高一下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)

字號:


    進(jìn)入高中后,很多新生有這樣的心理落差,比自己成績優(yōu)秀的大有人在,很少有人注意到自己的存在,心理因此失衡,這是正常心理,但是應(yīng)盡快進(jìn)入學(xué)習(xí)狀態(tài)。高一頻道為正在努力學(xué)習(xí)的你整理了《高一下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)》,希望對你有幫助!
    1.高一下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)
    空間中的平行問題
    (1)直線與平面平行的判定及其性質(zhì)
    線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
    線線平行線面平行
    線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,
    那么這條直線和交線平行.線面平行線線平行
    (2)平面與平面平行的判定及其性質(zhì)
    兩個(gè)平面平行的判定定理
    (1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
    (線面平行→面面平行),
    (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個(gè)平面平行.
    (線線平行→面面平行),
    (3)垂直于同一條直線的兩個(gè)平面平行,
    兩個(gè)平面平行的性質(zhì)定理
    (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行.(面面平行→線面平行)
    (2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行.(面面平行→線線平行)
    2.高一下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)
    棱錐
    棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。
    棱錐的性質(zhì):
    (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
    (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
    正棱錐
    正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
    正棱錐的性質(zhì):
    (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
    (2)多個(gè)特殊的直角三角形
    a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
    b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
    3.高一下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)
    直線和平面垂直
    直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
    直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
    直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
    直線和平面平行——沒有公共點(diǎn)
    直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。
    直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
    直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
    4.高一下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)
    集合與元素
    一個(gè)東西是集合還是元素并不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。
    例如:你所在的班級是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對于這個(gè)班級集合來說,是它的一個(gè)元素;
    而整個(gè)學(xué)校又是由許許多多個(gè)班級組成的集合,你所在的班級只是其中的一分子,是一個(gè)元素。
    班級相對于你是集合,相對于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對的。
    解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。
    5.高一下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)
    二面角
    (1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
    (2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
    (3)二面角的棱:這一條直線叫做二面角的棱。
    (4)二面角的面:這兩個(gè)半平面叫做二面角的面。
    (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
    (6)直二面角:平面角是直角的二面角叫做直二面角。
    6.高一下學(xué)期數(shù)學(xué)知識點(diǎn)總結(jié)
    兩個(gè)復(fù)數(shù)相等的定義:
    如果兩個(gè)復(fù)數(shù)的實(shí)部和虛部分別相等,那么我們就說這兩個(gè)復(fù)數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
    a=c,b=d。特殊地,a,b∈R時(shí),a+bi=0
    a=0,b=0.
    復(fù)數(shù)相等的充要條件,提供了將復(fù)數(shù)問題化歸為實(shí)數(shù)問題解決的途徑。