高一年級上冊數(shù)學復習知識點

字號:


    高一新生要根據(jù)自己的條件,以及高中階段學科知識交叉多、綜合性強,以及考查的知識和思維觸點廣的特點,找尋一套行之有效的學習方法。為各位同學整理了《高一年級上冊數(shù)學復習知識點》,希望對您的學習有所幫助!
    1.高一年級上冊數(shù)學復習知識點
    定義:
    x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。
    范圍:
    傾斜角的取值范圍是0°≤α<180°。
    理解:
    (1)注意“兩個方向”:直線向上的方向、x軸的正方向;
    (2)規(guī)定當直線和x軸平行或重合時,它的傾斜角為0度。
    意義:
    ①直線的傾斜角,體現(xiàn)了直線對x軸正向的傾斜程度;
    ②在平面直角坐標系中,每一條直線都有一個確定的傾斜角;
    ③傾斜角相同,未必表示同一條直線。
    公式:
    k=tanα
    k>0時α∈(0°,90°)
    k<0時α∈(90°,180°)
    k=0時α=0°
    當α=90°時k不存在
    ax+by+c=0(a≠0)傾斜角為A,
    則tanA=-a/b,
    A=arctan(-a/b)
    當a≠0時,傾斜角為90度,即與X軸垂直
    2.高一年級上冊數(shù)學復習知識點
    對數(shù)函數(shù)
    對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。
    對于不同大小a所表示的函數(shù)圖形:
    可以看到對數(shù)函數(shù)的圖形只不過的指數(shù)函數(shù)的圖形的關于直線y=x的對稱圖形,因為它們互為反函數(shù)。
    (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。
    (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。
    (3)函數(shù)總是通過(1,0)這點。
    (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。
    3.高一年級上冊數(shù)學復習知識點
    空間直角坐標系定義:
    過定點O,作三條互相垂直的數(shù)軸,它們都以O為原點且一般具有相同的長度單位、這三條軸分別叫做x軸(橫軸)、y軸(縱軸)、z軸(豎軸);統(tǒng)稱坐標軸、通常把x軸和y軸配置在水平面上,而z軸則是鉛垂線;它們的正方向要符合右手規(guī)則,即以右手握住z軸,當右手的四指從正向x軸以π/2角度轉(zhuǎn)向正向y軸時,大拇指的指向就是z軸的正向,這樣的三條坐標軸就組成了一個空間直角坐標系,點O叫做坐標原點。
    1、右手直角坐標系
    ①右手直角坐標系的建立規(guī)則:x軸、y軸、z軸互相垂直,分別指向右手的拇指、食指、中指;
    ②已知點的坐標P(x,y,z)作點的方法與步驟(路徑法):
    沿x軸正方向(x>0時)或負方向
    ③已知點的位置求坐標的方法:
    過P作三個平面分別與x軸、y軸、z軸垂直于A,B,C,點A,B,C在x軸、y軸、z軸的坐標分別是a,b,c則(a,b,c)就是點P的坐標。
    2、在x軸上的點分別可以表示為(a,0,0),(0,b,0),(0,0,c)。
    在坐標平面xOy,xOz,yOz內(nèi)的點分別可以表示為(a,b,0),(a,0,c),(0,b,c)。
    3、點P(a,b,c)關于x軸的對稱點的坐標為(a,-b,-c);
    點P(a,b,c)關于y軸的對稱點的坐標為(-a,b,-c);
    點P(a,b,c)關于z軸的對稱點的坐標為(-a,-b,c);
    點P(a,b,c)關于坐標平面xOy的對稱點為(a,b,-c);
    點P(a,b,c)關于坐標平面xOz的對稱點為(a,-b,c);
    點P(a,b,c)關于坐標平面yOz的對稱點為(-a,b,c);
    點P(a,b,c)關于原點的對稱點(-a,-b,-c)。
    4、已知空間兩點P(x1,y1,z1),Q(x2,y2,z2),則線段PQ的中點坐標為
    5、空間兩點間的距離公式
    已知空間兩點P(x1,y1,z1),Q(x2,y2,z2),則兩點的距離為特殊點A(x,y,z)到原點O的距離為
    6、以C(x0,y0,z0)為球心,r為半徑的球面方程為
    特殊地,以原點為球心,r為半徑的球面方程為x2+y2+z2=r2
    4.高一年級上冊數(shù)學復習知識點
    空間幾何體表面積體積公式:
    1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)
    2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,
    3、a-邊長,S=6a2,V=a3
    4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc
    5、棱柱S-h-高V=Sh
    6、棱錐S-h-高V=Sh/3
    7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3
    8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6
    9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h
    10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)
    11、r-底半徑h-高V=πr^2h/3
    12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6
    14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3
    15、球臺r1和r2-球臺上、下底半徑h-高V=πh[3(r12+r22)+h2]/6
    16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4
    17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)
    5.高一年級上冊數(shù)學復習知識點
    空間幾何體的直觀圖
    空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:
    (1)畫幾何體的底面
    在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸.已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话?
    (2)畫幾何體的高
    在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變.