在高中階段,我們每天都要投入大量精力在各學(xué)科學(xué)習(xí)。要想使學(xué)習(xí)成績(jī)穩(wěn)定提高,需要給自己制定一個(gè)學(xué)習(xí)目標(biāo)和計(jì)劃。為各位同學(xué)整理了《高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí)》,希望對(duì)你的學(xué)習(xí)有所幫助!
1.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇一
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
2.寫(xiě)出點(diǎn)M的集合;
3.列出方程=0;
4.化簡(jiǎn)方程為最簡(jiǎn)形式;
5.檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
1.直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5.交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
2.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇二
1、函數(shù):設(shè)A、B為非空集合,如果按照某個(gè)特定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù),寫(xiě)作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對(duì)應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A}叫做函數(shù)的值域。
2、函數(shù)定義域的解題思路:
⑴若x處于分母位置,則分母x不能為0。
⑵偶次方根的被開(kāi)方數(shù)不小于0。
⑶對(duì)數(shù)式的真數(shù)必須大于0。
⑷指數(shù)對(duì)數(shù)式的底,不得為1,且必須大于0。
⑸指數(shù)為0時(shí),底數(shù)不得為0。
⑹如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。
⑺實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義。
3、相同函數(shù)
⑴表達(dá)式相同:與表示自變量和函數(shù)值的字母無(wú)關(guān)。
⑵定義域一致,對(duì)應(yīng)法則一致。
4、函數(shù)值域的求法
⑴觀察法:適用于初等函數(shù)及一些簡(jiǎn)單的由初等函數(shù)通過(guò)四則運(yùn)算得到的函數(shù)。
⑵圖像法:適用于易于畫(huà)出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。
⑶配方法:主要用于二次函數(shù),配方成y=(x-a)2+b的形式。
⑷代換法:主要用于由已知值域的函數(shù)推測(cè)未知函數(shù)的值域。
5、函數(shù)圖像的變換
⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。
⑵伸縮變換:在x前加上系數(shù)。
⑶對(duì)稱(chēng)變換:高中階段不作要求。
6、映射:設(shè)A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于A中的任意儀的元素x,在集合B中都有的確定的y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:A→B為從集合A到集合B的映射。
⑴集合A中的每一個(gè)元素,在集合B中都有象,并且象是的。
⑵集合A中的不同元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè)。
⑶不要求集合B中的每一個(gè)元素在集合A中都有原象。
3.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇三
函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱(chēng)觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.
(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
4.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇四
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):
(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。
(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)
當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。
5.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇五
1.多面體的結(jié)構(gòu)特征
(1)棱柱的上下底面平行,側(cè)棱都平行且長(zhǎng)度相等,上底面和下底面是全等的多邊形.
(2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形.
(3)棱臺(tái)可由平行于棱錐底面的'平面截棱錐得到,其上下底面的兩個(gè)多邊形相似.
2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
(1)圓柱可以由矩形繞其一邊所在直線旋轉(zhuǎn)得到.
(2)圓錐可以由直角三角形繞其一條直角邊所在直線旋轉(zhuǎn)得到.
(3)圓臺(tái)可以由直角梯形繞直角腰所在直線或等腰梯形繞上下底中點(diǎn)的連線旋轉(zhuǎn)得到,也可由平行于圓錐底面的平面截圓錐得到.
(4)球可以由半圓或圓繞其直徑旋轉(zhuǎn)得到.
3.空間幾何體的三視圖
空間幾何體的三視圖是用正投影得到,這種投影下與投影面平行的平面圖形留下的影子與平面圖形的形狀和大小是完全相同的,三視圖包括主視圖、左視圖、俯視圖.
4.空間幾何體的直觀圖
(1)在已知圖形中建立直角坐標(biāo)系xOy.畫(huà)直觀圖時(shí),它們分別對(duì)應(yīng)x軸和y軸,兩軸交于點(diǎn)O,使xOy=45,它們確定的平面表示水平平面;
(2)已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫(huà)成平行于x軸和y軸的線段;
(3)已知圖形中平行于x軸的線段,在直觀圖中保持原長(zhǎng)度不變;平行于y軸的線段,長(zhǎng)度為原來(lái)的.
1.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇一
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟
1.建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
2.寫(xiě)出點(diǎn)M的集合;
3.列出方程=0;
4.化簡(jiǎn)方程為最簡(jiǎn)形式;
5.檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
1.直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2.定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
3.相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4.參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5.交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
2.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇二
1、函數(shù):設(shè)A、B為非空集合,如果按照某個(gè)特定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù),寫(xiě)作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對(duì)應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A}叫做函數(shù)的值域。
2、函數(shù)定義域的解題思路:
⑴若x處于分母位置,則分母x不能為0。
⑵偶次方根的被開(kāi)方數(shù)不小于0。
⑶對(duì)數(shù)式的真數(shù)必須大于0。
⑷指數(shù)對(duì)數(shù)式的底,不得為1,且必須大于0。
⑸指數(shù)為0時(shí),底數(shù)不得為0。
⑹如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。
⑺實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義。
3、相同函數(shù)
⑴表達(dá)式相同:與表示自變量和函數(shù)值的字母無(wú)關(guān)。
⑵定義域一致,對(duì)應(yīng)法則一致。
4、函數(shù)值域的求法
⑴觀察法:適用于初等函數(shù)及一些簡(jiǎn)單的由初等函數(shù)通過(guò)四則運(yùn)算得到的函數(shù)。
⑵圖像法:適用于易于畫(huà)出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。
⑶配方法:主要用于二次函數(shù),配方成y=(x-a)2+b的形式。
⑷代換法:主要用于由已知值域的函數(shù)推測(cè)未知函數(shù)的值域。
5、函數(shù)圖像的變換
⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。
⑵伸縮變換:在x前加上系數(shù)。
⑶對(duì)稱(chēng)變換:高中階段不作要求。
6、映射:設(shè)A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于A中的任意儀的元素x,在集合B中都有的確定的y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:A→B為從集合A到集合B的映射。
⑴集合A中的每一個(gè)元素,在集合B中都有象,并且象是的。
⑵集合A中的不同元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè)。
⑶不要求集合B中的每一個(gè)元素在集合A中都有原象。
3.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇三
函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱(chēng)觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.
(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
4.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇四
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):
(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。
(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)
當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=O時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。
5.高一年級(jí)數(shù)學(xué)下學(xué)期考點(diǎn)復(fù)習(xí) 篇五
1.多面體的結(jié)構(gòu)特征
(1)棱柱的上下底面平行,側(cè)棱都平行且長(zhǎng)度相等,上底面和下底面是全等的多邊形.
(2)棱錐的底面是任意多邊形,側(cè)面是有一個(gè)公共頂點(diǎn)的三角形.
(3)棱臺(tái)可由平行于棱錐底面的'平面截棱錐得到,其上下底面的兩個(gè)多邊形相似.
2.旋轉(zhuǎn)體的結(jié)構(gòu)特征
(1)圓柱可以由矩形繞其一邊所在直線旋轉(zhuǎn)得到.
(2)圓錐可以由直角三角形繞其一條直角邊所在直線旋轉(zhuǎn)得到.
(3)圓臺(tái)可以由直角梯形繞直角腰所在直線或等腰梯形繞上下底中點(diǎn)的連線旋轉(zhuǎn)得到,也可由平行于圓錐底面的平面截圓錐得到.
(4)球可以由半圓或圓繞其直徑旋轉(zhuǎn)得到.
3.空間幾何體的三視圖
空間幾何體的三視圖是用正投影得到,這種投影下與投影面平行的平面圖形留下的影子與平面圖形的形狀和大小是完全相同的,三視圖包括主視圖、左視圖、俯視圖.
4.空間幾何體的直觀圖
(1)在已知圖形中建立直角坐標(biāo)系xOy.畫(huà)直觀圖時(shí),它們分別對(duì)應(yīng)x軸和y軸,兩軸交于點(diǎn)O,使xOy=45,它們確定的平面表示水平平面;
(2)已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫(huà)成平行于x軸和y軸的線段;
(3)已知圖形中平行于x軸的線段,在直觀圖中保持原長(zhǎng)度不變;平行于y軸的線段,長(zhǎng)度為原來(lái)的.