高三年級數(shù)學必修二復習知識點

字號:


    復習是為了更好的與高考考綱相結合,尤其水平中等或中等偏下的學生,此時需要進行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。高三頻道為你精心準備了《高三年級數(shù)學必修二復習知識點》助你金榜題名!
    1.高三年級數(shù)學必修二復習知識點
    正弦定理和余弦定理
    正弦定理:
    a/sinA=b/sinB=c/sinC
    余弦定理:
    a^2=b^2+c^2-2bccosA
    b^2=a^2+c^2-2accosB
    c^2=a^2+b^2-2abcosC
    cosA=(b^2+c^2-a^2)/2bc
    cosB=(a^2+c^2-b^2)/2ac
    cosC=(a^2+b^2-c^2)/2ab
    tan(兀-a)=-tana
    sin(兀/2+a)=cosa
    sin(兀/2-a)=cosa
    cos(兀/2+a)=-sina
    cos(兀/2-a)=sina
    tan(兀/2+a)=-cota
    tan(兀/2-a)=cota
    (sina)^2+(cosa)^2=1
    sina/cosa=tana
    兩角和與差的余弦公式
    cos(a-b)=cosa*cosb+sina*sinb
    cos(a-b)=cosa*cosb-sina*sinb
    兩角和與差的正弦公式
    sin(a+b)=sina*cosb+cosa*sinb
    sin(a-b)=sina*cosb-cosa*sinb
    兩角和與差的正切公式
    tan(a+b)=(tana+tanb)/(1-tana*tanb)
    tan(a-b)=(tana-tanb)/(1+tana*tanb)
    2.高三年級數(shù)學必修二復習知識點
    1.不等式的定義
    在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.
    2.比較兩個實數(shù)的大小
    兩個實數(shù)的大小是用實數(shù)的運算性質來定義的,
    有a-b>0⇔;a-b=0⇔;a-b<0⇔.
    另外,若b>0,則有>1⇔;=1⇔;<1⇔.
    概括為:作差法,作商法,中間量法等.
    3.不等式的性質
    (1)對稱性:a>b⇔;
    (2)傳遞性:a>b,b>c⇔;
    (3)可加性:a>b⇔a+cb+c,a>b,c>d⇒a+cb+d;
    (4)可乘性:a>b,c>0⇒ac>bc;a>b>0,c>d>0⇒;
    (5)可乘方:a>b>0⇒(n∈N,n≥2);
    (6)可開方:a>b>0⇒(n∈N,n≥2).
    3.高三年級數(shù)學必修二復習知識點
    1.滿足二元一次不等式(組)的x和y的取值構成有序數(shù)對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數(shù)對(x,y)構成的集合稱為二元一次不等式(組)的解集。
    2.二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區(qū)域)。
    3.直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C<0(或≤0)。
    4.已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。
    5.一個二元一次不等式表示的平面區(qū)域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義。“線定界,點定域”。
    6.滿足二元一次不等式(組)的整數(shù)x和y的取值構成的有序數(shù)對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數(shù)解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內(nèi)。
    7.畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應把邊界畫成虛線。
    8.若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側,則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側,則Ax0+By0+C與Ax1+Byl+C符號相反。
    9.從實際問題中抽象出二元一次不等式(組)的步驟是:
    (1)根據(jù)題意,設出變量;
    (2)分析問題中的變量,并根據(jù)各個不等關系列出常量與變量x,y之間的不等式;
    (3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。
    4.高三年級數(shù)學必修二復習知識點
    1、集合的概念
    集合是數(shù)學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
    集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
    2、元素與集合的關系元素與集合的關系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。
    3、集合中元素的特性
    (1)確定性:設A是一個給定的集合,x是某一具體對象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
    (2)互異性:“集合張的元素必須是互異的”,就是說“對于一個給定的集合,它的任何兩個元素都是不同的”。
    (3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。
    4、集合的分類
    集合科根據(jù)他含有的元素個數(shù)的多少分為兩類:
    有限集:含有有限個元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數(shù)是可數(shù)的,因此兩個集合是有限集。
    無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等于所有點”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。
    特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{x?R|+1=0}。
    5、特定的集合的表示
    為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。
    (1)全體非負整數(shù)的集合通常簡稱非負整數(shù)集(或自然數(shù)集),記做N。
    (2)非負整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。
    (3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。
    (4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。
    (5)全體實數(shù)的集合通常簡稱為實數(shù)集,記做R。
    5.高三年級數(shù)學必修二復習知識點
    數(shù)列的定義
    按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.
    (1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
    (2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數(shù)列:-1,1,-1,1,….。
    (4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當于f(n)中的n.
    (5)次序對于數(shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.