高二數(shù)學(xué)選擇性必修二知識(shí)點(diǎn)

字號(hào):

在平凡的學(xué)習(xí)生活中,大家對(duì)知識(shí)點(diǎn)應(yīng)該都不陌生吧?知識(shí)點(diǎn)是知識(shí)中的最小單位,體的內(nèi)容,有時(shí)候也叫“考點(diǎn)”。為各位同學(xué)整理了《高二數(shù)學(xué)選擇性必修二知識(shí)點(diǎn)》,希望對(duì)你的學(xué)習(xí)有所幫助!
    1.高二數(shù)學(xué)選擇性必修二知識(shí)點(diǎn) 篇一
    1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
    (1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
    (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.
    (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
    (4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.
    (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.
    (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
    (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
    (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
    2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
    求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異.
    如函數(shù)的值域是(0,16],值是16,無(wú)最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無(wú)值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見(jiàn)定義域?qū)瘮?shù)的值域或最值的影響.
    3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用
    函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)”或“面積(體積)(最小)”等諸多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值.
    2.高二數(shù)學(xué)選擇性必修二知識(shí)點(diǎn) 篇二
    1.向量可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長(zhǎng)度:代表向量的大小。
    2.規(guī)定若線段AB的端點(diǎn)A為起點(diǎn),B為終點(diǎn),則線段就具有了從起點(diǎn)A到終點(diǎn)B的方向和長(zhǎng)度。具有方向和長(zhǎng)度的線段叫做有向線段。
    3.向量的模:向量的大小,也就是向量的長(zhǎng)度(或稱模)。向量a的模記作|a|。
    注:向量的模是非負(fù)實(shí)數(shù),是可以比較大小的。因?yàn)榉较虿荒鼙容^大小,所以向量也就不能比較大小。對(duì)于向量來(lái)說(shuō)“大于”和“小于”的概念是沒(méi)有意義的。
    4.單位向量:長(zhǎng)度為一個(gè)單位(即模為1)的向量,叫做單位向量.與向量a同向,且長(zhǎng)度為單位1的向量,叫做a方向上的單位向量,記作a0。
    5.長(zhǎng)度為0的向量叫做零向量,記作0。零向量的始點(diǎn)和終點(diǎn)重合,所以零向量沒(méi)有確定的方向,或說(shuō)零向量的方向是任意的。
    3.高二數(shù)學(xué)選擇性必修二知識(shí)點(diǎn) 篇三
    1.不等式的定義
    在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)、、連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.
    2.比較兩個(gè)實(shí)數(shù)的大小
    兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
    3.不等式的性質(zhì)
    (1)對(duì)稱性:ab
    (2)傳遞性:ab,ba
    (3)可加性:aa+cb+c,ab,ca+c
    (4)可乘性:ab,cacb0,c0bd;
    (5)可乘方:a0bn(nN,n
    (6)可開(kāi)方:a0
    (nN,n2).
    注意:
    一個(gè)技巧
    作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.
    一種方法
    待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.
    4.高二數(shù)學(xué)選擇性必修二知識(shí)點(diǎn) 篇四
    空間中的垂直問(wèn)題
    (1)線線、面面、線面垂直的定義
    兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直.
    線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直.
    平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直.
    (2)垂直關(guān)系的判定和性質(zhì)定理
    線面垂直判定定理和性質(zhì)定理
    判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面.
    性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.
    面面垂直的判定定理和性質(zhì)定理
    判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.
    性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.
    5.高二數(shù)學(xué)選擇性必修二知識(shí)點(diǎn) 篇五
    柱、錐、臺(tái)、球的結(jié)構(gòu)特征
    (1)棱柱:
    幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
    (2)棱錐
    幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.
    (3)棱臺(tái):
    幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點(diǎn)
    (4)圓柱:
    定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
    幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開(kāi)圖是一個(gè)矩形.
    (5)圓錐:
    定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
    幾何特征:底面是一個(gè)圓;母線交于圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)扇形.
    (6)圓臺(tái):
    定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
    幾何特征:上下底面是兩個(gè)圓;側(cè)面母線交于原圓錐的頂點(diǎn);側(cè)面展開(kāi)圖是一個(gè)弓形.
    (7)球體:
    定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
    幾何特征:球的截面是圓;球面上任意一點(diǎn)到球心的距離等于半徑.