2023年初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖 初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精選10篇)

字號(hào):

    工作學(xué)習(xí)中一定要善始善終,只有總結(jié)才標(biāo)志工作階段性完成或者徹底的終止。通過(guò)總結(jié)對(duì)工作學(xué)習(xí)進(jìn)行回顧和分析,從中找出經(jīng)驗(yàn)和教訓(xùn),引出規(guī)律性認(rèn)識(shí),以指導(dǎo)今后工作和實(shí)踐活動(dòng)。什么樣的總結(jié)才是有效的呢?下面是小編整理的個(gè)人今后的總結(jié)范文,歡迎閱讀分享,希望對(duì)大家有所幫助。
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇一
    圓是軸對(duì)稱(chēng)圖形,任何一條直徑所在的直線都是它的對(duì)稱(chēng)軸;
    垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條??;
    平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。
    在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等。
    在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;
    半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。
    點(diǎn)在圓外
    點(diǎn)在圓上d=r
    點(diǎn)在圓內(nèi)d
    定理:不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓。
    三角形的外接圓:經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點(diǎn),叫做三角形的外心。
    相交d
    相切d=r
    相離dr
    切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑;
    切線的判定定理:經(jīng)過(guò)圓的外端并且垂直于這條半徑的直線是圓的切線;
    切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
    三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。
    外離dr+r
    外切d=r+r
    相交r—r
    內(nèi)切d=r—r
    內(nèi)含d
    正多邊形的中心:外接圓的圓心
    正多邊形的半徑:外接圓的半徑
    正多邊形的中心角:沒(méi)邊所對(duì)的圓心角
    正多邊形的邊心距:中心到一邊的距離
    弧長(zhǎng)
    扇形面積:
    側(cè)面積:
    全面積
    第五章概率初步
    1、概率意義:在大量重復(fù)試驗(yàn)中,事件a發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)p附近,則常數(shù)p叫做事件a的概率。
    2、用列舉法求概率
    3、用頻率去估計(jì)概率
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇二
    全套教科書(shū)包含了課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計(jì)與概率”“實(shí)踐與綜合應(yīng)用”四個(gè)領(lǐng)域的內(nèi)容,在體系結(jié)構(gòu)的設(shè)計(jì)上力求反映這些內(nèi)容之間的聯(lián)系與綜合,使它們形成一個(gè)有機(jī)的整體。
    九年級(jí)上冊(cè)包括二次根式、一元二次方程、旋轉(zhuǎn)、圓、概率初步五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了《課程標(biāo)準(zhǔn)》的四個(gè)領(lǐng)域。本冊(cè)書(shū)內(nèi)容分析如下:
    學(xué)生已經(jīng)學(xué)過(guò)整式與分式,知道用式子可以表示實(shí)際問(wèn)題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問(wèn)題還會(huì)遇到二次根式?!岸胃健币徽戮蛠?lái)認(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。
    在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:
    并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。
    “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類(lèi)比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過(guò)例題說(shuō)明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。
    學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì)遇到一種新方程——一元二次方程?!耙辉畏匠獭币徽戮蛠?lái)認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問(wèn)題。
    “22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。
    (1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如的方程。然后舉例說(shuō)明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的.例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。對(duì)于沒(méi)有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。
    (2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
    (3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。
    “22.3實(shí)際問(wèn)題與一元二次方程”一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。
    學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱(chēng),探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書(shū)中圖形變換又增添了一名新成員――旋轉(zhuǎn)?!靶D(zhuǎn)”一章就來(lái)認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱(chēng)和中心對(duì)稱(chēng)圖形。
    “23.1旋轉(zhuǎn)”一節(jié)首先通過(guò)實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說(shuō)明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。
    “23.2中心對(duì)稱(chēng)”一節(jié)首先通過(guò)實(shí)例介紹中心對(duì)稱(chēng)的概念。然后讓學(xué)生探究中心對(duì)稱(chēng)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。這些內(nèi)容之后,通過(guò)線段、平行四邊形引出中心對(duì)稱(chēng)圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。
    “23.3課題學(xué)習(xí)圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。
    圓是一種常見(jiàn)的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識(shí)圓,探索它的性質(zhì),并用這些知識(shí)解決一些實(shí)際問(wèn)題。通過(guò)這一章的學(xué)習(xí),學(xué)生的解決圖形問(wèn)題的能力將會(huì)進(jìn)一步提高。
    “24.1圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問(wèn)題。接下來(lái),讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。
    “24.2與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過(guò)證明“在同一直線上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線和圓的三種位置關(guān)系、切線的概念以及與切線有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。
    “24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。
    “24.4弧長(zhǎng)和扇形面積”一節(jié)首先介紹弧長(zhǎng)公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。
    將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識(shí)這個(gè)問(wèn)題了。掌握了概率的初步知識(shí),學(xué)生還會(huì)解決更多的實(shí)際問(wèn)題。
    “25.1概率”一節(jié)首先通過(guò)實(shí)例介紹隨機(jī)事件的概念,然后通過(guò)擲幣問(wèn)題引出概率的概念。
    “25.2用列舉法求概率”一節(jié)首先通過(guò)具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫(huà)樹(shù)形圖。
    “25.3利用頻率估計(jì)概率”一節(jié)通過(guò)幼樹(shù)成活率和柑橘損壞率等問(wèn)題介紹了用頻率估計(jì)概率的方法。
    “25.4課題學(xué)習(xí)鍵盤(pán)上字母的排列規(guī)律”一節(jié)讓學(xué)生通過(guò)這一課題的研究體會(huì)概率的廣泛應(yīng)用。
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇三
    有一個(gè)角是直角的平行四邊形叫做矩形。
    (1)具有平行四邊形的一切性質(zhì)。
    (2)矩形的四個(gè)角都是直角。
    (3)矩形的對(duì)角線相等。
    (4)矩形是軸對(duì)稱(chēng)圖形。
    (1)定義:有一個(gè)角是直角的平行四邊形是矩形。
    (2)定理1:有三個(gè)角是直角的四邊形是矩形。
    (3)定理2:對(duì)角線相等的平行四邊形是矩形。
    s矩形=長(zhǎng)×寬=ab
    初三數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)(四)
    1、正方形的概念
    有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
    2、正方形的性質(zhì)
    (1)具有平行四邊形、矩形、菱形的一切性質(zhì);
    (2)正方形的四個(gè)角都是直角,四條邊都相等;
    (3)正方形的兩條對(duì)角線相等,并且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;
    (4)正方形是軸對(duì)稱(chēng)圖形,有4條對(duì)稱(chēng)軸;
    (6)正方形的一條對(duì)角線上的一點(diǎn)到另一條對(duì)角線的兩端點(diǎn)的距離相等。
    3、正方形的判定
    (1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
    先證它是矩形,再證有一組鄰邊相等。
    先證它是菱形,再證有一個(gè)角是直角。
    (2)判定一個(gè)四邊形為正方形的一般順序如下:
    先證明它是平行四邊形;
    再證明它是菱形(或矩形);
    最后證明它是矩形(或菱形)。
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇四
    相似多邊形的對(duì)應(yīng)邊的比值相等,對(duì)應(yīng)角相等;
    兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;
    相似比:相似多邊形對(duì)應(yīng)邊的比值。
    判定:
    平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
    如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
    如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
    如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。
    相似三角形(多邊形)的周長(zhǎng)的比等于相似比;
    相似三角形(多邊形)的面積的比等于相似比的平方。
    位似圖形:兩個(gè)多邊形相似,而且對(duì)應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對(duì)應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇五
    全套教科書(shū)包含了課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計(jì)與概率”“實(shí)踐與綜合應(yīng)用”四個(gè)領(lǐng)域的內(nèi)容,在體系結(jié)構(gòu)的設(shè)計(jì)上力求反映這些內(nèi)容之間的.聯(lián)系與綜合,使它們形成一個(gè)有機(jī)的整體。
    九年級(jí)上冊(cè)包括二次根式、一元二次方程、旋轉(zhuǎn)、圓、概率初步五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了《課程標(biāo)準(zhǔn)》的四個(gè)領(lǐng)域。本冊(cè)書(shū)內(nèi)容分析如下:
    學(xué)生已經(jīng)學(xué)過(guò)整式與分式,知道用式子可以表示實(shí)際問(wèn)題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問(wèn)題還會(huì)遇到二次根式?!岸胃健币徽戮蛠?lái)認(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。
    在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:
    并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。
    “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類(lèi)比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過(guò)例題說(shuō)明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。
    學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì)遇到一種新方程——一元二次方程。“一元二次方程”一章就來(lái)認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問(wèn)題。
    “22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。
    (1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如的方程。這樣的方程可以化為更為簡(jiǎn)單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如的方程。然后舉例說(shuō)明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。對(duì)于沒(méi)有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。
    (2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
    (3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。
    “22.3實(shí)際問(wèn)題與一元二次方程”一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。
    學(xué)生已經(jīng)認(rèn)識(shí)了平移、軸對(duì)稱(chēng),探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書(shū)中圖形變換又增添了一名新成員――旋轉(zhuǎn)。“旋轉(zhuǎn)”一章就來(lái)認(rèn)識(shí)這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識(shí)中心對(duì)稱(chēng)和中心對(duì)稱(chēng)圖形。
    “23.1旋轉(zhuǎn)”一節(jié)首先通過(guò)實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說(shuō)明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。
    “23.2中心對(duì)稱(chēng)”一節(jié)首先通過(guò)實(shí)例介紹中心對(duì)稱(chēng)的概念。然后讓學(xué)生探究中心對(duì)稱(chēng)的性質(zhì)。在此基礎(chǔ)上,通過(guò)例題說(shuō)明作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。這些內(nèi)容之后,通過(guò)線段、平行四邊形引出中心對(duì)稱(chēng)圖形的概念。最后介紹關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對(duì)稱(chēng)的圖形的方法。
    “23.3課題學(xué)習(xí)圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對(duì)稱(chēng)、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。
    圓是一種常見(jiàn)的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識(shí)圓,探索它的性質(zhì),并用這些知識(shí)解決一些實(shí)際問(wèn)題。通過(guò)這一章的學(xué)習(xí),學(xué)生的解決圖形問(wèn)題的能力將會(huì)進(jìn)一步提高。
    “24.1圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問(wèn)題。接下來(lái),讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問(wèn)題。
    “24.2與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過(guò)證明“在同一直線上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線和圓的三種位置關(guān)系、切線的概念以及與切線有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。
    “24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。
    “24.4弧長(zhǎng)和扇形面積”一節(jié)首先介紹弧長(zhǎng)公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。
    將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識(shí)這個(gè)問(wèn)題了。掌握了概率的初步知識(shí),學(xué)生還會(huì)解決更多的實(shí)際問(wèn)題。
    “25.1概率”一節(jié)首先通過(guò)實(shí)例介紹隨機(jī)事件的概念,然后通過(guò)擲幣問(wèn)題引出概率的概念。
    “25.2用列舉法求概率”一節(jié)首先通過(guò)具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫(huà)樹(shù)形圖。
    “25.3利用頻率估計(jì)概率”一節(jié)通過(guò)幼樹(shù)成活率和柑橘損壞率等問(wèn)題介紹了用頻率估計(jì)概率的方法。
    “25.4課題學(xué)習(xí)鍵盤(pán)上字母的排列規(guī)律”一節(jié)讓學(xué)生通過(guò)這一課題的研究體會(huì)概率的廣泛應(yīng)用。
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇六
    在某一變化過(guò)程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
    一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù)。
    用來(lái)表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
    使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
    (1)解析法
    兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。
    (2)列表法
    把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。
    (3)圖像法
    用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
    (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。
    (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。
    (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇七
    2垂直于弦的直徑
    圓是軸對(duì)稱(chēng)圖形,任何一條直徑所在的直線都是它的對(duì)稱(chēng)軸;
    垂直于弦的直徑平分弦,并且平方弦所對(duì)的兩條弧;
    平分弦的直徑垂直弦,并且平分弦所對(duì)的兩條弧。
    3弧、弦、圓心角
    在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等。
    4圓周角
    在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;
    半圓(或直徑)所對(duì)的圓周角是直角,90度的圓周角所對(duì)的弦是直徑。
    5點(diǎn)和圓的位置關(guān)系
    點(diǎn)在圓外
    點(diǎn)在圓上d=r
    點(diǎn)在圓內(nèi)d
    定理:不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓。
    三角形的外接圓:經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點(diǎn),叫做三角形的外心。
    6直線和圓的位置關(guān)系
    相交d
    相切d=r
    相離dr
    切線的性質(zhì)定理:圓的切線垂直于過(guò)切點(diǎn)的半徑;
    切線的判定定理:經(jīng)過(guò)圓的外端并且垂直于這條半徑的直線是圓的切線;
    切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
    三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。
    7圓和圓的位置關(guān)系
    外離dr+r
    外切d=r+r
    相交r-r
    內(nèi)切d=r-r
    內(nèi)含d
    8正多邊形和圓
    正多邊形的中心:外接圓的圓心
    正多邊形的半徑:外接圓的半徑
    正多邊形的中心角:沒(méi)邊所對(duì)的圓心角
    正多邊形的邊心距:中心到一邊的距離
    9弧長(zhǎng)和扇形面積
    弧長(zhǎng)
    扇形面積:
    10圓錐的側(cè)面積和全面積
    側(cè)面積:
    全面積
    11 (附加)相交弦定理、切割線定理
    第五章概率初步
    1概率意義:在大量重復(fù)試驗(yàn)中,事件a發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)p附近,則常數(shù)p叫做事件a的概率。
    2用列舉法求概率
    3用頻率去估計(jì)概率
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇八
    學(xué)生已經(jīng)學(xué)過(guò)整式與分式,知道用式子可以表示實(shí)際問(wèn)題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問(wèn)題還會(huì)遇到二次根式。二次根式 一章就來(lái)認(rèn)識(shí)這種式子,探索它的性質(zhì),掌握它的運(yùn)算。
    在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:
    并運(yùn)用它們進(jìn)行二次根式的化簡(jiǎn)。
    二次根式的加減一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類(lèi)比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過(guò)例題說(shuō)明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。
    學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問(wèn)題的方法。在解決某些實(shí)際問(wèn)題時(shí)還會(huì)遇到一種新方程 一元二次方程。一元二次方程一章就來(lái)認(rèn)識(shí)這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問(wèn)題。
    22.2降次解一元二次方程一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說(shuō)明。
    (1)在介紹配方法時(shí),首先通過(guò)實(shí)際問(wèn)題引出形如 的方程。這樣的方程可以化為更為簡(jiǎn)單的形如 的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說(shuō)明如何解形如 的方程。然后舉例說(shuō)明一元二次方程可以化為形如 的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。對(duì)于沒(méi)有實(shí)數(shù)根的一元二次方程,學(xué)了公式法以后,學(xué)生對(duì)這個(gè)內(nèi)容會(huì)有進(jìn)一步的理解。
    (2)在介紹公式法時(shí),首先借助配方法討論方程 的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒(méi)有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
    (3)在介紹因式分解法時(shí),首先通過(guò)實(shí)際問(wèn)題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對(duì)配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。
    22.3實(shí)際問(wèn)題與一元二次方程一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動(dòng)等問(wèn)題,使學(xué)生進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇九
    2、概率
    一般地,在大量重復(fù)試驗(yàn)中,如果事件a發(fā)生的頻率
    會(huì)穩(wěn)定在某個(gè)常數(shù)p附近,那么這個(gè)常數(shù)p就叫做事件a的概率(probability), 記作p(a)=p.
    注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映。
    (2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計(jì)得到事件發(fā)生的概率,但二者不能簡(jiǎn)單地等同。
    3、求概率的方法
    (1)用列舉法求概率(列表法、畫(huà)樹(shù)形圖法)
    (2)用頻率估計(jì)概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來(lái)估計(jì)事件發(fā)生的概率。另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個(gè)常數(shù)(事件發(fā)生的概率)附近,說(shuō)明概率是個(gè)定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡(jiǎn)單地等同.
    初三數(shù)學(xué)知識(shí)點(diǎn)總結(jié)圖篇十
    僅含有一些數(shù)和字母的乘法包括乘方運(yùn)算的式子叫做單項(xiàng)式單獨(dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。
    單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式或字母因數(shù)的數(shù)字系數(shù),簡(jiǎn)稱(chēng)系數(shù)。
    當(dāng)一個(gè)單項(xiàng)式的系數(shù)是1或―1時(shí),“1”通常省略不寫(xiě)。
    一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
    如果在幾個(gè)單項(xiàng)式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個(gè)單項(xiàng)式就叫做同類(lèi)單項(xiàng)式,簡(jiǎn)稱(chēng)同類(lèi)項(xiàng)所有的常數(shù)都是同類(lèi)項(xiàng)。
    有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。
    多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。
    單項(xiàng)式可以看作是多項(xiàng)式的特例
    把同類(lèi)單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。
    在多項(xiàng)式中,所含的不同未知數(shù)的個(gè)數(shù),稱(chēng)做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過(guò)合并同類(lèi)項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱(chēng)為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱(chēng)為這個(gè)多項(xiàng)式的次數(shù)。
    任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來(lái)的式子。
    對(duì)于兩個(gè)一元多項(xiàng)式fx、gx來(lái)說(shuō),當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項(xiàng)式就稱(chēng)為是恒等的記為fx==gx,或簡(jiǎn)記為fx=gx。
    性質(zhì)1如果fx==gx,那么,對(duì)于任一個(gè)數(shù)值a,都有fa=ga。
    性質(zhì)2如果fx==gx,那么,這兩個(gè)多項(xiàng)式的個(gè)同類(lèi)項(xiàng)系數(shù)就一定對(duì)應(yīng)相等。
    一般地,能夠使多項(xiàng)式fx的值等于0的未知數(shù)x的值,叫做多項(xiàng)式fx的根。
    多項(xiàng)式的加、減法,乘法
    1、多項(xiàng)式的加、減法
    2、多項(xiàng)式的乘法
    單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對(duì)于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。
    3、多項(xiàng)式的乘法
    多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。
    常用乘法公式
    公式i平方差公式
    a+ba―b=a^2―b^2
    兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差。