高二數(shù)學(xué)上冊備考知識點整理

字號:

在學(xué)習(xí)新知識的同時還要復(fù)習(xí)以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學(xué)習(xí)。高二頻道為你整理了《高二數(shù)學(xué)上冊備考知識點整理》希望對你的學(xué)習(xí)有所幫助!
    1.高二數(shù)學(xué)上冊備考知識點整理
    不等式的證明
    (1)不等式證明的依據(jù)
    (2)不等式的性質(zhì)
    (3)重要不等式:
    ①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
    ②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)
    不等式的證明方法
    (1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.
    用比較法證明不等式的步驟是:作差——變形——判斷符號.
    (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
    (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
    證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.
    2.高二數(shù)學(xué)上冊備考知識點整理
    1、圓的定義:
    平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.
    2、圓的方程
    (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;
    (2)一般方程
    當(dāng)時,方程表示圓,此時圓心為,半徑為
    當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形.
    (3)求圓方程的方法:
    一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,
    需求出a,b,r;若利用一般方程,需要求出D,E,F;
    另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.
    3、高中數(shù)學(xué)必修二知識點總結(jié):直線與圓的位置關(guān)系:
    直線與圓的位置關(guān)系有相離,相切,相交三種情況:
    (1)設(shè)直線,圓,圓心到l的距離為,則有;;
    (2)過圓外一點的切線:k不存在,驗證是否成立k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
    (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2
    4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
    設(shè)圓,
    兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.
    當(dāng)時兩圓外離,此時有公切線四條;
    當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;
    當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
    當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;
    當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.
    注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
    5、空間點、直線、平面的位置關(guān)系
    公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).
    應(yīng)用:判斷直線是否在平面內(nèi)
    用符號語言表示公理1:
    公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線
    符號:平面α和β相交,交線是a,記作α∩β=a.
    符號語言:
    公理2的作用:
    它是判定兩個平面相交的方法.
    它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線公共點.
    它可以判斷點在直線上,即證若干個點共線的重要依據(jù).
    公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.
    推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.
    公理3及其推論作用:它是空間內(nèi)確定平面的依據(jù)它是證明平面重合的依據(jù)
    公理4:平行于同一條直線的兩條直線互相平行
    3.高二數(shù)學(xué)上冊備考知識點整理
    1.機械振動:
    機械振動是指物體在平衡位置附近所做的往復(fù)運動.
    2.回復(fù)力:
    回復(fù)力是指振動物體所受到的指向平衡位置的力,是由作用效果來命名的.回復(fù)力的作用效果總是將物體拉回平衡位置,從而使物體圍繞平衡位置做周期性的往復(fù)運動?;貜?fù)力是由振動物體所受力的合力(如彈簧振子)沿振動方向的分力(如單擺)提供的,這就是回復(fù)力的來源。
    3.平衡位置:平衡位置是指物體在振動中所受的回復(fù)力為零的位置,此時振子未必一定處于平衡狀態(tài).比如單擺經(jīng)過平衡位置時,雖然回復(fù)力為零,但合外力并不為零,還有向心力.
    4.描述振動的物理量:
    ①位移總是相對于平衡位置而言的,方向總是由平衡位置指向振子所在的位置—總是背離平衡位置向外;
    ②振幅是物體離開平衡位置的距離,它描述的是振動的強弱,振幅是標(biāo)量;
    ③頻率是單位時間內(nèi)完成全振動的次數(shù);
    ④相位用來描述振子振動的步調(diào)。如果振動的振動情況完全相反,則振動步調(diào)相反,為反相位.
    5.簡諧運動:
    A、簡諧運動的回復(fù)力和位移的變化規(guī)律;
    B、單擺的周期。由本身性質(zhì)決定的周期叫固有周期,與擺球的質(zhì)量、振幅(振動的總能量)無關(guān)。
    6.簡諧運動的表達式和圖象:x=Asin(ωt+φ0)簡諧運動的圖象描述的是一個質(zhì)點做簡諧運動時,在不同時刻的位移,因而振動圖象反映了振子的運動規(guī)律(注意:振動圖象不是運動軌跡)。由振動圖象還可以確定振子某時刻的振動方向.
    7.簡諧運動的能量:不計摩擦和空氣阻力的振動是理想化的振動,此時系統(tǒng)只有重力或彈力做功,機械能守恒。振動的能量和振幅有關(guān),振幅越大,振動的能量越大。
    4.高二數(shù)學(xué)上冊備考知識點整理
    一、隨機事件
    主要掌握好(三四五)
    (1)事件的三種運算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。
    (2)四種運算律:交換律、結(jié)合律、分配律、德莫根律。
    (3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對立、相互獨立。
    二、概率定義
    (1)統(tǒng)計定義:頻率穩(wěn)定在一個數(shù)附近,這個數(shù)稱為事件的概率;
    (2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個數(shù)與樣本空間所含基本事件個數(shù)的比稱為事件的古典概率;
    (3)幾何概率:樣本空間中的元素有無窮多個,每個元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來計算;
    (4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。
    三、概率性質(zhì)與公式
    (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);
    (2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);
    (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);
    (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,
    貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;
    如果一個事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.
    (5)二項概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個問題可以看成n重貝努力試驗(三個條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗結(jié)果相互獨立)時,要考慮二項概率公式.
    5.高二數(shù)學(xué)上冊備考知識點整理
    直線的傾斜角:
    定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
    直線的斜率:
    ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
    ②過兩點的直線的斜率公式。
    注意:
    (1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
    (2)k與P1、P2的順序無關(guān);
    (3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;
    (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到。
    直線方程:
    1、點斜式:y—y0=k(x—x0)
    (x0,y0)是直線所通過的已知點的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點的橫坐標(biāo);y是因變量,直線上任意一點的縱坐標(biāo)。
    2、斜截式:y=kx+b
    直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達式。
    3、兩點式;(y—y1)/(y2—y1)=(x—x1)/(x2—x1)
    如果x1=x2,y1=y2,那么兩點就重合了,相當(dāng)于只有一個已知點了,這樣不能確定一條直線。
    如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。
    如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。
    4、截距式x/a+y/b=1
    對x的截距就是y=0時,x的值,對y的截距就是x=0時,y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,—kx=b—y令x=0求出y=b,令y=0求出x=—b/k所以截距a=—b/k,b=b帶入得x/a+y/b=x/(—b/k)+y/b=—kx/b+y/b=(b—y)/b+y/b=b/b=1。
    5、一般式;Ax+By+C=0
    將ax+by+c=0變換可得y=—x/b—c/b(b不為零),其中—x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。