數(shù)學(xué)80%的分?jǐn)?shù)來源于基礎(chǔ)知識(shí),20%的分?jǐn)?shù)屬于難點(diǎn),所以考滿分并不難。為各位同學(xué)整理了《高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納》,希望對(duì)你的學(xué)習(xí)有所幫助!
1.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇一
函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.
(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
2.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇二
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個(gè)特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
3.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇三
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
①直線的傾斜角,體現(xiàn)了直線對(duì)x軸正向的傾斜程度;
②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k<0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當(dāng)α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)當(dāng)a≠0時(shí),傾斜角為90度,即與X軸垂直
4.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇四
復(fù)數(shù)定義
我們把形如a+bi(a,b均為實(shí)數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實(shí)部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時(shí),這個(gè)復(fù)數(shù)可以視為實(shí)數(shù);當(dāng)z的虛部不等于零時(shí),實(shí)部等于零時(shí),常稱z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。
復(fù)數(shù)表達(dá)式
虛數(shù)是與任何事物沒有聯(lián)系的,是絕對(duì)的,所以符合的表達(dá)式為:
a=a+ia為實(shí)部,i為虛部
復(fù)數(shù)運(yùn)算法則
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個(gè)函數(shù)。
復(fù)數(shù)與幾何
①幾何形式
復(fù)數(shù)z=a+bi被復(fù)平面上的點(diǎn)z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
②向量形式
復(fù)數(shù)z=a+bi用一個(gè)以原點(diǎn)O(0,0)為起點(diǎn),點(diǎn)Z(a,b)為終點(diǎn)的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?BR> ③三角形式
復(fù)數(shù)z=a+bi化為三角形式
5.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇五
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長,S=6a2,V=a3
4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
1.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇一
函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
(2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.
(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
2.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇二
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
(2)多個(gè)特殊的直角三角形
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
3.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇三
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。
范圍:
傾斜角的取值范圍是0°≤α<180°。
理解:
(1)注意“兩個(gè)方向”:直線向上的方向、x軸的正方向;
(2)規(guī)定當(dāng)直線和x軸平行或重合時(shí),它的傾斜角為0度。
意義:
①直線的傾斜角,體現(xiàn)了直線對(duì)x軸正向的傾斜程度;
②在平面直角坐標(biāo)系中,每一條直線都有一個(gè)確定的傾斜角;
③傾斜角相同,未必表示同一條直線。
公式:
k=tanα
k>0時(shí)α∈(0°,90°)
k<0時(shí)α∈(90°,180°)
k=0時(shí)α=0°
當(dāng)α=90°時(shí)k不存在
ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)當(dāng)a≠0時(shí),傾斜角為90度,即與X軸垂直
4.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇四
復(fù)數(shù)定義
我們把形如a+bi(a,b均為實(shí)數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實(shí)部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時(shí),這個(gè)復(fù)數(shù)可以視為實(shí)數(shù);當(dāng)z的虛部不等于零時(shí),實(shí)部等于零時(shí),常稱z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。
復(fù)數(shù)表達(dá)式
虛數(shù)是與任何事物沒有聯(lián)系的,是絕對(duì)的,所以符合的表達(dá)式為:
a=a+ia為實(shí)部,i為虛部
復(fù)數(shù)運(yùn)算法則
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個(gè)函數(shù)。
復(fù)數(shù)與幾何
①幾何形式
復(fù)數(shù)z=a+bi被復(fù)平面上的點(diǎn)z(a,b)確定。這種形式使復(fù)數(shù)的問題可以借助圖形來研究。也可反過來用復(fù)數(shù)的理論解決一些幾何問題。
②向量形式
復(fù)數(shù)z=a+bi用一個(gè)以原點(diǎn)O(0,0)為起點(diǎn),點(diǎn)Z(a,b)為終點(diǎn)的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?BR> ③三角形式
復(fù)數(shù)z=a+bi化為三角形式
5.高一年級(jí)下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)歸納 篇五
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
3、a-邊長,S=6a2,V=a3
4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
5、棱柱S-h-高V=Sh
6、棱錐S-h-高V=Sh/3
7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
11、r-底半徑h-高V=πr^2h/3
12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)