高二年級必修一數(shù)學(xué)知識點筆記

字號:

高效學(xué)習(xí)要注重思維訓(xùn)練和學(xué)習(xí)策略的優(yōu)化,溝通交流能力是知識轉(zhuǎn)化和應(yīng)用的重要手段。為各位同學(xué)整理了《高二年級必修一數(shù)學(xué)知識點筆記》,希望對你的學(xué)習(xí)有所幫助!
    1.高二年級必修一數(shù)學(xué)知識點筆記 篇一
    空間中的平行問題
    (1)直線與平面平行的判定及其性質(zhì)
    線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
    線線平行線面平行
    線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,
    那么這條直線和交線平行.線面平行線線平行
    (2)平面與平面平行的判定及其性質(zhì)
    兩個平面平行的判定定理
    (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
    (線面平行→面面平行),
    (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.
    (線線平行→面面平行),
    (3)垂直于同一條直線的兩個平面平行,
    兩個平面平行的性質(zhì)定理
    (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)
    (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)
    2.高二年級必修一數(shù)學(xué)知識點筆記 篇二
    柱、錐、臺、球的結(jié)構(gòu)特征
    (1)棱柱:
    幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.
    (2)棱錐
    幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
    (3)棱臺:
    幾何特征:上下底面是相似的平行多邊形側(cè)面是梯形側(cè)棱交于原棱錐的頂點
    (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成
    幾何特征:底面是全等的圓;母線與軸平行;軸與底面圓的半徑垂直;側(cè)面展開圖是一個矩形.
    (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
    幾何特征:底面是一個圓;母線交于圓錐的頂點;側(cè)面展開圖是一個扇形.
    (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成
    幾何特征:上下底面是兩個圓;側(cè)面母線交于原圓錐的頂點;側(cè)面展開圖是一個弓形.
    (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
    幾何特征:球的截面是圓;球面上任意一點到球心的距離等于半徑.
    3.高二年級必修一數(shù)學(xué)知識點筆記 篇三
    (1)算法概念:在數(shù)學(xué)上,現(xiàn)代意義上的算法通常是指可以用計算機來解決的`某一類問題是程序或步驟,這些程序或步驟必須是明確和有效的,而且能夠在有限步之內(nèi)完成.
    (2)算法的特點:
    ①有限性:一個算法的步驟序列是有限的,必須在有限操作之后停止,不能是無限的.
    ②確定性:算法中的每一步應(yīng)該是確定的并且能有效地執(zhí)行且得到確定的結(jié)果,而不應(yīng)當(dāng)是模棱兩可.
    ③順序性與正確性:算法從初始步驟開始,分為若干明確的步驟,每一個步驟只能有一個確定的后繼步驟,前一步是后一步的前提,只有執(zhí)行完前一步才能進行下一步,并且每一步都準(zhǔn)確無誤,才能完成問題.
    ④不性:求解某一個問題的解法不一定是的,對于一個問題可以有不同的算法.
    ⑤普遍性:很多具體的問題,都可以設(shè)計合理的算法去解決,如心算、計算器計算都要經(jīng)過有限、事先設(shè)計好的步驟加以解決.
    4.高二年級必修一數(shù)學(xué)知識點筆記 篇四
    多面體的結(jié)構(gòu)特征
    (1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。
    正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。
    (2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。
    正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐.特別地,各棱均相等的正三棱錐叫正四面體.反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。
    (3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。
    5.高二年級必修一數(shù)學(xué)知識點筆記 篇五
    系統(tǒng)抽樣
    1.系統(tǒng)抽樣(等距抽樣或機械抽樣):
    把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
    K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
    前提條件:總體中個體的排列對于研究的變量來說,應(yīng)是隨機的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
    2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。