高二數(shù)學選擇性必修二知識點

字號:

在平凡的學習生活中,大家對知識點應該都不陌生吧?知識點是知識中的最小單位,體的內(nèi)容,有時候也叫“考點”。為各位同學整理了《高二數(shù)學選擇性必修二知識點》,希望對你的學習有所幫助!
    1.高二數(shù)學選擇性必修二知識點 篇一
    1、函數(shù)的值域取決于定義域和對應法則,不論采用何種方法求函數(shù)值域都應先考慮其定義域,求函數(shù)值域常用方法如下:
    (1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
    (2)換元法:運用代數(shù)式或三角換元將所給的復雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.
    (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
    (4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.
    (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.
    (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
    (7)利用函數(shù)的單調(diào)性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
    (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
    2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
    求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.
    如函數(shù)的值域是(0,16],值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.
    3、函數(shù)的最值在實際問題中的應用
    函數(shù)的最值的應用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值.
    2.高二數(shù)學選擇性必修二知識點 篇二
    1.向量可以形象化地表示為帶箭頭的線段。箭頭所指:代表向量的方向;線段長度:代表向量的大小。
    2.規(guī)定若線段AB的端點A為起點,B為終點,則線段就具有了從起點A到終點B的方向和長度。具有方向和長度的線段叫做有向線段。
    3.向量的模:向量的大小,也就是向量的長度(或稱模)。向量a的模記作|a|。
    注:向量的模是非負實數(shù),是可以比較大小的。因為方向不能比較大小,所以向量也就不能比較大小。對于向量來說“大于”和“小于”的概念是沒有意義的。
    4.單位向量:長度為一個單位(即模為1)的向量,叫做單位向量.與向量a同向,且長度為單位1的向量,叫做a方向上的單位向量,記作a0。
    5.長度為0的向量叫做零向量,記作0。零向量的始點和終點重合,所以零向量沒有確定的方向,或說零向量的方向是任意的。
    3.高二數(shù)學選擇性必修二知識點 篇三
    1.不等式的定義
    在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學符號、、連接兩個數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號的式子,叫做不等式.
    2.比較兩個實數(shù)的大小
    兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba
    3.不等式的性質(zhì)
    (1)對稱性:ab
    (2)傳遞性:ab,ba
    (3)可加性:aa+cb+c,ab,ca+c
    (4)可乘性:ab,cacb0,c0bd;
    (5)可乘方:a0bn(nN,n
    (6)可開方:a0
    (nN,n2).
    注意:
    一個技巧
    作差法變形的技巧:作差法中變形是關(guān)鍵,常進行因式分解或配方.
    一種方法
    待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標式的范圍.
    4.高二數(shù)學選擇性必修二知識點 篇四
    空間中的垂直問題
    (1)線線、面面、線面垂直的定義
    兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.
    線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.
    平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.
    (2)垂直關(guān)系的判定和性質(zhì)定理
    線面垂直判定定理和性質(zhì)定理
    判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.
    性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.
    面面垂直的判定定理和性質(zhì)定理
    判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.
    性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.
    5.高二數(shù)學選擇性必修二知識點 篇五
    柱、錐、臺、球的結(jié)構(gòu)特征
    (1)棱柱:
    幾何特征:兩底面是對應邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
    (2)棱錐
    幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
    (3)棱臺:
    幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點
    (4)圓柱:
    定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
    幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個矩形.
    (5)圓錐:
    定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
    幾何特征:底面是一個圓;母線交于圓錐的頂點;側(cè)面展開圖是一個扇形.
    (6)圓臺:
    定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
    幾何特征:上下底面是兩個圓;側(cè)面母線交于原圓錐的頂點;側(cè)面展開圖是一個弓形.
    (7)球體:
    定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
    幾何特征:球的截面是圓;球面上任意一點到球心的距離等于半徑.