如開放性小區(qū)的建立,人工智能機器人在工作中的應(yīng)用,這些問題開放性比較強,有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計終于派上了用場。數(shù)學(xué)建模課程會結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會經(jīng)常涉及到物理,工程,經(jīng)濟,金融,農(nóng)林等各個領(lǐng)域各個學(xué)科,從不同的學(xué)科中找最熱門最真實的案例進行教學(xué),這要求學(xué)生有很強的自學(xué)能力,要不得學(xué)習(xí)新知識,新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識把自己學(xué)科的專業(yè)知識轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢,以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對學(xué)生的知識體系起到了完善的作用。在整個競賽中從模型建立與求解到寫作,都是由學(xué)生獨立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團隊合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競賽是由三個人組成一個小團隊共同處理一個問題,在這個團隊中每個人都各有分工,有的人擅長建立模型,有的人擅長計算機編程求解模型,有的人擅長寫作,這三個人缺一不可,任何一個人都發(fā)揮著舉足輕重的作用。通常我們還會設(shè)一個隊長能協(xié)調(diào)隊員之間的關(guān)系和對題目的把控。每個人都有不同的性格,能力,學(xué)識,知識結(jié)構(gòu),在做題的過程中會產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會有很多的不同,所以每個成員都要有團隊精神、相互信任、相互溝通、相互尊重、取長補短、充分發(fā)揮集體的力量共同完成一個項目。同時每年無論在培訓(xùn)還是正式比賽過程中由于高強度的腦力活動,強大的心理壓力以及隊員之間的不和睦都會造成中途退賽,這樣無疑是最可惜的。所以,在競賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識和團隊合作精神,還培養(yǎng)了大家的心理承受能力,強大的意志力以及與他人溝通交往的能力,是對自己綜合素質(zhì)的一個提高,對未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時還培養(yǎng)了他們應(yīng)用計算機去處理各種問題的科技能力。他們學(xué)會了各種軟件、語言,很多同學(xué)會數(shù)據(jù)挖掘、機器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識的學(xué)習(xí),更重要的是理論與實踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進培養(yǎng)模式和方法,爭取通過數(shù)學(xué)建模平臺使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻:
[2]韋程東.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,2012.
大學(xué)生數(shù)學(xué)建模論文篇九
摘要:數(shù)學(xué)建模作為現(xiàn)代應(yīng)用數(shù)學(xué)的一個重要組成部分被越來越多的人所重視。本文描述數(shù)學(xué)建模課程及數(shù)學(xué)建模競賽在培養(yǎng)大學(xué)生各種能力中的作用。
關(guān)鍵詞:數(shù)學(xué)建模;競賽;大學(xué)生;能力
一、引言
數(shù)學(xué)建模是運用數(shù)學(xué)的語言和方法,去描述或模擬實際問題中的數(shù)量關(guān)系,并解決實際問題的一種強有力的教學(xué)手段。數(shù)學(xué)建模是應(yīng)用數(shù)學(xué)的語言和方法解決實際問題的過程,也是一個培養(yǎng)大學(xué)生各種能力的綜合過程。
大學(xué)生數(shù)學(xué)建模競賽最早是1985年在美國出現(xiàn)的。1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動下,我國幾所大學(xué)的大學(xué)生開始參加美國的競賽。自1994年起,教育部高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會共同主辦全國大學(xué)生數(shù)學(xué)建模競賽,每年一屆,這項活動被教育部列為全國大學(xué)生四大競賽之一。隨著全國大學(xué)生數(shù)學(xué)建模競賽的廣泛影響,越來越多的高校組織隊員參加該項競賽,這項競賽的規(guī)模以平均年增長25%以上的速度發(fā)展。2008年全國有31個省/市/自治區(qū)(包括香港)1,023所院校、12,846個隊、38,000多名來自各個專業(yè)的大學(xué)生參加競賽,比2007年新增院校15所。2009年全國有33個省/市/自治區(qū)(包括香港和澳門特區(qū))1,137所院校、15,046個隊、45,000多名來自各個專業(yè)的大學(xué)生參加競賽,是歷年來參賽人數(shù)最多的(其中西藏和澳門是首次參賽)。
20世紀(jì)八十年代以來,我國各高等院校相繼開設(shè)數(shù)學(xué)建模課程。數(shù)學(xué)建模課程是在高等數(shù)學(xué)、線性代數(shù)、概率與數(shù)理統(tǒng)計之后,為實現(xiàn)理論和實踐一體化、進一步提高運用數(shù)學(xué)知識和計算機技術(shù)解決實際問題,培養(yǎng)創(chuàng)新能力所開設(shè)的一門廣泛的公共基礎(chǔ)課。教育必須反映社會的實際需要,數(shù)學(xué)建模課程進入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。
素質(zhì)教育是新世紀(jì)高校高等數(shù)學(xué)教育改革的一個重要方向。在大學(xué)校園中,數(shù)學(xué)建模課程的開設(shè)及數(shù)學(xué)建?;顒拥拈_展,能有效地激發(fā)大學(xué)生學(xué)習(xí)的興趣和積極性,使大學(xué)生掌握準(zhǔn)確快捷的計算方法和嚴(yán)密的邏輯推理,培養(yǎng)大學(xué)生用數(shù)學(xué)工具分析解決實際問題的能力,是實施素質(zhì)教育的一種有效途徑。
二、數(shù)學(xué)建模對大學(xué)生能力的培養(yǎng)
通過數(shù)學(xué)建模課程的教學(xué)與參加數(shù)學(xué)建模競賽的實踐,使我們深刻感受到數(shù)學(xué)建模過程,不僅是對大學(xué)生知識和方法的培養(yǎng),更是對當(dāng)代大學(xué)生各種能力的培養(yǎng)有著深遠(yuǎn)的意義。
1、有利于提高學(xué)生分析解決問題的能力。數(shù)學(xué)建模教學(xué)強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解提出合理的假設(shè),從一個個實際問題中抽象出數(shù)學(xué)問題,建立相應(yīng)數(shù)學(xué)模型,利用恰當(dāng)?shù)臄?shù)學(xué)方法來求解此模型,解決實際問題,并對模型進行評價改進。因此,數(shù)學(xué)建模教學(xué)為大學(xué)生架設(shè)了由抽象的數(shù)學(xué)理論知識通向具體的實際問題的橋梁,是使大學(xué)生的數(shù)學(xué)知識和應(yīng)用能力共同提高的有效方式。大學(xué)生通過參與數(shù)學(xué)建模及競賽活動,能切身體會到學(xué)習(xí)數(shù)學(xué)的實用價值,這是傳統(tǒng)教學(xué)無法達(dá)到的效果,從而激發(fā)了大學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高了學(xué)生分析解決實際問題的能力。
2、有利于培養(yǎng)大學(xué)生應(yīng)用數(shù)學(xué)的能力。數(shù)學(xué)建模通過積極主動的發(fā)散性思維,培養(yǎng)學(xué)生“應(yīng)用數(shù)學(xué)”的能力。這是數(shù)學(xué)教育的根本任務(wù),當(dāng)然應(yīng)當(dāng)成為數(shù)學(xué)應(yīng)用于教學(xué)目的中的重中之重。應(yīng)用數(shù)學(xué)的能力是一種綜合能力,它離不開數(shù)學(xué)運算、數(shù)學(xué)推理、空間想像等基本的數(shù)學(xué)能力,但它主要側(cè)重于從實際問題中提出并表達(dá)數(shù)學(xué)問題的能力,運用并初步構(gòu)建數(shù)學(xué)模型的能力,對數(shù)學(xué)問題及模型進行變換化歸的能力,對數(shù)學(xué)結(jié)果進行檢驗和評價、闡釋和處理的能力。數(shù)學(xué)建模過程包括了歸納、整理、推理、深化等過程,因此把數(shù)學(xué)建模引入課堂教學(xué),學(xué)生能夠?qū)W會如何利用所學(xué)知識構(gòu)造數(shù)學(xué)模型,求解數(shù)學(xué)模型,從而解決實際問題,并且做出必要的評價與改進,從而加深對數(shù)學(xué)知識的理解,提高了應(yīng)用數(shù)學(xué)的能力。
3、有利于學(xué)生抽象概括能力的培養(yǎng)。應(yīng)用數(shù)學(xué)去解決各類實際問題時,建立數(shù)學(xué)模型是十分關(guān)鍵的一步,同時也是十分困難的一步。建立教學(xué)模型的過程,是把錯綜復(fù)雜的實際問題簡化,抽象、概括為合理的數(shù)學(xué)結(jié)構(gòu)的過程。抽象是抽取事物的本質(zhì)屬性,使它與其他屬性分開;概括是將同類事物的相同屬性結(jié)合起來。抽象和概括是緊密聯(lián)系的,只有抽象出事物的本質(zhì)屬性才能進行概括,如果思維不具有概括性也無從進行抽象。抽象能力是指在建模過程中能拋棄無關(guān)的非本質(zhì)因素,從本質(zhì)上看問題,自覺地進行層層的抽象概括,建立數(shù)學(xué)模型的能力。數(shù)學(xué)建模過程使學(xué)生對復(fù)雜的事物,有意識地區(qū)分主要因素與次要因素,本質(zhì)與表面現(xiàn)象,從而抓住本質(zhì)解決問題。它有利于提高學(xué)生思維的深刻性和抽象概括能力,它主要體現(xiàn)在學(xué)生能善于從復(fù)雜的事物中把握事物的本質(zhì)及規(guī)律,使學(xué)生面對具體問題能有條理地在簡約狀態(tài)下進行思考,并有助于真理的發(fā)現(xiàn)。
4、有利于提高大學(xué)生自學(xué)的能力。數(shù)學(xué)建模以學(xué)生為主,教師事先設(shè)計好問題,啟發(fā)、引導(dǎo)學(xué)生主動查閱文獻資料和學(xué)習(xí)新知識,鼓勵學(xué)生積極開展討論和辯論。學(xué)生通過學(xué)習(xí)數(shù)學(xué)建模課程,參加數(shù)學(xué)建模競賽,需要自學(xué)他完全不了解或知之不多的有關(guān)學(xué)科的專業(yè)知識,在這個過程中,有助于培養(yǎng)大學(xué)生獲取新知識的主動精神,有利于提高大學(xué)生的自學(xué)能力。
參加數(shù)學(xué)建模競賽賽前培訓(xùn)的同學(xué)大都需要學(xué)習(xí)諸如數(shù)理統(tǒng)計、優(yōu)化、微分方程、計算方法、層次分析法、數(shù)學(xué)軟件包的使用等等講座,用的學(xué)時并不多,多數(shù)是啟發(fā)性的講一些基本的概念和方法,主要是靠學(xué)生自己去學(xué),充分調(diào)動學(xué)生們的積極性,充分發(fā)揮學(xué)生們的潛能。同時,在比賽的短短3天時間里,要查閱大量的資料,取其精華,從中尋找到所需要的資料,收集必要的信息,這也必須要求大學(xué)生掌握科學(xué)的方法。這種能力必將使大學(xué)生在未來的工作和科研中受益匪淺。
5、有利于培養(yǎng)大學(xué)生的洞察力和想像力。洞察力是人們對個人認(rèn)知、情感、行為的動機與相互關(guān)系的透徹分析。通俗地講,洞察力就是透過現(xiàn)象看本質(zhì),變無意識為有意識。就這層意義而言,洞察力就是學(xué)會用心理學(xué)的原理和視角來歸納總結(jié)人的行為表現(xiàn)。洞察力是指深入事物或問題的能力,更多的是摻雜了分析和判斷的能力,可以說洞察力是一種綜合能力。
想像力是人在已有形象的基礎(chǔ)上,在頭腦中創(chuàng)造出新形象的能力。in有一句名言:想像力比知識更重要,因為知識是有限的,而想像力包括世界的一切,推動著社會進步,并且是知識的源泉。這句話可以認(rèn)為是開設(shè)“數(shù)學(xué)建?!边@門課程的一個指導(dǎo)思想。
數(shù)學(xué)建模的模型假設(shè)過程就是根據(jù)對實際問題的觀察分析、類比、想像,用數(shù)理建?;蛳到y(tǒng)辨識建模方法作假設(shè),通過形象思維對問題進行簡單化、模型化,做出合乎邏輯的想像,形成實際問題數(shù)理化的設(shè)想。例如,2006年全國大學(xué)生數(shù)學(xué)建模競賽中c題“易拉罐的最優(yōu)設(shè)計問題”,第四問要求大學(xué)生利用對所測量的易拉罐的“洞察力和想像力”,做出自己的關(guān)于易拉罐形狀和尺寸的最優(yōu)設(shè)計。大學(xué)生做題的過程,無異于是對大學(xué)生洞察力和想像力培養(yǎng)的真實體現(xiàn)。
6、有利于提高大學(xué)生利用計算機解決問題的能力。首先,計算機是數(shù)學(xué)建模的得力助手。數(shù)學(xué)建模過程中,大多數(shù)問題靈活多變,很多模型的求解都面臨著大量的計算;其次,所建模型是否與實際吻合,常常要用模型的解來判斷,而且這種工作,在建立一個實際問題的數(shù)學(xué)模型中經(jīng)常要重復(fù)多遍。因此,熟練使用計算機計算數(shù)學(xué)問題是對學(xué)生的必須要求。我們倡導(dǎo)大學(xué)生盡量利用計算機程序或某些專用的數(shù)學(xué)應(yīng)用軟件如mathematica、matlab、lingo、mapple等,以及當(dāng)代高新科技成果,將數(shù)學(xué)、計算機有機地結(jié)合起來去解決實際問題。數(shù)學(xué)建模教學(xué)中結(jié)合實驗室上機實踐,計算機的應(yīng)用不僅僅表現(xiàn)在數(shù)學(xué)建模中模型的簡化與求解,而且給大學(xué)生提供了一種評價模型的“試驗場所”,這就有助于培養(yǎng)大學(xué)生利用數(shù)學(xué)軟件和計算機解決實際問題的能力。
7、有利于培養(yǎng)大學(xué)生的創(chuàng)新能力。創(chuàng)新是指人類為了滿足自身的需要,不斷拓展對客觀世界、自身任職與行為過程和結(jié)果的活動。創(chuàng)新能力指人在順利完成以原有知識經(jīng)驗為基礎(chǔ)的創(chuàng)建新事物活動中表現(xiàn)出來的潛在心理品質(zhì)。我們在教學(xué)中應(yīng)給學(xué)生留有充分的余地,鼓勵學(xué)生開闊視野、大膽懷疑、勇于進取、勇于創(chuàng)新,讓學(xué)生充分發(fā)揮想像力,不拘泥于用一種方法解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新能力。在數(shù)學(xué)建模競賽中,對給出的具體實際問題,一般不會有現(xiàn)成的模型,這就要求大學(xué)生在原有模型的基礎(chǔ)上進行大膽的嘗試與創(chuàng)新。創(chuàng)新是一個民族的靈魂,只有創(chuàng)新才能發(fā)展。而創(chuàng)新教育是以全面、充分發(fā)展學(xué)生的創(chuàng)造力為核心的教育,它是適應(yīng)經(jīng)濟時代發(fā)展的教育思想。數(shù)學(xué)建模課程就是培養(yǎng)創(chuàng)新能力的一個極好的載體,數(shù)學(xué)建模的過程是一個創(chuàng)造性的過程,我們應(yīng)該充分發(fā)揮它在創(chuàng)新能力培養(yǎng)中的作用,它為培養(yǎng)大學(xué)生創(chuàng)造性思維能力和創(chuàng)新精神提供了廣闊的空間。
8、有利于提高大學(xué)生論文寫作和表達(dá)能力。數(shù)學(xué)建模成績的好壞、獲獎級別的高低與論文撰寫有著密切關(guān)系,數(shù)學(xué)建模的答卷是評價的唯一依據(jù)。建模方法獨特、結(jié)果出色,但如果不能做到結(jié)構(gòu)清晰、重點突出、文字流暢,也將會失去獲獎的機會。寫好論文的訓(xùn)練,是科技寫作的一種基本訓(xùn)練。通過建模競賽,學(xué)生能夠?qū)W會如何更加準(zhǔn)確地闡述自己的觀點。所以,數(shù)學(xué)建模對培養(yǎng)學(xué)生的論文寫作能力和表達(dá)能力,都起到了積極的作用。
9、有利于培養(yǎng)大學(xué)生的合作交流能力和團隊合作精神。數(shù)學(xué)建模的問題涉及各個領(lǐng)域,都有一定的深度和廣度,所需知識較多,數(shù)學(xué)建模課程廣泛地采用討論班的教學(xué)方式,同學(xué)自己報告、討論、辯論,教師主要起質(zhì)疑、答疑、輔導(dǎo)的作用,與此同時,同學(xué)之間互相平等,互相尊重,培養(yǎng)了學(xué)生合作交流的能力。
參考文獻:
[1]姜啟源,謝金星,葉俊。數(shù)學(xué)模型[m].高等教育出版社,2004.
[2]趙靜,但奇。數(shù)學(xué)建模與數(shù)學(xué)實驗[m].高等教育出版社,2004.
[3]劉來福等。數(shù)學(xué)模型與數(shù)學(xué)建模[m].北京:北京師范大學(xué)出版社,1999.
大學(xué)生數(shù)學(xué)建模論文篇十
大學(xué)生數(shù)學(xué)建模競賽,由教育部高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會主辦,創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,也是世界上規(guī)模最大的數(shù)學(xué)建模競賽,同時成為高等院校文秘站-您的專屬秘書,中國最強免費!一項重大的課外科技活動。尤其,來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1338所院校、25347個隊(其中本科組22233隊、??平M3114隊)、7萬多名大學(xué)生報名參加本項競賽。每年的9月份舉辦,三人為一組,比賽時間共三天,最終通過論文的形式來體現(xiàn),以創(chuàng)新意識、團隊精神、重在參與、公平競爭為宗旨,旨在培養(yǎng)大學(xué)生的創(chuàng)新意識與團隊精神。
一、大學(xué)生數(shù)學(xué)建模競賽培訓(xùn)的重要性
數(shù)學(xué)建模競賽作為教育部四大學(xué)科競賽之首,規(guī)模最大,影響最大。因此,數(shù)學(xué)建模競賽培訓(xùn)顯得尤為重要。它有利于讓學(xué)生盡早了解并掌握建模的基礎(chǔ)理論知識及相關(guān)應(yīng)用軟件;有利于培養(yǎng)學(xué)生分析問題和解決實際問題的能力;有利于培養(yǎng)學(xué)生的團隊合作精神,使隊員間盡早磨合,相互了解;有利于培養(yǎng)學(xué)生的創(chuàng)新意識和發(fā)散思維;有利于訓(xùn)練學(xué)生快速獲取有用信息和資料的能力;有利于增強學(xué)生的寫作技能和排版技術(shù)等。
通過參加數(shù)學(xué)建模競賽,受到了一次科學(xué)研究的初步訓(xùn)練,初步具備了科學(xué)研究的能力,提高了自身的分析問題和解決問題的能力以及計算機應(yīng)用能力,培養(yǎng)了刻苦鉆研問題的精神以及與他人友好合作的團隊精神,培養(yǎng)了敢于戰(zhàn)勝困難的堅強意志和創(chuàng)新能力,這些能力和精神為各自今后的學(xué)習(xí)和工作都帶來了巨大的影響。因為參與數(shù)學(xué)建模比賽,許多學(xué)生收獲了知識,取得了榮譽,參賽隊員的共同體會是:一次參賽,終生受益。
二、培訓(xùn)中創(chuàng)新方法――案例模板式教學(xué)
數(shù)學(xué)建模培訓(xùn)一般是通過給學(xué)生講解數(shù)學(xué)建模的基本知識與理論,相關(guān)的數(shù)學(xué)軟件及軟件包,輔以講座,上機,討論等方式,讓學(xué)生對數(shù)學(xué)建模的基本方法及相關(guān)數(shù)學(xué)軟件的使用有一定的了解,對數(shù)學(xué)建模的基本思想有基本把握。
在培訓(xùn)中,通過對以往競賽試題的分析,將近幾年的數(shù)學(xué)建模競賽分為兩大類:固定式問題和開放式問題,采用案例模板式教學(xué)對參加建模競賽的同學(xué)進行輔導(dǎo)。其中,固定式問題指讓學(xué)生對固定的有一定物理背景的問題進行數(shù)學(xué)建模求解;開放式問題指讓學(xué)生準(zhǔn)確把握題意后能充分根據(jù)自己的喜好,選取不同方向或方法進行建模求解。例如:
全國大學(xué)生數(shù)學(xué)建模大賽a題《車道被占用對城市道路通行能力的影響》為典型的固定式題目,要求學(xué)生對已給的.視頻數(shù)據(jù)確定通行能力的數(shù)學(xué)模型,并且求出排隊長度。而全國大學(xué)生數(shù)學(xué)建模競賽b題《20上海世博會影響力的定量評估》為典型的開放式題目,讓學(xué)生選取感興趣的某個側(cè)面,利用互聯(lián)網(wǎng)數(shù)據(jù),建立數(shù)學(xué)模型,使學(xué)生在準(zhǔn)確把握題意后能充分根據(jù)自己的喜好,選取不同方向進行建模求解,相對于固定問題開放性較強。
因此,要求教師在數(shù)學(xué)建模培訓(xùn)中,既要突出固定式的求解思路,又要注意培養(yǎng)學(xué)生開放式的發(fā)散思維。具體表現(xiàn)為:在固定求解思路上,要包括深刻理解題意,挖掘問題內(nèi)部的區(qū)別,結(jié)合已有的數(shù)學(xué)建?;A(chǔ)、數(shù)學(xué)建?;痉椒?、數(shù)學(xué)建模特殊方法,通過對具體競賽題的分析,總結(jié)出相關(guān)類型問題的數(shù)學(xué)求解方法;在開放性問題上,充分調(diào)動學(xué)生的積極性,讓學(xué)生在查閱相關(guān)資料后,進行討論交流,各抒己見,從各個層面,多角度的找出可行性強的數(shù)學(xué)建模方法。求解思路如下圖1和圖2所示。
三、結(jié)束語
數(shù)學(xué)建模培訓(xùn)是對大學(xué)數(shù)學(xué)教學(xué)改革的一次推動,是對高校教學(xué)水平、管理水平的大檢驗,是對指導(dǎo)教師綜合實力的展示和提升,也是對學(xué)生各種能力和綜合素質(zhì)的一次提高,參加過建模的同學(xué)收獲很多,不但領(lǐng)會到數(shù)學(xué)之美,建模之樂,還體會到團隊合作的強大,專業(yè)交叉的益處,可以說對學(xué)生是一個專業(yè),性格,心智等全方面的鍛煉和提高。
通過對大學(xué)生數(shù)學(xué)建模競賽培訓(xùn)中教學(xué)創(chuàng)新方法的初步探究,數(shù)學(xué)建模培訓(xùn)變得更加系統(tǒng)化、專業(yè)化,為學(xué)生參加各級數(shù)學(xué)建模競賽提供了更好地學(xué)習(xí)實踐和交流的平臺,為培養(yǎng)學(xué)生的專業(yè)建模能力探索了新的途徑和方法。
大學(xué)生數(shù)學(xué)建模論文篇十一
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
(請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價,研究人類活動影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應(yīng)用專門儀器測試分析,獲得了每個樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠(yuǎn)離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
大學(xué)生數(shù)學(xué)建模論文篇十二
對于高職院校的學(xué)生來講,數(shù)學(xué)在其教學(xué)過程中起著基礎(chǔ)性的作用,對于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專人才培養(yǎng)當(dāng)中的意義和作用入手,對于其中的應(yīng)用策略進行全面的分析,希望為相關(guān)單位提供一個全面的參考。
數(shù)學(xué)建模;思想;高等教學(xué)
隨著我國社會的發(fā)展,經(jīng)濟產(chǎn)業(yè)結(jié)構(gòu)日益升級,因此高等院校的人才需求日益擴大,對于高職教育的發(fā)展提供了前所未有的契機。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對于其中的策略和方法進行全面的研究應(yīng)該是一項具有普遍現(xiàn)實意義的工作。
從近些年的發(fā)展來看,參加過數(shù)學(xué)競賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強的優(yōu)勢,因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識水平以及調(diào)動學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實際問題的時候,數(shù)學(xué)建模通過利用各種技巧,可以使得學(xué)生分析問題、創(chuàng)造能力得以全面的提升,進而使得學(xué)生在摒棄原始思考問題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識發(fā)出挑戰(zhàn),對于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問題去思考,這對于數(shù)學(xué)知識整體性的發(fā)揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數(shù)學(xué)建模方式,學(xué)生會發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進而使得他們解決問題的能力得以全面的提升。
3.1制定切實可行的教學(xué)大綱,從而使得教學(xué)進度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時,教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實效。比如可以為理工類的學(xué)生選擇無窮級數(shù)以及傅里葉變換的內(nèi)容;機械類的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實際問題為核心的過程中,使得學(xué)生分析問題以及組織問題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開來,這就需要相關(guān)部門開展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識的原創(chuàng)過程,使得學(xué)生明確數(shù)學(xué)知識的產(chǎn)生過程,進而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價值,比如知道極限是由人影的長度變化引起的,導(dǎo)數(shù)是由于駕車的速度引入的,使得學(xué)生發(fā)現(xiàn)知識的價值,進而就會大大提升自己的學(xué)習(xí)興趣和探究意識。第二段:講解數(shù)學(xué)知識。數(shù)學(xué)建模是在實際問題當(dāng)中引入的,因此要通過具體數(shù)學(xué)知識的講解使得學(xué)生明確數(shù)學(xué)建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學(xué)生對于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強學(xué)生的感性認(rèn)識,進而提升學(xué)生的綜合能力奠定堅實的基礎(chǔ)。第三段:數(shù)學(xué)知識的運用。隨著社會的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對于高等數(shù)學(xué)在實際生活當(dāng)中發(fā)揮出來的作用進行全面的探究是實現(xiàn)這種知識價值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個知識點的運用真正灌輸給學(xué)生,比如指數(shù)增長在銀行計息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識以及應(yīng)用能力得以全面的提升。3.3開設(shè)數(shù)學(xué)實驗,提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實驗”,在這種實驗的過程中,學(xué)生對于數(shù)學(xué)知識的發(fā)展以及由來過程都會得到進行全面的考慮,這對于他們數(shù)學(xué)探索意識的提升具有十分重要的意義。另外,在計算機輔助實驗的過程中,學(xué)生的動腦能力也會得到全面的提升,這對于學(xué)生主動的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過程中,教師要積極利用這種方式對于學(xué)生進行全面的培養(yǎng)。
總之,隨著我國經(jīng)濟水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進行全面的分析是實現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對于學(xué)生的長遠(yuǎn)發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時代所需要的人才。
[1]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx,(4).
[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(自然科學(xué)版),20xx,(1).
大學(xué)生數(shù)學(xué)建模論文篇十三
將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過程中去,是我們當(dāng)前開展應(yīng)用數(shù)學(xué)教育的未來發(fā)展趨勢,怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會經(jīng)濟的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實際問題解決中的重要作用,是我們當(dāng)前進行應(yīng)用數(shù)學(xué)研究的核心問題,而建模思想在應(yīng)用數(shù)學(xué)中的運用則能夠很好的解決這一問題。
數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實際問題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問題的有效方法。事實上,數(shù)學(xué)發(fā)展的根本原動力,它的最初的根源,是來自客觀實際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來龍去脈,揭示數(shù)學(xué)概念和公式的實際來源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會經(jīng)濟發(fā)展的各個行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應(yīng)用數(shù)學(xué)發(fā)展的新機遇。
數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計算機網(wǎng)絡(luò)在社會生活中的廣泛運用,人們對于實踐問題的解決要求越來越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運用帶來了前所未有的機遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識,開展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。
3.1充分重視建模的橋梁作用
建模是實現(xiàn)數(shù)學(xué)知識與現(xiàn)實問題相聯(lián)系的橋梁與紐帶,通過進行建模能夠有效的`將實際問題進行簡化。在這一轉(zhuǎn)化的過程中,應(yīng)當(dāng)深入實際進行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對象的獨特特征及規(guī)律,構(gòu)建起反映實際問題的數(shù)學(xué)關(guān)系,運用數(shù)學(xué)理論進行問題的解決。這正是各個學(xué)科之間進行有效聯(lián)系的結(jié)合點,通過引進建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。
3.2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來
我國當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計等幾個部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們在課堂上就能夠獲得更多的思考和討論的機會,能夠充分調(diào)動學(xué)生們的積極性,使其能夠立足實際進行思考,這樣一來就形成了以實際問題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。
3.3積極參加數(shù)學(xué)模型課等相關(guān)課程與活動
數(shù)學(xué)應(yīng)用綜合性的實驗,要求我們掌握數(shù)學(xué)知識的綜合性運用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實例,然后學(xué)生上機實踐,強調(diào)學(xué)生的動手實踐。數(shù)學(xué)實驗課應(yīng)該說是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。
上述幾個部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過程中認(rèn)真掌握數(shù)學(xué)理論知識,還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實踐過程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來看,加強創(chuàng)新意識以及將實際問題轉(zhuǎn)化為數(shù)學(xué)問題能力的培養(yǎng),提升綜合運用本專業(yè)知識以來解決實踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
[1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).
[2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法高職高專數(shù)學(xué)教改之趨勢[j].職大學(xué)報,20xx(02).
[3]李傳欣.數(shù)學(xué)建模在工程類專業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].中國科教創(chuàng)新導(dǎo)刊,20xx(35).
[4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[j].吉林省教育學(xué)院學(xué)報(學(xué)科版),20xx(08).
[5]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx(04).
大學(xué)生數(shù)學(xué)建模論文篇十四
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運用數(shù)學(xué)知識解決生活中遇到實際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進行有效的融合,最佳切入點就是課堂上把用數(shù)學(xué)解決生活中的實際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運用數(shù)學(xué)知識去刻畫實際問題、提煉數(shù)學(xué)模型、處理實際數(shù)據(jù)、分析解決實際問題的能力,培養(yǎng)學(xué)生運用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實際問題的思想。
2、從數(shù)學(xué)實驗做起要加強獨立學(xué)院學(xué)生進行數(shù)學(xué)實驗的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實驗有著密切的聯(lián)系,兩者都是從解決實際問題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實驗基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數(shù)學(xué)實驗的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進行數(shù)學(xué)實驗的條件還是有限的。即使個別有實驗?zāi)芰Φ膶W(xué)校,也未能進行充分利用,數(shù)學(xué)實驗課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級算法課。根據(jù)調(diào)研,目前大部分獨立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實驗課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計算機應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因為應(yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時代,計算機的廣泛應(yīng)用和計算技術(shù)的飛速發(fā)展,使科學(xué)計算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計算機對各自領(lǐng)域的科學(xué)研究、生活問題等進行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個重要途徑。每個領(lǐng)域的教學(xué)可以計算機應(yīng)用為切入點,讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識能力、挖掘培養(yǎng)創(chuàng)新思維的同時,增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實用性,促進教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢和學(xué)生將來的需求為契機,加快改進大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計算技術(shù)和計算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴充學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨立學(xué)院開展數(shù)學(xué)建?;顒由婕皟?nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實驗方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認(rèn)為應(yīng)該加強以下內(nèi)容的建設(shè):
。2、開設(shè)選修課拓展知識領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運籌學(xué)、開設(shè)數(shù)學(xué)實驗(介紹matlab、maple等計算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數(shù)學(xué)模型方便百姓自己計算的應(yīng)用。這個模型單靠數(shù)學(xué)和經(jīng)濟學(xué)單方面的知識是不夠的,必須把數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲問題模型、圖論應(yīng)用題等方面的模擬競賽,通過參賽積累大量數(shù)學(xué)建模知識,促進數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對歷年的全國大學(xué)生數(shù)學(xué)建模競賽真題進行認(rèn)真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設(shè)計》,20xx年的《交巡警服務(wù)平臺的設(shè)置與調(diào)度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進行講解分析,提高學(xué)生對數(shù)學(xué)建模的興趣和對模型應(yīng)用的直觀的認(rèn)識,實現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對傳統(tǒng)內(nèi)容進行優(yōu)化組合,根據(jù)教學(xué)特點和學(xué)生情況推陳出新,要注重數(shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點放在解決實際生活的應(yīng)用上。要結(jié)合一些社會實踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對一些問題的邏輯分析、抽象、簡化并用數(shù)學(xué)語言表達(dá)的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實際應(yīng)用。
21世紀(jì)我國進入了大眾教育時期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過對美國教學(xué)改革的研究,筆者認(rèn)為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進,但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實水平,數(shù)學(xué)建模思想融入要與時俱進。第二,教學(xué)目標(biāo)要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強交流的基礎(chǔ)上不斷改進。第三,大學(xué)生數(shù)學(xué)建模競賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個人興趣愛好,注重個性,不應(yīng)面面強求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補,必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進我國教學(xué)水平和質(zhì)量的提高,為社會輸送更多的實用型、創(chuàng)新型人才。
大學(xué)生數(shù)學(xué)建模論文篇十五
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運用到學(xué)生解題過程中進行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學(xué)建模運用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點,提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
大學(xué)生數(shù)學(xué)建模論文篇十六
大量的應(yīng)用型技能型人才,有效滿足了社會各行各業(yè)的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實際運用,鑒于數(shù)學(xué)建模的這種特點,國內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書明確教學(xué)改革要求學(xué)生結(jié)合計算機技術(shù),靈活運用數(shù)學(xué)的思想和方法獨立地分析和解決問題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識,而且能培養(yǎng)學(xué)生團結(jié)協(xié)作、不怕困難、求實嚴(yán)謹(jǐn)?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗,對基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進行了探索,對教學(xué)實踐中出現(xiàn)的問題進行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專業(yè)技能的新型高職人才。
近年來,隨著國內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對于高等職業(yè)技術(shù)人才需求不斷增大,社會對高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實訓(xùn)實踐場地不足,培養(yǎng)出的學(xué)生動手能力差、專業(yè)能力不足,面對社會發(fā)展的新形勢,高職教育必須進行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。
1人才培養(yǎng)目標(biāo)不同
高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計和人才培養(yǎng)體系設(shè)計都是基于此目標(biāo)展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級技術(shù)應(yīng)用型人才,專業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評價就是畢業(yè)生的就業(yè)競爭力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同
高職教育的教學(xué)重點是學(xué)生要掌握與實踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點,課程設(shè)計專業(yè)性強,一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。
3生源情況不同
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒有希望考上大學(xué),轉(zhuǎn)而進入高職學(xué)習(xí),希望通過掌握一定的技術(shù)來實現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動手應(yīng)用能力是一個非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實問題相結(jié)合的一門科學(xué),它將實際問題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實際問題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識的應(yīng)用提供了途徑,對于現(xiàn)實中的特點問題,可以用數(shù)學(xué)語言來描述其內(nèi)在規(guī)律和問題,運用數(shù)學(xué)研究的成果,結(jié)合計算機專業(yè)軟件,通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學(xué)方式表達(dá),轉(zhuǎn)化成為數(shù)學(xué)問題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實際問題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點,可以把數(shù)學(xué)知識應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應(yīng)的校本教材;最后,改進教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進行數(shù)學(xué)應(yīng)用實踐活動,鼓勵學(xué)生參加各種數(shù)學(xué)建模競賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動的接受,由于學(xué)生的基礎(chǔ)知識水平不同,掌握新知識的能力也不同,這種沒有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點,以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強,體系性強,對于基礎(chǔ)知識薄弱、學(xué)習(xí)興趣差的高職生來說感覺難學(xué)、枯燥,這是因為高職數(shù)學(xué)教育沒有教會學(xué)生如何在專業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識,學(xué)生感覺知識無用自然也就不會主動去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識去解決實際問題,讓學(xué)生認(rèn)識到數(shù)學(xué)不只是紙面上的寫寫算算,數(shù)學(xué)可以把實際問題抽象化,變成數(shù)學(xué)問題,利用數(shù)學(xué)的研究方法給實際問題進行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專業(yè)教育相結(jié)合,帶來學(xué)生用數(shù)學(xué)解決專業(yè)問題是大幅度提高學(xué)生專業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對于專業(yè)實訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過程特別突出,很多基礎(chǔ)知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統(tǒng)的教育思想,在掌握學(xué)生知識水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對于基礎(chǔ)知識水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進行課外輔導(dǎo)。高職基礎(chǔ)課教育是專業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專業(yè)學(xué)習(xí)情況和專業(yè)特點,把遷移知識運用能力在課堂上結(jié)合學(xué)生的專業(yè)背景進行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識在其專業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進整體教學(xué)質(zhì)量提高
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對于學(xué)了十幾年都感覺頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長期以來學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認(rèn)識,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級學(xué)習(xí)時受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗學(xué)會數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再從全部課程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個體,組織參加建模競賽,進行單獨賽前加強指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點”,能夠以其趣味性強,帶動學(xué)生的學(xué)習(xí)興趣,促進高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評價方式,建立面向應(yīng)用的數(shù)學(xué)教育體系
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對的不再是期末的一張試卷,而是一個個數(shù)學(xué)建模案例,需要學(xué)生運用本學(xué)期學(xué)到的數(shù)學(xué)知識解決實際問題,教師根據(jù)學(xué)生對案例的理解程度,數(shù)學(xué)模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過以上各個方面評價的加權(quán)作為最后的評價指標(biāo)。這種以數(shù)學(xué)知識應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對提高高職學(xué)生的專業(yè)能力也打下了堅實的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識掌握不牢,數(shù)學(xué)知識應(yīng)用能力低等問題,通過“案例驅(qū)動法+討論法”,引導(dǎo)學(xué)生再次對課本知識進行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識體系的完整,也可以提高教學(xué)效率。通過教學(xué)方式和評價方式改革,學(xué)生的學(xué)習(xí)主動性增強,也改變了以往對于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重數(shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
大學(xué)生數(shù)學(xué)建模論文篇十七
數(shù)學(xué),源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會各個領(lǐng)域.中考實際應(yīng)用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問、自主解決,體驗做數(shù)學(xué)的過程,從而提高解決實際問題的能力.
一、影響數(shù)學(xué)建模教學(xué)的成因探析
一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開學(xué)生“做”數(shù)學(xué)的過程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進行思考,誘發(fā)學(xué)生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
二、數(shù)學(xué)建模教學(xué)的有效原則
1.自主探索原則.
學(xué)生長期處于師講、生聽的教學(xué)模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計,要符合學(xué)生的年齡特點和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計的問題不切實際,往往會扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實際,讓學(xué)生有能力解決問題.
大學(xué)生數(shù)學(xué)建模論文篇十八
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從初中數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運用到學(xué)生解題過程中進行了分析。
關(guān)鍵詞:數(shù)學(xué);建模;運用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高初中數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。初中數(shù)學(xué)是初中學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,初中數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于初中數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓初中數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。初中數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的.將數(shù)學(xué)建模運用在初中數(shù)學(xué)教學(xué)過程中,是每個初中數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是初中數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)初中生這一特點,提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到初中數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于初中數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
大學(xué)生數(shù)學(xué)建模論文篇一
全國大學(xué)生數(shù)學(xué)建模競賽是由教育部高等教育司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會聯(lián)合舉辦,面向全國大學(xué)生的一年一屆的群眾性科技創(chuàng)新活動。數(shù)學(xué)建模競賽由最初的1992年的79所高校314個參賽隊發(fā)展到2011年來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))以及新加坡和澳大利亞的1197所高校的17317個參賽隊,成為了全國高校中規(guī)模最大,在國內(nèi)外都具影響的大學(xué)生課外科技活動。且數(shù)學(xué)建模不再是要求學(xué)生生硬地記住幾條數(shù)學(xué)公式解決幾道應(yīng)用題,它的應(yīng)用性強,應(yīng)用領(lǐng)域廣泛,所涉及的學(xué)科眾多,有化學(xué)、生物、經(jīng)濟、金融、信息、材料、環(huán)境、能源等,所以不僅要求學(xué)生能將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,更要求學(xué)生能靈活地運用數(shù)學(xué)、計算機及其他學(xué)科的知識來解決問題,而且參賽形式是3人組隊,利用開放的圖書館、互聯(lián)網(wǎng)等資源共同完成,最后提交一篇論文,學(xué)生在這樣的學(xué)習(xí)和競賽中既能提高自身的學(xué)習(xí)能力、應(yīng)用能力、創(chuàng)新能力,又能提高溝通技能、團隊協(xié)作能力及論文寫作能力。
1、數(shù)據(jù)統(tǒng)計
從表中可以看到雖然西北賽區(qū)參賽隊數(shù)占全國賽區(qū)參賽隊數(shù)的`比例都有所上升,卻仍然低于全國年增加參賽隊占全國賽區(qū)總參賽隊的比例。由此我們可以得出西北高校的大學(xué)生參與數(shù)學(xué)建模競賽的積極性較低。
2、原因分析
造成西北高校大學(xué)生參與數(shù)學(xué)建模競賽的積極性較低的原因是多方面的:(1)學(xué)生缺乏應(yīng)有的積極性與學(xué)生本身的學(xué)習(xí)能力有一定的關(guān)系,與內(nèi)地高校大學(xué)生相比,西北高校大學(xué)生的基礎(chǔ)較差,專業(yè)理論功底薄,動手能力相對較差,而且數(shù)學(xué)建模對學(xué)生的能力要求較高,不僅要求學(xué)生能將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,更要求學(xué)生能靈活地運用數(shù)學(xué),計算機及其他學(xué)科的知識來解決問題。因此,有些學(xué)生雖然對數(shù)學(xué)建模競賽有參與的想法,且在對數(shù)學(xué)建模不夠了解的情況下參與,而在參與過程中受到知識結(jié)構(gòu)和水平,客觀條件的限制,不得不中途退出。(2)學(xué)校對數(shù)學(xué)建模重視不夠,對數(shù)學(xué)建模競賽活動的宣傳、推廣、組織力度不到位,以青海大學(xué)為例,青海大學(xué)近三年的參賽隊都只有幾隊,而且都是教師通過數(shù)模選修課選拔出進行參賽的,每年競賽學(xué)校都未發(fā)過通知,而且學(xué)校很少舉辦有關(guān)建模的講座,以及開展此類活動,數(shù)學(xué)建模協(xié)會也是在近幾年才創(chuàng)辦的,由于學(xué)校對數(shù)學(xué)建模不夠重視,數(shù)學(xué)建模的發(fā)展失去了最關(guān)鍵的引力,學(xué)生由此對數(shù)學(xué)建模反應(yīng)冷淡。(3)教師的參與面窄也影響了學(xué)生參與數(shù)學(xué)建模競賽及活動的積極性,目前數(shù)學(xué)建模的指導(dǎo)工作大多依靠數(shù)學(xué)系的老師,而且其他專業(yè)的教師對數(shù)學(xué)建模了解甚少,教師的參與面窄,指導(dǎo)力度非常有限,而且很多學(xué)校都是在臨近競賽了才對學(xué)生進行一個月左右的集中培訓(xùn),然而數(shù)學(xué)建模本身是一項系統(tǒng)工程,牽涉的知識面廣,不是短時間的“集中培訓(xùn)”突擊應(yīng)試教育就可以奏效的,這樣的指導(dǎo)對學(xué)生的作用不大。
二、提高大學(xué)生參與數(shù)學(xué)建模競賽的積極性的有效途徑
1、學(xué)校應(yīng)提高對數(shù)學(xué)建模的重視程度,積極宣傳和組織數(shù)學(xué)建?;顒?BR> 西北高校大多都將數(shù)學(xué)建模作為選修課開設(shè),對學(xué)生該課程的考核也很簡單,所以筆者建議學(xué)校能將數(shù)學(xué)建模作為一門必修課開設(shè),提前讓學(xué)生有機會接觸,掌握一些數(shù)學(xué)建模的理論基礎(chǔ),并同時開設(shè)數(shù)學(xué)實驗課,要求學(xué)生掌握多種數(shù)學(xué)軟件。學(xué)校還可通過學(xué)校網(wǎng)站,學(xué)生社團舉辦活動定期宣傳數(shù)學(xué)建模,擴大數(shù)學(xué)建模競賽的影響力,圍繞數(shù)學(xué)建模開展學(xué)術(shù)交流,邀請專家及有經(jīng)驗的老師開展數(shù)學(xué)建模講座,由此營造一種良好的數(shù)學(xué)建模氣氛。
2、學(xué)生應(yīng)注重自身各方面能力的培養(yǎng),積極主動地參與數(shù)學(xué)建模競賽
學(xué)生應(yīng)有意識地通過各種渠道盡可能多地去了解數(shù)學(xué)建模競賽,并在平常的學(xué)習(xí)過程中豐富自己數(shù)學(xué)、計算機、工程等各方面的知識,并能將單科知識相互聯(lián)系和滲透,同時利用互聯(lián)網(wǎng)了解更多的學(xué)科前沿及社會熱點,將書本知識應(yīng)用于這些未解決的社會熱點問題上,通過這樣長時間的實踐,自身的學(xué)習(xí)能力、創(chuàng)造能力、“應(yīng)用”數(shù)學(xué)的能力真正能得到提高,進而加深對數(shù)學(xué)的熱愛。
3、學(xué)校教師應(yīng)增強對數(shù)學(xué)建模教學(xué)的熱情,引導(dǎo)學(xué)生積極參與數(shù)學(xué)建模活動
數(shù)學(xué)建模不僅對學(xué)生的能力要求較高,對參與的教師的要求更高,因此教師應(yīng)該不斷地進行知識的擴充,創(chuàng)造性地從事教學(xué),做到將學(xué)科前沿及社會熱點融入到教學(xué)中來,并在學(xué)生日常的數(shù)學(xué)建模活動中給予指導(dǎo),主動地與學(xué)生共同去探討,教師和學(xué)生能相互啟發(fā),相互促進,共同提高其能力。
三、結(jié)束語
由于西北高校的數(shù)學(xué)建模競賽起步晚,且學(xué)生的基礎(chǔ)較差,專業(yè)理論功底薄,加上學(xué)校對數(shù)學(xué)建模重視不夠,以及教師的參與面窄,指導(dǎo)積極性不高,勢必造成數(shù)學(xué)建模在校內(nèi)影響和學(xué)生的認(rèn)知面極其有限的境地,且培養(yǎng)學(xué)生數(shù)學(xué)建模能力也是一項長期而艱巨的任務(wù),因此我們必須堅持不懈,通過學(xué)校、學(xué)生、教師的共同努力將數(shù)學(xué)建模競賽在西北高校中更有效的推廣,促使更多的學(xué)生積極參與到數(shù)學(xué)建模競賽中來,更好地完成學(xué)校承載的培養(yǎng)高素質(zhì),高技能人才的教育目標(biāo)。
【參考文獻】
大學(xué)生數(shù)學(xué)建模論文篇二
計算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預(yù)見。數(shù)學(xué)建模可以說和我們的生活息息相關(guān),尤其是如今科技發(fā)達(dá)的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達(dá)到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
1.數(shù)學(xué)建模對教學(xué)過程的作用
1.1數(shù)學(xué)建模引進大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點,借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識教學(xué)內(nèi)容從而認(rèn)識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識科學(xué),理解科學(xué),從而指導(dǎo)實踐,促進學(xué)生的德智體美勞全面的進步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實踐的能力。再次建模結(jié)果對現(xiàn)實生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達(dá)到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實踐,從而為科學(xué)的進步和人才綜合水平的提高提供可能。
2.數(shù)學(xué)建模對當(dāng)代大學(xué)生的作用
2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨的數(shù)學(xué)家變成經(jīng)濟學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運用數(shù)學(xué)科學(xué)去分析和解決實際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運用數(shù)學(xué)的思維和方法,利用現(xiàn)代計算機科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
3.數(shù)學(xué)建模對大學(xué)數(shù)學(xué)及其他學(xué)科教師的作用
數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時代的進步,是時代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運用數(shù)學(xué)科學(xué)解決現(xiàn)實問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進步,得到了認(rèn)可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計算機科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計算機學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進步發(fā)展的方向和原動力。
參考文獻:
[1]李進華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
[2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
大學(xué)生數(shù)學(xué)建模論文篇三
一.?dāng)?shù)學(xué)建模協(xié)會簡介
數(shù)學(xué)建模協(xié)會作為一個參加競賽兼有學(xué)術(shù)理論性的社團,本著以學(xué)術(shù)為主,深入鉆研的原則,以”創(chuàng)新意識,團隊精神,重在參與,公平競爭”為指導(dǎo)思想,已”將平常所學(xué)的抽象的數(shù)學(xué)知識應(yīng)用到實踐或生活中,將平常所學(xué)的電腦知識趣味化為特色,以集中對數(shù)學(xué)建模有興趣的同學(xué),引導(dǎo)他們學(xué)習(xí)應(yīng)用數(shù)學(xué)領(lǐng)域內(nèi)各方面知識,培養(yǎng)他們運用理論解決實際問題的能力和團隊合作精神,激發(fā)他們?nèi)W(xué)習(xí)從未接觸過的知識,培養(yǎng)他們動手動腦的積極性,提高學(xué)生程序設(shè)計和應(yīng)用計算機解決實際問題的能力,使他們在協(xié)會中得到更好的鍛煉與發(fā)展,挖掘?qū)W生中的數(shù)學(xué)建模人才,為參加更高層次數(shù)學(xué)建模競賽選拔精英的目的.
近十年來,大學(xué)生數(shù)學(xué)建模競賽在培養(yǎng)學(xué)子的創(chuàng)新精神,實踐能力,團隊精神的同時,逐漸成為各高校教學(xué)能力的重要評測指標(biāo)..我們堅信,數(shù)學(xué)建模協(xié)會在團委的關(guān)心支持和自身的不懈努力下,一定年選拔和培養(yǎng)更多的數(shù)學(xué)建模人才,讓我院學(xué)生在高層次數(shù)學(xué)建模競賽中取得更好的成績.
二.?dāng)?shù)模背景
近半個多世紀(jì)以來,隨著計算機技術(shù)的迅速發(fā)展,數(shù)學(xué)的應(yīng)用不僅在工程技術(shù)、自然科學(xué)等領(lǐng)域發(fā)揮著越來越重要的作用,而且以空前的廣度和深度向經(jīng)濟、金融、生物、醫(yī)學(xué)、環(huán)境、地質(zhì)、人口、交通等新的領(lǐng)域滲透,所謂數(shù)學(xué)技術(shù)已經(jīng)成為當(dāng)代高新技術(shù)的重要組成部分。
不論是用數(shù)學(xué)方法在科技和生產(chǎn)領(lǐng)域解決哪類實際問題,還是與其它學(xué)科相結(jié)合形成交叉學(xué)科,首要的和關(guān)鍵的一步是建立研究對象的數(shù)學(xué)模型,并加以計算求解。數(shù)學(xué)建模和計算機技術(shù)在知識經(jīng)濟時代的作用可謂是如虎添翼。
數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué),在它產(chǎn)生和發(fā)展的歷史長河中,一直是和各種各樣的應(yīng)用問題緊密相關(guān)的。數(shù)學(xué)的特點不僅在于概念的抽象性、邏輯的嚴(yán)密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性,進入20世紀(jì)以來,隨著科學(xué)技術(shù)的迅速發(fā)展和計算機的日益普及,人們對各種問題的要求越來越精確,使得數(shù)學(xué)的應(yīng)用越來越廣泛和深入,特別是在即將進入21世紀(jì)的知識經(jīng)濟時代,數(shù)學(xué)科學(xué)的地位會發(fā)生巨大的變化,它正在從國或經(jīng)濟和科技的后備走到了前沿。經(jīng)濟發(fā)展的全球化、計算機的迅猛發(fā)展,數(shù)理論與方法的不斷擴充使得數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個重要組成部分和思想庫,數(shù)學(xué)已經(jīng)成為一種能夠普遍實施的技術(shù)。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識和能力已經(jīng)成為數(shù)學(xué)教學(xué)的一個重要方面。
三.?dāng)?shù)學(xué)建模的定義
當(dāng)需要從定量的角度分析和研究一個實際問題時,人們就要在深入調(diào)查研究、了解對象信息、作出簡化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號和語言,把它表述為數(shù)學(xué)式子,也就是數(shù)學(xué)模型,然后用通過計算得到的模型結(jié)果來解釋實際問題,并接受實際的檢驗。這個建立數(shù)學(xué)模型的全過程就稱為數(shù)學(xué)建模。
數(shù)學(xué)建模是一種數(shù)學(xué)的思考方法,是運用數(shù)學(xué)的語言和方法,通過抽象、簡化建立能近似刻畫并“解決”實際問題的一種強有力的數(shù)學(xué)手段。
數(shù)學(xué)建模就是用數(shù)學(xué)語言描述實際現(xiàn)象的過程。這里的實際現(xiàn)象既包涵具體的自然現(xiàn)象比如自由落體現(xiàn)象,也包涵抽象的現(xiàn)象比如顧客對某種商品所取的價值傾向。這里的描述不但包括外在形態(tài),內(nèi)在機制的描述,也包括預(yù)測,試驗和解釋實際現(xiàn)象等內(nèi)容。
我們也可以這樣直觀地理解這個概念:數(shù)學(xué)建模是一個讓純粹數(shù)學(xué)家(指只懂?dāng)?shù)學(xué)不懂?dāng)?shù)學(xué)在實際中的應(yīng)用的數(shù)學(xué)家)變成物理學(xué)家,生物學(xué)家,經(jīng)濟學(xué)家甚至心理學(xué)家等等的過程。
數(shù)學(xué)模型一般是實際事物的一種數(shù)學(xué)簡化。它常常是以某種意義上接近實際事物的抽象形式存在的,但它和真實的事物有著本質(zhì)的區(qū)別。要描述一個實際現(xiàn)象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。使用數(shù)學(xué)語言描述的事物就稱為數(shù)學(xué)模型。有時候我們需要做一些實驗,但這些實驗往往用抽象出來了的數(shù)學(xué)模型作為實際物體的代替而進行相應(yīng)的實驗,實驗本身也是實際操作的一種理論替代。
四.活動背景
本次數(shù)模競賽是學(xué)院數(shù)學(xué)建模協(xié)會為響應(yīng)中國礦業(yè)大學(xué)“行健杯”的號召,舉辦的競賽項目。數(shù)學(xué)建模作為當(dāng)代中國大學(xué)生普遍喜愛和樂于參加的競賽,已經(jīng)成為大學(xué)生競賽中專業(yè)性最強技術(shù)含量最高的競賽項目之一。隨著數(shù)模競賽的普及率越來越高,影響力越來越達(dá),各地高校紛紛培養(yǎng)數(shù)模人才。
五.活動目的
(1)數(shù)學(xué)建模競賽作為科技競賽一種,要體現(xiàn)出科技運動會的價值,展示出社團及礦大學(xué)子的風(fēng)采。
(2)通過本次競賽,使同學(xué)們對數(shù)學(xué)的本質(zhì),數(shù)學(xué)的價值與數(shù)學(xué)的作用有更深切的理解與體會。培養(yǎng)同學(xué)們數(shù)學(xué)化的思維方式,從而提升同學(xué)們的數(shù)學(xué)修為,熟悉數(shù)學(xué)化的符號表達(dá),提升同學(xué)們的論文水平,為蘇北賽打下扎實的基礎(chǔ)。
大學(xué)生數(shù)學(xué)建模論文篇四
【摘 要】本文重點分析了數(shù)學(xué)建模對當(dāng)前數(shù)學(xué)教育教學(xué)改革的現(xiàn)實意義,探討了數(shù)學(xué)建模對學(xué)生應(yīng)用數(shù)學(xué)能力的培養(yǎng),闡述了計算機在數(shù)學(xué)建模競賽中的作用和地位,最后介紹了數(shù)學(xué)建模對數(shù)學(xué)教學(xué)改革的啟示意義。
【關(guān)鍵詞】數(shù)學(xué)建模;綜合素質(zhì);教學(xué)改革
長期以來,我國的數(shù)學(xué)教學(xué)中一直普遍存在著重結(jié)論而輕過程、重形式而輕內(nèi)容、重解法而輕應(yīng)用等弊端,不注重學(xué)生數(shù)學(xué)能力和素質(zhì)的培養(yǎng);過分強調(diào)對定義、定理、法則、公式等知識的灌輸與講授,不注重這些知識的應(yīng)用,割斷了理論與實際的聯(lián)系,造成學(xué)與用的嚴(yán)重脫節(jié),致使在我們的數(shù)學(xué)教育體制下培養(yǎng)出來的學(xué)生的能力結(jié)構(gòu)都形成了一種嚴(yán)重的病態(tài),主要表現(xiàn)在:數(shù)學(xué)理論知識掌握得還可以,但應(yīng)用知識的能力很差,不能學(xué)以致用,缺乏創(chuàng)造力和解決實際問題的能力,這些問題使我們的學(xué)生在走向工作崗位時上手速度慢,面對新的數(shù)學(xué)問題時束手無策,不能將所學(xué)的知識靈活運用到實際中去。顯然,這種教育體制和理念與現(xiàn)代教育理念是背道而馳的,是必須拋棄的。開展數(shù)學(xué)建模教學(xué)或數(shù)學(xué)建模競賽,能夠培養(yǎng)學(xué)生各方面的綜合能力,提高學(xué)生的綜合素質(zhì),對于當(dāng)前數(shù)學(xué)教育教學(xué)改革有著極為重要的現(xiàn)實意義。
1 數(shù)學(xué)建模能夠豐富和優(yōu)化學(xué)生的知識結(jié)構(gòu),開拓學(xué)生的視野
數(shù)學(xué)建模所涉及到的許多問題都超出了學(xué)生所學(xué)的專業(yè),例如“基金的最佳適用”、“會議籌備”、“地震搜索”等許多建模問題,分別屬于不同的學(xué)科與專業(yè),為了解決這些問題,學(xué)生必須查閱和學(xué)習(xí)與該問題相關(guān)的專業(yè)書籍和科技資料,了解這些專業(yè)的相關(guān)知識,從而軟化或削弱了目前教育中僵死的專業(yè)界限,使學(xué)生掌握寬廣而扎實的基礎(chǔ)知識,使他們不斷拓寬分析問題、解決問題的思路,朝著復(fù)合型人才和具備全面綜合素質(zhì)人才的方向發(fā)展。
2 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力
數(shù)學(xué)建模要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解,通過積極主動的思維,提出適當(dāng)?shù)募僭O(shè),并建立相應(yīng)的數(shù)學(xué)模型,進而利用恰當(dāng)?shù)臄?shù)學(xué)方法(現(xiàn)有的或新創(chuàng)造的)求解此模型,并對解做出評價,必要時對模型做出改進。這一過程包括了歸納、整理、推理、深化等活動,因此把數(shù)學(xué)建模引入課堂教學(xué),必將改變目前數(shù)學(xué)教學(xué)只見定義、定理不見問題背景的局面,必將改變知識僵化、學(xué)而不用的局面,從而調(diào)動了學(xué)生學(xué)習(xí)的積極性,培養(yǎng)了學(xué)生解決實際問題的能力。
3 數(shù)學(xué)建模能夠培養(yǎng)學(xué)生的創(chuàng)造力、想象力、聯(lián)想力和洞察力
數(shù)學(xué)模型來源于客觀實際,錯綜復(fù)雜,沒有現(xiàn)成的答案和固定的模式,因此學(xué)生在建立和求解這類模型時,必須積極動腦,而且常常需要另辟蹊徑,在這里,常常會迸發(fā)出打破常規(guī)、突破傳統(tǒng)的思維火花,通過這種實踐活動,可以培養(yǎng)學(xué)生的創(chuàng)造能力,促使他們在頭腦中樹立推崇創(chuàng)新、追求創(chuàng)新和以創(chuàng)新為榮的意識。在從實際問題中抽象出數(shù)學(xué)模型的過程中,須把實際關(guān)系轉(zhuǎn)化為數(shù)學(xué)關(guān)系,這要求他們敢于想象和聯(lián)想,此外他們還要從貌似不同的問題中抓住其本質(zhì)的和共性的東西,這將培養(yǎng)他們把握問題內(nèi)在本質(zhì)的能力,即洞察力,可以說,培養(yǎng)學(xué)生的這些能力始終貫穿在數(shù)學(xué)建模的整個過程。
4 數(shù)學(xué)建??梢耘囵B(yǎng)學(xué)生熟練地運用計算機的能力
5 數(shù)學(xué)建??梢栽鰪姶髮W(xué)生的適應(yīng)能力
通過數(shù)學(xué)建模的學(xué)習(xí)及競賽訓(xùn)練,他們不僅受到了現(xiàn)代數(shù)學(xué)思維及方法的熏陶,更重要的是對不同的實際問題,如何進行分析、推理、概括以及如何利用數(shù)學(xué)方法與計算機知識,還有各方面的知識綜合起來解決它。因此,他們具有較高的素質(zhì),無論以后到哪個行業(yè)工作,都能很快適應(yīng)需要。不僅如此,由于建模決不是一件輕而易舉的事,需要學(xué)生對實際問題進行反復(fù)多次的研究、分析、觀察和對模型進行反復(fù)多次的計算、論證及修改等,整個過程是一個非常艱辛的探索過程,這可以培養(yǎng)學(xué)生高度的責(zé)任感、堅韌不拔的毅力、遭遇挫折后較強的心理承受能力以及孜孜不倦、精益求精的探索精神,使他們具有良好的心理素質(zhì)與精神狀態(tài)。同時數(shù)學(xué)建模一般都是由幾個人組成的團隊來完成的,其成功與否,完全取決于大家的密切合作,既要合理分工,又要密切配合,這樣又可以培養(yǎng)學(xué)生的組織管理能力、協(xié)調(diào)能力和相互協(xié)作的團隊精神,這些對他們今后走向工作崗位都是大有裨益的。
此外,數(shù)學(xué)建模從教育觀念、內(nèi)容、形式和手段都有一定的創(chuàng)新,對數(shù)學(xué)教學(xué)改革有積極的啟示意義。首先,數(shù)學(xué)建模突出了教與學(xué)的雙主體性關(guān)系。教師要根據(jù)學(xué)生的學(xué)習(xí)興趣、能力及特點,不斷修正自己的教育內(nèi)容和方法。學(xué)生要對教師所給予的信息有批判性地、創(chuàng)造性地、發(fā)展性地能動反映,要在相互討論、相互啟發(fā)下尋求更多更好的解答方案。這種雙主體的關(guān)系是對傳統(tǒng)教學(xué)方式的根本突破。
其次,數(shù)學(xué)建模促進了課程體系和教學(xué)內(nèi)容的改革。長期以來,我們的課程設(shè)置和教學(xué)內(nèi)容都具有強烈的理科特點:重基礎(chǔ)理論、輕實踐應(yīng)用;重傳統(tǒng)的經(jīng)典數(shù)學(xué)內(nèi)容、輕離散的數(shù)值計算。然而,數(shù)學(xué)建模所要用到的主要數(shù)學(xué)方法和數(shù)學(xué)知識恰好正是被我們長期所忽視的那些內(nèi)容。因此,這迫使我們調(diào)整課程體系和教學(xué)內(nèi)容。比如可增加一些應(yīng)用型、實踐類課程等等;在其余各門課程的教學(xué)中,也要盡量注意到使數(shù)學(xué)理論與應(yīng)用相結(jié)合,增加實際應(yīng)用方面的內(nèi)容和例題,從而使教學(xué)內(nèi)容也得到了更新。
再次,數(shù)學(xué)建模增加了教師對新興科技知識的傳授,拓寬了學(xué)生的知識面。這些特點對于目前數(shù)學(xué)教材中存在的內(nèi)容陳舊、知識面狹窄及形式呆板等問題,具有借鑒作用。數(shù)學(xué)建模的試題通常聯(lián)系新興的學(xué)科,在科學(xué)技術(shù)迅猛發(fā)展的今天,各種新興學(xué)科、邊緣學(xué)科、交叉學(xué)科不斷涌現(xiàn),廣博的知識面和對新興科學(xué)技術(shù)的追蹤能力是獲得成功的關(guān)鍵因素之一。
數(shù)學(xué)建模不僅有利于學(xué)生更好的掌握知識、運用知識,也有利于高校的科研和教學(xué),使學(xué)生和教師能在平時的學(xué)習(xí)、工作中自動形成勤于思考的好習(xí)慣,數(shù)學(xué)建模競賽與學(xué)生畢業(yè)以后工作時的條件非常相近,是對學(xué)生業(yè)務(wù)、能力和素質(zhì)的全面培養(yǎng),特別是開放性思維和創(chuàng)新意識,這項活動的開展有利于學(xué)生的全面素質(zhì)的培養(yǎng),既豐富、活躍了廣大學(xué)生的課外生活,也為優(yōu)秀學(xué)員脫穎而出創(chuàng)造了條件。
【參考文獻】
[1]顏筱紅,粱東穎。高職院校數(shù)學(xué)建模教學(xué)的研究[j].廣西教育,2013(2):54,134.
[3]李大潛。中國大學(xué)生數(shù)學(xué)建模競賽[m].2版。北京:高等教育出版社,2001.
[4]謝金星。2008高教社杯全國大學(xué)生數(shù)學(xué)建模競賽[j].工程數(shù)學(xué)學(xué)報,2008(25):1-2.
大學(xué)生數(shù)學(xué)建模論文篇五
1、海選和優(yōu)選有機結(jié)合借助紙質(zhì)宣傳單、大型講座等方式進行數(shù)學(xué)建模競賽的宣傳,對其作用以及影響進行充分的講解,鼓勵校園內(nèi)的同學(xué)來積極的進行參加。倘若想要參與其中的同學(xué)人數(shù)過多時,畢竟參賽名額是有一定限制的,可以利用面試的方式對其進行篩選。為不打擊學(xué)生的積極性,在條件允許的情況下,可以盡可能保留更多的參賽者,通過面試成績把大家劃分為正式參賽隊和業(yè)余參賽隊。
2、充分利用現(xiàn)有資源在進行數(shù)學(xué)建模競賽組隊時,應(yīng)充分的全面考慮有效利用現(xiàn)有的資源。首先是要掌握不同隊伍中不同人員屬于什么年級,其次了解她們的每個人學(xué)習(xí)狀況以及所學(xué)專業(yè)等等,通常來說,同一隊伍中的每個人最理想的狀態(tài)是學(xué)習(xí)不同專業(yè)的,如此一來大家可以做到取長補短,理論知識與實踐動手兩手抓,一個團隊里需要出眾的知識更需要過人的文筆。如此一來才能保證隊伍的整體實力,力爭在建模競賽中取得好成績。
3、重點培訓(xùn)在對學(xué)生進行賽前相關(guān)培訓(xùn)時,在培訓(xùn)的過程中,教師可根據(jù)自身的擅長專題,來進行相關(guān)內(nèi)容的講解,與此同時結(jié)合不同隊伍的自身特點劃設(shè)側(cè)重點,同學(xué)之間的接受能力也是各不同的,能力強的可以開小灶,沒有相關(guān)競賽經(jīng)驗的要進行重點培訓(xùn),這種因人而異的講解模式確保不同能力的同學(xué),在培訓(xùn)中的過程中都能夠?qū)W有所獲。
4、合理分工密切合作在參加數(shù)學(xué)建模競賽的同學(xué)得到競賽試題之后,老師應(yīng)該及時幫助學(xué)生進行試題分析與指導(dǎo),根據(jù)團隊內(nèi)不同人員的實際情況以及試題的具體內(nèi)容難易,進行針對性的講解從而對同學(xué)們進行合理分工,確保每個人所負(fù)責(zé)的部分都是自己相較于其他人而言是最擅長的。值得注意的是,雖然進行分工,但這并不是絕對的分割,而是有側(cè)重的合理分工,彼此之間的密切合作才是核心,畢竟建模競賽中需要的是團隊協(xié)作,而不是英雄主義。
5、堅持可持續(xù)發(fā)展培訓(xùn)師資隊伍必須要有新鮮血液不斷注入,以老帶新最佳的血液注入方式,面對朝氣蓬勃的參賽學(xué)生,培訓(xùn)師資隊伍既要有身經(jīng)百戰(zhàn)經(jīng)驗豐富的老師,也要有跟他們擁有更多共同話題的青年教師。在此期間通過不斷的學(xué)習(xí),青年教師跟同學(xué)們共同成長,從而保證師資隊伍的可持續(xù)發(fā)展。
二、大學(xué)生數(shù)學(xué)建模競賽組織和管理方式的探索
1、進行課程教學(xué)并給出有效的教學(xué)計劃每個學(xué)生的知識儲備都有著各自的特點,借助良好的教育對學(xué)生們的知識架構(gòu)進行完善,實現(xiàn)培養(yǎng)出學(xué)生強大能力的目標(biāo),數(shù)學(xué)建模對學(xué)生來說裨益良多,被視作是大學(xué)校園中必備課程之一。但是進行課程開展的時候,要根據(jù)不同的培訓(xùn)對象大致分為以下兩類:第一、以選修課形式開設(shè)數(shù)學(xué)建模競賽課程,選修課程所面向的群體為整個學(xué)校的所有學(xué)生。第二、以必修課的方式開設(shè)數(shù)學(xué)建模競賽課程,必修課就要有針對性,因為并不是所有的學(xué)生都需要學(xué)習(xí)數(shù)學(xué),所以必修課針對的群體應(yīng)該是數(shù)學(xué)專業(yè)的學(xué)生。不同性質(zhì)的課程在教授上應(yīng)該有所區(qū)分,內(nèi)容的深淺也要有適當(dāng)?shù)恼{(diào)整。
2、利用建模教學(xué)實現(xiàn)知識與能力雙培養(yǎng)有效的教學(xué)是獲得數(shù)學(xué)建模競賽好成績的最佳途徑,但是教學(xué)的過程中要注重數(shù)學(xué)知識與實踐能力的均衡共同培養(yǎng),不能過分的注重知識的灌輸,而忽略了建模相關(guān)能力的培養(yǎng),對二者的培養(yǎng)必須要并駕齊驅(qū),如此才能真正的'掌握數(shù)學(xué)建模的精髓,從而在競賽中取得良好的成績。
3、數(shù)學(xué)建模競賽隊員的篩選數(shù)學(xué)建模所需要的人才是全方面的人才,除此之外還要對數(shù)學(xué)建模有足夠的興趣,并且還要有足夠多的時間來參加培訓(xùn)。以上述條件為基礎(chǔ),報名之后通過面試的測試,然后再從中篩選出相對優(yōu)秀的學(xué)生組成參賽隊伍,在篩選的時候要充分的考慮到團隊整體知識的涵蓋面,不同人之間所擅長的專業(yè)不同為最佳。
4、培訓(xùn)培訓(xùn)工作通常被劃分為不同的階段:首先是初級階段,這一階段所注重的是對相關(guān)知識的培訓(xùn)。從初等模型、簡單優(yōu)化模型、常微分方程模型等建模的基礎(chǔ)知識和方法入手由淺入深;其次是拔高階段,主要以專家講座為主,邀請建模專家進行系統(tǒng)的講解,并結(jié)合精典范例進行深入剖析,在擴大學(xué)生的知識面和視野的同時提升學(xué)生的建模能力。
三、結(jié)語
通過以上的一系列論述,我們已經(jīng)對大學(xué)數(shù)學(xué)建模競賽的隊伍組織及管理方式,有了更加清晰的了解和掌握。大學(xué)數(shù)學(xué)建模競賽對于大學(xué)生來說好處頗多,一方面能夠使學(xué)生們對學(xué)習(xí)的數(shù)學(xué)知識有更深的理解與更為靈活的應(yīng)用,另一方面,通過競賽中的組隊讓大家感受到合作的重要性,為以后步入社會的工作打下基礎(chǔ)。希望這篇文章能夠?qū)︶槍?shù)學(xué)建模的研究有一定的借鑒作用!
參考文獻:
[1]韓成標(biāo),賈進濤、高職院校參加數(shù)學(xué)建模競賽大有可為[j]、工程數(shù)學(xué)學(xué)報,(8)
[2]全國大學(xué)生數(shù)學(xué)建模競賽賽題講評與經(jīng)驗交流會在廣西大學(xué)舉行[j]、數(shù)學(xué)建模及其應(yīng)用,(04)
[3]錢方紅、基于數(shù)學(xué)模型解決數(shù)學(xué)建模競賽隊員選拔和組隊問題[j]、信息與電腦:理論版,(3)
[4]肖帆,張?zhí)m、高職院校數(shù)學(xué)建模競賽培訓(xùn)模式研究[j]、延安職業(yè)技術(shù)學(xué)院學(xué)報,2017(2)
大學(xué)生數(shù)學(xué)建模論文篇六
1.數(shù)學(xué)建模對學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實際問題,很多都是當(dāng)前社會比較關(guān)注的熱點問題,比如開放性小區(qū)的建立,人工智能機器人在工作中的應(yīng)用,這些問題開放性比較強,有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計終于派上了用場。數(shù)學(xué)建模課程會結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會經(jīng)常涉及到物理,工程,經(jīng)濟,金融,農(nóng)林等各個領(lǐng)域各個學(xué)科,從不同的學(xué)科中找最熱門最真實的案例進行教學(xué),這要求學(xué)生有很強的自學(xué)能力,要不得學(xué)習(xí)新知識,新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識把自己學(xué)科的專業(yè)知識轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢,以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對學(xué)生的知識體系起到了完善的作用。在整個競賽中從模型建立與求解到寫作,都是由學(xué)生獨立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團隊合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競賽是由三個人組成一個小團隊共同處理一個問題,在這個團隊中每個人都各有分工,有的人擅長建立模型,有的人擅長計算機編程求解模型,有的人擅長寫作,這三個人缺一不可,任何一個人都發(fā)揮著舉足輕重的作用。通常我們還會設(shè)一個隊長能協(xié)調(diào)隊員之間的關(guān)系和對題目的把控。每個人都有不同的性格,能力,學(xué)識,知識結(jié)構(gòu),在做題的過程中會產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會有很多的不同,所以每個成員都要有團隊精神、相互信任、相互溝通、相互尊重、取長補短、充分發(fā)揮集體的力量共同完成一個項目。同時每年無論在培訓(xùn)還是正式比賽過程中由于高強度的腦力活動,強大的心理壓力以及隊員之間的不和睦都會造成中途退賽,這樣無疑是最可惜的。所以,在競賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識和團隊合作精神,還培養(yǎng)了大家的心理承受能力,強大的意志力以及與他人溝通交往的能力,是對自己綜合素質(zhì)的一個提高,對未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時還培養(yǎng)了他們應(yīng)用計算機去處理各種問題的科技能力。他們學(xué)會了各種軟件、語言,很多同學(xué)會數(shù)據(jù)挖掘、機器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識的學(xué)習(xí),更重要的是理論與實踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進培養(yǎng)模式和方法,爭取通過數(shù)學(xué)建模平臺使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻:
[2]韋程東.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,.
大學(xué)生數(shù)學(xué)建模論文篇七
我們仔細(xì)閱讀了西北民族大學(xué)研究生數(shù)學(xué)建模競賽的競賽規(guī)則。
我們完全明白,在競賽開始后參賽隊員不能以任何方式(包括電話、電子郵件、網(wǎng)上咨詢等)與隊外的任何人(包括指導(dǎo)教師)研究、討論與賽題有關(guān)的問題。
我們知道,抄襲別人的成果是違反競賽規(guī)則的',如果引用別人的成果或其他公開的資料(包括網(wǎng)上查到的資料),必須按照規(guī)定的參考文獻的表述方式在正文引用處和參考文獻中明確列出。
我們鄭重承諾,嚴(yán)格遵守競賽規(guī)則,以保證競賽的公正、公平性。如有違反競賽規(guī)則的行為,我們將受到嚴(yán)肅處理。
我們參賽選擇的題號是(從a/b/c中選擇一項填寫):
我們的參賽論文題目是:
參賽隊員(打?。?BR> 隊員1姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
隊員2姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
隊員3姓名:;聯(lián)系電話:;郵箱:;
學(xué)院:;專業(yè)年級:;
參賽隊員簽名:1;2;3。
日期:年月日
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
大學(xué)生數(shù)學(xué)建模論文篇八
1.數(shù)學(xué)建模對學(xué)生創(chuàng)新思維和創(chuàng)新精神的培養(yǎng)
數(shù)學(xué)建模解決的都是與我們生活息息相關(guān)的實際問題,很多都是當(dāng)前社會比較關(guān)注的熱點問題,比如開放性小區(qū)的建立,人工智能機器人在工作中的應(yīng)用,這些問題開放性比較強,有明確的目的和要求,但它沒有唯一的結(jié)果和方法。因此留給學(xué)生很大的創(chuàng)新空間,使學(xué)生對數(shù)學(xué)產(chǎn)生了極大的興趣,他們發(fā)現(xiàn)這幾年學(xué)習(xí)的高數(shù)、線性代數(shù)、概率論與數(shù)理統(tǒng)計終于派上了用場。數(shù)學(xué)建模課程會結(jié)合《高等數(shù)學(xué)》,《線性代數(shù)》,《概率論與數(shù)理統(tǒng)計》等數(shù)學(xué)基礎(chǔ)學(xué)科,還會經(jīng)常涉及到物理,工程,經(jīng)濟,金融,農(nóng)林等各個領(lǐng)域各個學(xué)科,從不同的學(xué)科中找最熱門最真實的案例進行教學(xué),這要求學(xué)生有很強的自學(xué)能力,要不得學(xué)習(xí)新知識,新思路和新方法,讓學(xué)生結(jié)合所學(xué)的數(shù)學(xué)知識把自己學(xué)科的專業(yè)知識轉(zhuǎn)化成數(shù)學(xué)模型,讓數(shù)學(xué)充分發(fā)揮它的優(yōu)勢,以達(dá)到培養(yǎng)學(xué)生的創(chuàng)新能力,更重要的是對學(xué)生的知識體系起到了完善的作用。在整個競賽中從模型建立與求解到寫作,都是由學(xué)生獨立完成,充分發(fā)揮了他們的自主性和創(chuàng)造性。
2.數(shù)學(xué)建模能培養(yǎng)學(xué)生團隊合作精神和創(chuàng)新創(chuàng)業(yè)能力
數(shù)學(xué)建模競賽是由三個人組成一個小團隊共同處理一個問題,在這個團隊中每個人都各有分工,有的人擅長建立模型,有的人擅長計算機編程求解模型,有的人擅長寫作,這三個人缺一不可,任何一個人都發(fā)揮著舉足輕重的作用。通常我們還會設(shè)一個隊長能協(xié)調(diào)隊員之間的關(guān)系和對題目的把控。每個人都有不同的性格,能力,學(xué)識,知識結(jié)構(gòu),在做題的過程中會產(chǎn)生不同的想法,比如在模型的建立中,數(shù)據(jù)的處理過程中,算法的選取,編程語言的選取,寫作的過程中都會有很多的不同,所以每個成員都要有團隊精神、相互信任、相互溝通、相互尊重、取長補短、充分發(fā)揮集體的力量共同完成一個項目。同時每年無論在培訓(xùn)還是正式比賽過程中由于高強度的腦力活動,強大的心理壓力以及隊員之間的不和睦都會造成中途退賽,這樣無疑是最可惜的。所以,在競賽中除了培養(yǎng)學(xué)生的創(chuàng)新意識和團隊合作精神,還培養(yǎng)了大家的心理承受能力,強大的意志力以及與他人溝通交往的能力,是對自己綜合素質(zhì)的一個提高,對未來考研、出國、就業(yè)都有很大的幫助。
3.數(shù)學(xué)建模培養(yǎng)學(xué)生的創(chuàng)新創(chuàng)業(yè)的.綜合能力
通過在大二一年的數(shù)學(xué)建模選修課,以及假期的集中培訓(xùn)培養(yǎng)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,很大程度上提高了他們思考問題解決問題的能力等綜合素質(zhì),同時還培養(yǎng)了他們應(yīng)用計算機去處理各種問題的科技能力。他們學(xué)會了各種軟件、語言,很多同學(xué)會數(shù)據(jù)挖掘、機器學(xué)習(xí)以及人工智能,這些都是未來科技的前沿,科技創(chuàng)新是企業(yè)發(fā)展的動力,現(xiàn)代教育不能只停留在教授學(xué)生理論知識的學(xué)習(xí),更重要的是理論與實踐的結(jié)合,走產(chǎn)學(xué)研相結(jié)合的道路,數(shù)學(xué)建模很好的把理論與實踐相結(jié)合,激發(fā)學(xué)生科研熱情,提高學(xué)生科研積極性,激發(fā)了學(xué)生的創(chuàng)新創(chuàng)業(yè)能力,為以后工作生活奠定了扎實的基礎(chǔ)。為了讓建模更好的服務(wù)學(xué)生,我們將不斷的努力,探索和改進培養(yǎng)模式和方法,爭取通過數(shù)學(xué)建模平臺使更多的同學(xué)受益,培養(yǎng)出更多的具有創(chuàng)新創(chuàng)業(yè)能力的大學(xué)生。
參考文獻:
[2]韋程東.數(shù)學(xué)建模能力培養(yǎng)方法研究[m].北京:科學(xué)出版社,2012.
大學(xué)生數(shù)學(xué)建模論文篇九
摘要:數(shù)學(xué)建模作為現(xiàn)代應(yīng)用數(shù)學(xué)的一個重要組成部分被越來越多的人所重視。本文描述數(shù)學(xué)建模課程及數(shù)學(xué)建模競賽在培養(yǎng)大學(xué)生各種能力中的作用。
關(guān)鍵詞:數(shù)學(xué)建模;競賽;大學(xué)生;能力
一、引言
數(shù)學(xué)建模是運用數(shù)學(xué)的語言和方法,去描述或模擬實際問題中的數(shù)量關(guān)系,并解決實際問題的一種強有力的教學(xué)手段。數(shù)學(xué)建模是應(yīng)用數(shù)學(xué)的語言和方法解決實際問題的過程,也是一個培養(yǎng)大學(xué)生各種能力的綜合過程。
大學(xué)生數(shù)學(xué)建模競賽最早是1985年在美國出現(xiàn)的。1989年在幾位從事數(shù)學(xué)建模教育的教師的組織和推動下,我國幾所大學(xué)的大學(xué)生開始參加美國的競賽。自1994年起,教育部高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會共同主辦全國大學(xué)生數(shù)學(xué)建模競賽,每年一屆,這項活動被教育部列為全國大學(xué)生四大競賽之一。隨著全國大學(xué)生數(shù)學(xué)建模競賽的廣泛影響,越來越多的高校組織隊員參加該項競賽,這項競賽的規(guī)模以平均年增長25%以上的速度發(fā)展。2008年全國有31個省/市/自治區(qū)(包括香港)1,023所院校、12,846個隊、38,000多名來自各個專業(yè)的大學(xué)生參加競賽,比2007年新增院校15所。2009年全國有33個省/市/自治區(qū)(包括香港和澳門特區(qū))1,137所院校、15,046個隊、45,000多名來自各個專業(yè)的大學(xué)生參加競賽,是歷年來參賽人數(shù)最多的(其中西藏和澳門是首次參賽)。
20世紀(jì)八十年代以來,我國各高等院校相繼開設(shè)數(shù)學(xué)建模課程。數(shù)學(xué)建模課程是在高等數(shù)學(xué)、線性代數(shù)、概率與數(shù)理統(tǒng)計之后,為實現(xiàn)理論和實踐一體化、進一步提高運用數(shù)學(xué)知識和計算機技術(shù)解決實際問題,培養(yǎng)創(chuàng)新能力所開設(shè)的一門廣泛的公共基礎(chǔ)課。教育必須反映社會的實際需要,數(shù)學(xué)建模課程進入大學(xué)課堂,既順應(yīng)時代發(fā)展的潮流,也符合教育改革的要求。
素質(zhì)教育是新世紀(jì)高校高等數(shù)學(xué)教育改革的一個重要方向。在大學(xué)校園中,數(shù)學(xué)建模課程的開設(shè)及數(shù)學(xué)建?;顒拥拈_展,能有效地激發(fā)大學(xué)生學(xué)習(xí)的興趣和積極性,使大學(xué)生掌握準(zhǔn)確快捷的計算方法和嚴(yán)密的邏輯推理,培養(yǎng)大學(xué)生用數(shù)學(xué)工具分析解決實際問題的能力,是實施素質(zhì)教育的一種有效途徑。
二、數(shù)學(xué)建模對大學(xué)生能力的培養(yǎng)
通過數(shù)學(xué)建模課程的教學(xué)與參加數(shù)學(xué)建模競賽的實踐,使我們深刻感受到數(shù)學(xué)建模過程,不僅是對大學(xué)生知識和方法的培養(yǎng),更是對當(dāng)代大學(xué)生各種能力的培養(yǎng)有著深遠(yuǎn)的意義。
1、有利于提高學(xué)生分析解決問題的能力。數(shù)學(xué)建模教學(xué)強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,要求建模者利用自己所掌握的數(shù)學(xué)知識及對實際問題的理解提出合理的假設(shè),從一個個實際問題中抽象出數(shù)學(xué)問題,建立相應(yīng)數(shù)學(xué)模型,利用恰當(dāng)?shù)臄?shù)學(xué)方法來求解此模型,解決實際問題,并對模型進行評價改進。因此,數(shù)學(xué)建模教學(xué)為大學(xué)生架設(shè)了由抽象的數(shù)學(xué)理論知識通向具體的實際問題的橋梁,是使大學(xué)生的數(shù)學(xué)知識和應(yīng)用能力共同提高的有效方式。大學(xué)生通過參與數(shù)學(xué)建模及競賽活動,能切身體會到學(xué)習(xí)數(shù)學(xué)的實用價值,這是傳統(tǒng)教學(xué)無法達(dá)到的效果,從而激發(fā)了大學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高了學(xué)生分析解決實際問題的能力。
2、有利于培養(yǎng)大學(xué)生應(yīng)用數(shù)學(xué)的能力。數(shù)學(xué)建模通過積極主動的發(fā)散性思維,培養(yǎng)學(xué)生“應(yīng)用數(shù)學(xué)”的能力。這是數(shù)學(xué)教育的根本任務(wù),當(dāng)然應(yīng)當(dāng)成為數(shù)學(xué)應(yīng)用于教學(xué)目的中的重中之重。應(yīng)用數(shù)學(xué)的能力是一種綜合能力,它離不開數(shù)學(xué)運算、數(shù)學(xué)推理、空間想像等基本的數(shù)學(xué)能力,但它主要側(cè)重于從實際問題中提出并表達(dá)數(shù)學(xué)問題的能力,運用并初步構(gòu)建數(shù)學(xué)模型的能力,對數(shù)學(xué)問題及模型進行變換化歸的能力,對數(shù)學(xué)結(jié)果進行檢驗和評價、闡釋和處理的能力。數(shù)學(xué)建模過程包括了歸納、整理、推理、深化等過程,因此把數(shù)學(xué)建模引入課堂教學(xué),學(xué)生能夠?qū)W會如何利用所學(xué)知識構(gòu)造數(shù)學(xué)模型,求解數(shù)學(xué)模型,從而解決實際問題,并且做出必要的評價與改進,從而加深對數(shù)學(xué)知識的理解,提高了應(yīng)用數(shù)學(xué)的能力。
3、有利于學(xué)生抽象概括能力的培養(yǎng)。應(yīng)用數(shù)學(xué)去解決各類實際問題時,建立數(shù)學(xué)模型是十分關(guān)鍵的一步,同時也是十分困難的一步。建立教學(xué)模型的過程,是把錯綜復(fù)雜的實際問題簡化,抽象、概括為合理的數(shù)學(xué)結(jié)構(gòu)的過程。抽象是抽取事物的本質(zhì)屬性,使它與其他屬性分開;概括是將同類事物的相同屬性結(jié)合起來。抽象和概括是緊密聯(lián)系的,只有抽象出事物的本質(zhì)屬性才能進行概括,如果思維不具有概括性也無從進行抽象。抽象能力是指在建模過程中能拋棄無關(guān)的非本質(zhì)因素,從本質(zhì)上看問題,自覺地進行層層的抽象概括,建立數(shù)學(xué)模型的能力。數(shù)學(xué)建模過程使學(xué)生對復(fù)雜的事物,有意識地區(qū)分主要因素與次要因素,本質(zhì)與表面現(xiàn)象,從而抓住本質(zhì)解決問題。它有利于提高學(xué)生思維的深刻性和抽象概括能力,它主要體現(xiàn)在學(xué)生能善于從復(fù)雜的事物中把握事物的本質(zhì)及規(guī)律,使學(xué)生面對具體問題能有條理地在簡約狀態(tài)下進行思考,并有助于真理的發(fā)現(xiàn)。
4、有利于提高大學(xué)生自學(xué)的能力。數(shù)學(xué)建模以學(xué)生為主,教師事先設(shè)計好問題,啟發(fā)、引導(dǎo)學(xué)生主動查閱文獻資料和學(xué)習(xí)新知識,鼓勵學(xué)生積極開展討論和辯論。學(xué)生通過學(xué)習(xí)數(shù)學(xué)建模課程,參加數(shù)學(xué)建模競賽,需要自學(xué)他完全不了解或知之不多的有關(guān)學(xué)科的專業(yè)知識,在這個過程中,有助于培養(yǎng)大學(xué)生獲取新知識的主動精神,有利于提高大學(xué)生的自學(xué)能力。
參加數(shù)學(xué)建模競賽賽前培訓(xùn)的同學(xué)大都需要學(xué)習(xí)諸如數(shù)理統(tǒng)計、優(yōu)化、微分方程、計算方法、層次分析法、數(shù)學(xué)軟件包的使用等等講座,用的學(xué)時并不多,多數(shù)是啟發(fā)性的講一些基本的概念和方法,主要是靠學(xué)生自己去學(xué),充分調(diào)動學(xué)生們的積極性,充分發(fā)揮學(xué)生們的潛能。同時,在比賽的短短3天時間里,要查閱大量的資料,取其精華,從中尋找到所需要的資料,收集必要的信息,這也必須要求大學(xué)生掌握科學(xué)的方法。這種能力必將使大學(xué)生在未來的工作和科研中受益匪淺。
5、有利于培養(yǎng)大學(xué)生的洞察力和想像力。洞察力是人們對個人認(rèn)知、情感、行為的動機與相互關(guān)系的透徹分析。通俗地講,洞察力就是透過現(xiàn)象看本質(zhì),變無意識為有意識。就這層意義而言,洞察力就是學(xué)會用心理學(xué)的原理和視角來歸納總結(jié)人的行為表現(xiàn)。洞察力是指深入事物或問題的能力,更多的是摻雜了分析和判斷的能力,可以說洞察力是一種綜合能力。
想像力是人在已有形象的基礎(chǔ)上,在頭腦中創(chuàng)造出新形象的能力。in有一句名言:想像力比知識更重要,因為知識是有限的,而想像力包括世界的一切,推動著社會進步,并且是知識的源泉。這句話可以認(rèn)為是開設(shè)“數(shù)學(xué)建?!边@門課程的一個指導(dǎo)思想。
數(shù)學(xué)建模的模型假設(shè)過程就是根據(jù)對實際問題的觀察分析、類比、想像,用數(shù)理建?;蛳到y(tǒng)辨識建模方法作假設(shè),通過形象思維對問題進行簡單化、模型化,做出合乎邏輯的想像,形成實際問題數(shù)理化的設(shè)想。例如,2006年全國大學(xué)生數(shù)學(xué)建模競賽中c題“易拉罐的最優(yōu)設(shè)計問題”,第四問要求大學(xué)生利用對所測量的易拉罐的“洞察力和想像力”,做出自己的關(guān)于易拉罐形狀和尺寸的最優(yōu)設(shè)計。大學(xué)生做題的過程,無異于是對大學(xué)生洞察力和想像力培養(yǎng)的真實體現(xiàn)。
6、有利于提高大學(xué)生利用計算機解決問題的能力。首先,計算機是數(shù)學(xué)建模的得力助手。數(shù)學(xué)建模過程中,大多數(shù)問題靈活多變,很多模型的求解都面臨著大量的計算;其次,所建模型是否與實際吻合,常常要用模型的解來判斷,而且這種工作,在建立一個實際問題的數(shù)學(xué)模型中經(jīng)常要重復(fù)多遍。因此,熟練使用計算機計算數(shù)學(xué)問題是對學(xué)生的必須要求。我們倡導(dǎo)大學(xué)生盡量利用計算機程序或某些專用的數(shù)學(xué)應(yīng)用軟件如mathematica、matlab、lingo、mapple等,以及當(dāng)代高新科技成果,將數(shù)學(xué)、計算機有機地結(jié)合起來去解決實際問題。數(shù)學(xué)建模教學(xué)中結(jié)合實驗室上機實踐,計算機的應(yīng)用不僅僅表現(xiàn)在數(shù)學(xué)建模中模型的簡化與求解,而且給大學(xué)生提供了一種評價模型的“試驗場所”,這就有助于培養(yǎng)大學(xué)生利用數(shù)學(xué)軟件和計算機解決實際問題的能力。
7、有利于培養(yǎng)大學(xué)生的創(chuàng)新能力。創(chuàng)新是指人類為了滿足自身的需要,不斷拓展對客觀世界、自身任職與行為過程和結(jié)果的活動。創(chuàng)新能力指人在順利完成以原有知識經(jīng)驗為基礎(chǔ)的創(chuàng)建新事物活動中表現(xiàn)出來的潛在心理品質(zhì)。我們在教學(xué)中應(yīng)給學(xué)生留有充分的余地,鼓勵學(xué)生開闊視野、大膽懷疑、勇于進取、勇于創(chuàng)新,讓學(xué)生充分發(fā)揮想像力,不拘泥于用一種方法解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新能力。在數(shù)學(xué)建模競賽中,對給出的具體實際問題,一般不會有現(xiàn)成的模型,這就要求大學(xué)生在原有模型的基礎(chǔ)上進行大膽的嘗試與創(chuàng)新。創(chuàng)新是一個民族的靈魂,只有創(chuàng)新才能發(fā)展。而創(chuàng)新教育是以全面、充分發(fā)展學(xué)生的創(chuàng)造力為核心的教育,它是適應(yīng)經(jīng)濟時代發(fā)展的教育思想。數(shù)學(xué)建模課程就是培養(yǎng)創(chuàng)新能力的一個極好的載體,數(shù)學(xué)建模的過程是一個創(chuàng)造性的過程,我們應(yīng)該充分發(fā)揮它在創(chuàng)新能力培養(yǎng)中的作用,它為培養(yǎng)大學(xué)生創(chuàng)造性思維能力和創(chuàng)新精神提供了廣闊的空間。
8、有利于提高大學(xué)生論文寫作和表達(dá)能力。數(shù)學(xué)建模成績的好壞、獲獎級別的高低與論文撰寫有著密切關(guān)系,數(shù)學(xué)建模的答卷是評價的唯一依據(jù)。建模方法獨特、結(jié)果出色,但如果不能做到結(jié)構(gòu)清晰、重點突出、文字流暢,也將會失去獲獎的機會。寫好論文的訓(xùn)練,是科技寫作的一種基本訓(xùn)練。通過建模競賽,學(xué)生能夠?qū)W會如何更加準(zhǔn)確地闡述自己的觀點。所以,數(shù)學(xué)建模對培養(yǎng)學(xué)生的論文寫作能力和表達(dá)能力,都起到了積極的作用。
9、有利于培養(yǎng)大學(xué)生的合作交流能力和團隊合作精神。數(shù)學(xué)建模的問題涉及各個領(lǐng)域,都有一定的深度和廣度,所需知識較多,數(shù)學(xué)建模課程廣泛地采用討論班的教學(xué)方式,同學(xué)自己報告、討論、辯論,教師主要起質(zhì)疑、答疑、輔導(dǎo)的作用,與此同時,同學(xué)之間互相平等,互相尊重,培養(yǎng)了學(xué)生合作交流的能力。
參考文獻:
[1]姜啟源,謝金星,葉俊。數(shù)學(xué)模型[m].高等教育出版社,2004.
[2]趙靜,但奇。數(shù)學(xué)建模與數(shù)學(xué)實驗[m].高等教育出版社,2004.
[3]劉來福等。數(shù)學(xué)模型與數(shù)學(xué)建模[m].北京:北京師范大學(xué)出版社,1999.
大學(xué)生數(shù)學(xué)建模論文篇十
大學(xué)生數(shù)學(xué)建模競賽,由教育部高教司和中國工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會主辦,創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學(xué)科競賽,也是世界上規(guī)模最大的數(shù)學(xué)建模競賽,同時成為高等院校文秘站-您的專屬秘書,中國最強免費!一項重大的課外科技活動。尤其,來自全國33個省/市/自治區(qū)(包括香港和澳門特區(qū))及新加坡、美國的1338所院校、25347個隊(其中本科組22233隊、??平M3114隊)、7萬多名大學(xué)生報名參加本項競賽。每年的9月份舉辦,三人為一組,比賽時間共三天,最終通過論文的形式來體現(xiàn),以創(chuàng)新意識、團隊精神、重在參與、公平競爭為宗旨,旨在培養(yǎng)大學(xué)生的創(chuàng)新意識與團隊精神。
一、大學(xué)生數(shù)學(xué)建模競賽培訓(xùn)的重要性
數(shù)學(xué)建模競賽作為教育部四大學(xué)科競賽之首,規(guī)模最大,影響最大。因此,數(shù)學(xué)建模競賽培訓(xùn)顯得尤為重要。它有利于讓學(xué)生盡早了解并掌握建模的基礎(chǔ)理論知識及相關(guān)應(yīng)用軟件;有利于培養(yǎng)學(xué)生分析問題和解決實際問題的能力;有利于培養(yǎng)學(xué)生的團隊合作精神,使隊員間盡早磨合,相互了解;有利于培養(yǎng)學(xué)生的創(chuàng)新意識和發(fā)散思維;有利于訓(xùn)練學(xué)生快速獲取有用信息和資料的能力;有利于增強學(xué)生的寫作技能和排版技術(shù)等。
通過參加數(shù)學(xué)建模競賽,受到了一次科學(xué)研究的初步訓(xùn)練,初步具備了科學(xué)研究的能力,提高了自身的分析問題和解決問題的能力以及計算機應(yīng)用能力,培養(yǎng)了刻苦鉆研問題的精神以及與他人友好合作的團隊精神,培養(yǎng)了敢于戰(zhàn)勝困難的堅強意志和創(chuàng)新能力,這些能力和精神為各自今后的學(xué)習(xí)和工作都帶來了巨大的影響。因為參與數(shù)學(xué)建模比賽,許多學(xué)生收獲了知識,取得了榮譽,參賽隊員的共同體會是:一次參賽,終生受益。
二、培訓(xùn)中創(chuàng)新方法――案例模板式教學(xué)
數(shù)學(xué)建模培訓(xùn)一般是通過給學(xué)生講解數(shù)學(xué)建模的基本知識與理論,相關(guān)的數(shù)學(xué)軟件及軟件包,輔以講座,上機,討論等方式,讓學(xué)生對數(shù)學(xué)建模的基本方法及相關(guān)數(shù)學(xué)軟件的使用有一定的了解,對數(shù)學(xué)建模的基本思想有基本把握。
在培訓(xùn)中,通過對以往競賽試題的分析,將近幾年的數(shù)學(xué)建模競賽分為兩大類:固定式問題和開放式問題,采用案例模板式教學(xué)對參加建模競賽的同學(xué)進行輔導(dǎo)。其中,固定式問題指讓學(xué)生對固定的有一定物理背景的問題進行數(shù)學(xué)建模求解;開放式問題指讓學(xué)生準(zhǔn)確把握題意后能充分根據(jù)自己的喜好,選取不同方向或方法進行建模求解。例如:
全國大學(xué)生數(shù)學(xué)建模大賽a題《車道被占用對城市道路通行能力的影響》為典型的固定式題目,要求學(xué)生對已給的.視頻數(shù)據(jù)確定通行能力的數(shù)學(xué)模型,并且求出排隊長度。而全國大學(xué)生數(shù)學(xué)建模競賽b題《20上海世博會影響力的定量評估》為典型的開放式題目,讓學(xué)生選取感興趣的某個側(cè)面,利用互聯(lián)網(wǎng)數(shù)據(jù),建立數(shù)學(xué)模型,使學(xué)生在準(zhǔn)確把握題意后能充分根據(jù)自己的喜好,選取不同方向進行建模求解,相對于固定問題開放性較強。
因此,要求教師在數(shù)學(xué)建模培訓(xùn)中,既要突出固定式的求解思路,又要注意培養(yǎng)學(xué)生開放式的發(fā)散思維。具體表現(xiàn)為:在固定求解思路上,要包括深刻理解題意,挖掘問題內(nèi)部的區(qū)別,結(jié)合已有的數(shù)學(xué)建?;A(chǔ)、數(shù)學(xué)建?;痉椒?、數(shù)學(xué)建模特殊方法,通過對具體競賽題的分析,總結(jié)出相關(guān)類型問題的數(shù)學(xué)求解方法;在開放性問題上,充分調(diào)動學(xué)生的積極性,讓學(xué)生在查閱相關(guān)資料后,進行討論交流,各抒己見,從各個層面,多角度的找出可行性強的數(shù)學(xué)建模方法。求解思路如下圖1和圖2所示。
三、結(jié)束語
數(shù)學(xué)建模培訓(xùn)是對大學(xué)數(shù)學(xué)教學(xué)改革的一次推動,是對高校教學(xué)水平、管理水平的大檢驗,是對指導(dǎo)教師綜合實力的展示和提升,也是對學(xué)生各種能力和綜合素質(zhì)的一次提高,參加過建模的同學(xué)收獲很多,不但領(lǐng)會到數(shù)學(xué)之美,建模之樂,還體會到團隊合作的強大,專業(yè)交叉的益處,可以說對學(xué)生是一個專業(yè),性格,心智等全方面的鍛煉和提高。
通過對大學(xué)生數(shù)學(xué)建模競賽培訓(xùn)中教學(xué)創(chuàng)新方法的初步探究,數(shù)學(xué)建模培訓(xùn)變得更加系統(tǒng)化、專業(yè)化,為學(xué)生參加各級數(shù)學(xué)建模競賽提供了更好地學(xué)習(xí)實踐和交流的平臺,為培養(yǎng)學(xué)生的專業(yè)建模能力探索了新的途徑和方法。
大學(xué)生數(shù)學(xué)建模論文篇十一
優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
(請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
a題城市表層土壤重金屬污染分析
隨著城市經(jīng)濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價,研究人類活動影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點。
按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應(yīng)用專門儀器測試分析,獲得了每個樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠(yuǎn)離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
(1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
(2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
(3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
大學(xué)生數(shù)學(xué)建模論文篇十二
對于高職院校的學(xué)生來講,數(shù)學(xué)在其教學(xué)過程中起著基礎(chǔ)性的作用,對于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專人才培養(yǎng)當(dāng)中的意義和作用入手,對于其中的應(yīng)用策略進行全面的分析,希望為相關(guān)單位提供一個全面的參考。
數(shù)學(xué)建模;思想;高等教學(xué)
隨著我國社會的發(fā)展,經(jīng)濟產(chǎn)業(yè)結(jié)構(gòu)日益升級,因此高等院校的人才需求日益擴大,對于高職教育的發(fā)展提供了前所未有的契機。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對于其中的策略和方法進行全面的研究應(yīng)該是一項具有普遍現(xiàn)實意義的工作。
從近些年的發(fā)展來看,參加過數(shù)學(xué)競賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強的優(yōu)勢,因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識水平以及調(diào)動學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實際問題的時候,數(shù)學(xué)建模通過利用各種技巧,可以使得學(xué)生分析問題、創(chuàng)造能力得以全面的提升,進而使得學(xué)生在摒棄原始思考問題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識發(fā)出挑戰(zhàn),對于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問題去思考,這對于數(shù)學(xué)知識整體性的發(fā)揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數(shù)學(xué)建模方式,學(xué)生會發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進而使得他們解決問題的能力得以全面的提升。
3.1制定切實可行的教學(xué)大綱,從而使得教學(xué)進度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時,教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實效。比如可以為理工類的學(xué)生選擇無窮級數(shù)以及傅里葉變換的內(nèi)容;機械類的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實際問題為核心的過程中,使得學(xué)生分析問題以及組織問題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開來,這就需要相關(guān)部門開展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識的原創(chuàng)過程,使得學(xué)生明確數(shù)學(xué)知識的產(chǎn)生過程,進而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價值,比如知道極限是由人影的長度變化引起的,導(dǎo)數(shù)是由于駕車的速度引入的,使得學(xué)生發(fā)現(xiàn)知識的價值,進而就會大大提升自己的學(xué)習(xí)興趣和探究意識。第二段:講解數(shù)學(xué)知識。數(shù)學(xué)建模是在實際問題當(dāng)中引入的,因此要通過具體數(shù)學(xué)知識的講解使得學(xué)生明確數(shù)學(xué)建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學(xué)生對于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強學(xué)生的感性認(rèn)識,進而提升學(xué)生的綜合能力奠定堅實的基礎(chǔ)。第三段:數(shù)學(xué)知識的運用。隨著社會的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對于高等數(shù)學(xué)在實際生活當(dāng)中發(fā)揮出來的作用進行全面的探究是實現(xiàn)這種知識價值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個知識點的運用真正灌輸給學(xué)生,比如指數(shù)增長在銀行計息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識以及應(yīng)用能力得以全面的提升。3.3開設(shè)數(shù)學(xué)實驗,提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實驗”,在這種實驗的過程中,學(xué)生對于數(shù)學(xué)知識的發(fā)展以及由來過程都會得到進行全面的考慮,這對于他們數(shù)學(xué)探索意識的提升具有十分重要的意義。另外,在計算機輔助實驗的過程中,學(xué)生的動腦能力也會得到全面的提升,這對于學(xué)生主動的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過程中,教師要積極利用這種方式對于學(xué)生進行全面的培養(yǎng)。
總之,隨著我國經(jīng)濟水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進行全面的分析是實現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對于學(xué)生的長遠(yuǎn)發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時代所需要的人才。
[1]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx,(4).
[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(自然科學(xué)版),20xx,(1).
大學(xué)生數(shù)學(xué)建模論文篇十三
將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過程中去,是我們當(dāng)前開展應(yīng)用數(shù)學(xué)教育的未來發(fā)展趨勢,怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會經(jīng)濟的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實際問題解決中的重要作用,是我們當(dāng)前進行應(yīng)用數(shù)學(xué)研究的核心問題,而建模思想在應(yīng)用數(shù)學(xué)中的運用則能夠很好的解決這一問題。
數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實際問題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問題的有效方法。事實上,數(shù)學(xué)發(fā)展的根本原動力,它的最初的根源,是來自客觀實際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來龍去脈,揭示數(shù)學(xué)概念和公式的實際來源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會生產(chǎn)力的不斷發(fā)展,多個學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會經(jīng)濟發(fā)展的各個行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應(yīng)用數(shù)學(xué)發(fā)展的新機遇。
數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計算機網(wǎng)絡(luò)在社會生活中的廣泛運用,人們對于實踐問題的解決要求越來越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運用帶來了前所未有的機遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識,開展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識,而且還能夠?qū)I(yè)知識同建模密切結(jié)合在一起,對于專業(yè)知識的有效掌握是非常有益的。
3.1充分重視建模的橋梁作用
建模是實現(xiàn)數(shù)學(xué)知識與現(xiàn)實問題相聯(lián)系的橋梁與紐帶,通過進行建模能夠有效的`將實際問題進行簡化。在這一轉(zhuǎn)化的過程中,應(yīng)當(dāng)深入實際進行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對象的獨特特征及規(guī)律,構(gòu)建起反映實際問題的數(shù)學(xué)關(guān)系,運用數(shù)學(xué)理論進行問題的解決。這正是各個學(xué)科之間進行有效聯(lián)系的結(jié)合點,通過引進建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。
3.2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來
我國當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計等幾個部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們在課堂上就能夠獲得更多的思考和討論的機會,能夠充分調(diào)動學(xué)生們的積極性,使其能夠立足實際進行思考,這樣一來就形成了以實際問題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。
3.3積極參加數(shù)學(xué)模型課等相關(guān)課程與活動
數(shù)學(xué)應(yīng)用綜合性的實驗,要求我們掌握數(shù)學(xué)知識的綜合性運用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實例,然后學(xué)生上機實踐,強調(diào)學(xué)生的動手實踐。數(shù)學(xué)實驗課應(yīng)該說是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。
上述幾個部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過程中認(rèn)真掌握數(shù)學(xué)理論知識,還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實踐過程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來看,加強創(chuàng)新意識以及將實際問題轉(zhuǎn)化為數(shù)學(xué)問題能力的培養(yǎng),提升綜合運用本專業(yè)知識以來解決實踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
[1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).
[2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法高職高專數(shù)學(xué)教改之趨勢[j].職大學(xué)報,20xx(02).
[3]李傳欣.數(shù)學(xué)建模在工程類專業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].中國科教創(chuàng)新導(dǎo)刊,20xx(35).
[4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[j].吉林省教育學(xué)院學(xué)報(學(xué)科版),20xx(08).
[5]吳健輝,黃志堅,汪龍虎.對數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[j].景德鎮(zhèn)高專學(xué)報,20xx(04).
大學(xué)生數(shù)學(xué)建模論文篇十四
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運用數(shù)學(xué)知識解決生活中遇到實際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進行有效的融合,最佳切入點就是課堂上把用數(shù)學(xué)解決生活中的實際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運用數(shù)學(xué)知識去刻畫實際問題、提煉數(shù)學(xué)模型、處理實際數(shù)據(jù)、分析解決實際問題的能力,培養(yǎng)學(xué)生運用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實際問題的思想。
2、從數(shù)學(xué)實驗做起要加強獨立學(xué)院學(xué)生進行數(shù)學(xué)實驗的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實驗有著密切的聯(lián)系,兩者都是從解決實際問題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實驗基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數(shù)學(xué)實驗的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進行數(shù)學(xué)實驗的條件還是有限的。即使個別有實驗?zāi)芰Φ膶W(xué)校,也未能進行充分利用,數(shù)學(xué)實驗課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級算法課。根據(jù)調(diào)研,目前大部分獨立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實驗課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計算機應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因為應(yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時代,計算機的廣泛應(yīng)用和計算技術(shù)的飛速發(fā)展,使科學(xué)計算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計算機對各自領(lǐng)域的科學(xué)研究、生活問題等進行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個重要途徑。每個領(lǐng)域的教學(xué)可以計算機應(yīng)用為切入點,讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識能力、挖掘培養(yǎng)創(chuàng)新思維的同時,增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實用性,促進教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢和學(xué)生將來的需求為契機,加快改進大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計算技術(shù)和計算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴充學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨立學(xué)院開展數(shù)學(xué)建?;顒由婕皟?nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實驗方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認(rèn)為應(yīng)該加強以下內(nèi)容的建設(shè):
。2、開設(shè)選修課拓展知識領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運籌學(xué)、開設(shè)數(shù)學(xué)實驗(介紹matlab、maple等計算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數(shù)學(xué)模型方便百姓自己計算的應(yīng)用。這個模型單靠數(shù)學(xué)和經(jīng)濟學(xué)單方面的知識是不夠的,必須把數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲問題模型、圖論應(yīng)用題等方面的模擬競賽,通過參賽積累大量數(shù)學(xué)建模知識,促進數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對歷年的全國大學(xué)生數(shù)學(xué)建模競賽真題進行認(rèn)真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設(shè)計》,20xx年的《交巡警服務(wù)平臺的設(shè)置與調(diào)度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進行講解分析,提高學(xué)生對數(shù)學(xué)建模的興趣和對模型應(yīng)用的直觀的認(rèn)識,實現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對傳統(tǒng)內(nèi)容進行優(yōu)化組合,根據(jù)教學(xué)特點和學(xué)生情況推陳出新,要注重數(shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點放在解決實際生活的應(yīng)用上。要結(jié)合一些社會實踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對一些問題的邏輯分析、抽象、簡化并用數(shù)學(xué)語言表達(dá)的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實際應(yīng)用。
21世紀(jì)我國進入了大眾教育時期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過對美國教學(xué)改革的研究,筆者認(rèn)為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進,但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實水平,數(shù)學(xué)建模思想融入要與時俱進。第二,教學(xué)目標(biāo)要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強交流的基礎(chǔ)上不斷改進。第三,大學(xué)生數(shù)學(xué)建模競賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個人興趣愛好,注重個性,不應(yīng)面面強求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補,必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進我國教學(xué)水平和質(zhì)量的提高,為社會輸送更多的實用型、創(chuàng)新型人才。
大學(xué)生數(shù)學(xué)建模論文篇十五
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運用到學(xué)生解題過程中進行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學(xué)建模運用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點,提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
大學(xué)生數(shù)學(xué)建模論文篇十六
大量的應(yīng)用型技能型人才,有效滿足了社會各行各業(yè)的用工需求。隨著國家對高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實際運用,鑒于數(shù)學(xué)建模的這種特點,國內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書明確教學(xué)改革要求學(xué)生結(jié)合計算機技術(shù),靈活運用數(shù)學(xué)的思想和方法獨立地分析和解決問題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識,而且能培養(yǎng)學(xué)生團結(jié)協(xié)作、不怕困難、求實嚴(yán)謹(jǐn)?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗,對基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進行了探索,對教學(xué)實踐中出現(xiàn)的問題進行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專業(yè)技能的新型高職人才。
近年來,隨著國內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對于高等職業(yè)技術(shù)人才需求不斷增大,社會對高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專業(yè)設(shè)置不合理,使用教材落后,實訓(xùn)實踐場地不足,培養(yǎng)出的學(xué)生動手能力差、專業(yè)能力不足,面對社會發(fā)展的新形勢,高職教育必須進行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競爭力。高職教育不同于普通本科教育,它有以下幾方面的特點。
1人才培養(yǎng)目標(biāo)不同
高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計和人才培養(yǎng)體系設(shè)計都是基于此目標(biāo)展開的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級技術(shù)應(yīng)用型人才,專業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評價就是畢業(yè)生的就業(yè)競爭力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同
高職教育的教學(xué)重點是學(xué)生要掌握與實踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點,課程設(shè)計專業(yè)性強,一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專業(yè)課程差別較大。
3生源情況不同
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒有希望考上大學(xué),轉(zhuǎn)而進入高職學(xué)習(xí),希望通過掌握一定的技術(shù)來實現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動手應(yīng)用能力是一個非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實問題相結(jié)合的一門科學(xué),它將實際問題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實際問題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識的應(yīng)用提供了途徑,對于現(xiàn)實中的特點問題,可以用數(shù)學(xué)語言來描述其內(nèi)在規(guī)律和問題,運用數(shù)學(xué)研究的成果,結(jié)合計算機專業(yè)軟件,通過抽象、簡化、假設(shè)、引進變量等處理過程后,將實際問題用數(shù)學(xué)方式表達(dá),轉(zhuǎn)化成為數(shù)學(xué)問題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實際問題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點,可以把數(shù)學(xué)知識應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專業(yè)不同編寫相應(yīng)的校本教材;最后,改進教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進行數(shù)學(xué)應(yīng)用實踐活動,鼓勵學(xué)生參加各種數(shù)學(xué)建模競賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動的接受,由于學(xué)生的基礎(chǔ)知識水平不同,掌握新知識的能力也不同,這種沒有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點,以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強,體系性強,對于基礎(chǔ)知識薄弱、學(xué)習(xí)興趣差的高職生來說感覺難學(xué)、枯燥,這是因為高職數(shù)學(xué)教育沒有教會學(xué)生如何在專業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識,學(xué)生感覺知識無用自然也就不會主動去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識去解決實際問題,讓學(xué)生認(rèn)識到數(shù)學(xué)不只是紙面上的寫寫算算,數(shù)學(xué)可以把實際問題抽象化,變成數(shù)學(xué)問題,利用數(shù)學(xué)的研究方法給實際問題進行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專業(yè)教育相結(jié)合,帶來學(xué)生用數(shù)學(xué)解決專業(yè)問題是大幅度提高學(xué)生專業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對于專業(yè)實訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過程特別突出,很多基礎(chǔ)知識掌握不牢,甚至一點印象都沒有,教師在上課時要充分考慮到這種情況,在課堂授課時給予實時的補充,以助于知識的過渡。因材施教是我國傳統(tǒng)的教育思想,在掌握學(xué)生知識水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對于基礎(chǔ)知識水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進行課外輔導(dǎo)。高職基礎(chǔ)課教育是專業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專業(yè)學(xué)習(xí)情況和專業(yè)特點,把遷移知識運用能力在課堂上結(jié)合學(xué)生的專業(yè)背景進行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識在其專業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進整體教學(xué)質(zhì)量提高
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對于學(xué)了十幾年都感覺頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長期以來學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認(rèn)識,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級學(xué)習(xí)時受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗學(xué)會數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再從全部課程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個體,組織參加建模競賽,進行單獨賽前加強指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點”,能夠以其趣味性強,帶動學(xué)生的學(xué)習(xí)興趣,促進高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評價方式,建立面向應(yīng)用的數(shù)學(xué)教育體系
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對的不再是期末的一張試卷,而是一個個數(shù)學(xué)建模案例,需要學(xué)生運用本學(xué)期學(xué)到的數(shù)學(xué)知識解決實際問題,教師根據(jù)學(xué)生對案例的理解程度,數(shù)學(xué)模型運用能力,實際過程分析和解題技巧等多方面給出評價,同時積極評價、鼓勵學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過以上各個方面評價的加權(quán)作為最后的評價指標(biāo)。這種以數(shù)學(xué)知識應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對提高高職學(xué)生的專業(yè)能力也打下了堅實的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識掌握不牢,數(shù)學(xué)知識應(yīng)用能力低等問題,通過“案例驅(qū)動法+討論法”,引導(dǎo)學(xué)生再次對課本知識進行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識體系的完整,也可以提高教學(xué)效率。通過教學(xué)方式和評價方式改革,學(xué)生的學(xué)習(xí)主動性增強,也改變了以往對于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類專業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重數(shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
大學(xué)生數(shù)學(xué)建模論文篇十七
數(shù)學(xué),源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會各個領(lǐng)域.中考實際應(yīng)用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問、自主解決,體驗做數(shù)學(xué)的過程,從而提高解決實際問題的能力.
一、影響數(shù)學(xué)建模教學(xué)的成因探析
一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開學(xué)生“做”數(shù)學(xué)的過程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進行思考,誘發(fā)學(xué)生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
二、數(shù)學(xué)建模教學(xué)的有效原則
1.自主探索原則.
學(xué)生長期處于師講、生聽的教學(xué)模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計,要符合學(xué)生的年齡特點和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計的問題不切實際,往往會扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實際,讓學(xué)生有能力解決問題.
大學(xué)生數(shù)學(xué)建模論文篇十八
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從初中數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運用到學(xué)生解題過程中進行了分析。
關(guān)鍵詞:數(shù)學(xué);建模;運用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高初中數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。初中數(shù)學(xué)是初中學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,初中數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于初中數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓初中數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。初中數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的.將數(shù)學(xué)建模運用在初中數(shù)學(xué)教學(xué)過程中,是每個初中數(shù)學(xué)教師都值得思考的問題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是初中數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
對于初中生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)初中生這一特點,提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達(dá)到初中數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動進行數(shù)學(xué)建模
在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于初中數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。