解奧數(shù)題時(shí),如果能合理的、科學(xué)的、巧妙的借助點(diǎn)、線、面、圖、表將奧數(shù)問題直觀形象的展示出來,將抽象的數(shù)量關(guān)系形象化,可使同學(xué)們?nèi)菀赘闱鍞?shù)量關(guān)系,溝通“已知”與“未知”的聯(lián)系,抓住問題的本質(zhì),迅速解題。以下是整理的《小學(xué)五年級(jí)奧數(shù)填空題及參考答案》,希望幫助到您。
【填空題】
1、把20個(gè)梨和25個(gè)蘋果平均分給小朋友,分完后梨剩下2個(gè),而蘋果還缺2個(gè),一共有_____個(gè)小朋友。
2、幼兒園有糖115顆、餅干148塊、桔子74個(gè),平均分給大班小朋友;結(jié)果糖多出7顆,餅干多出4塊,桔子多出2個(gè)。這個(gè)大班的小朋友最多有_____人。
3、用長(zhǎng)16厘米、寬14厘米的長(zhǎng)方形木板來拼成一個(gè)正方形,最少需要用這樣的木板_____塊。
4、用長(zhǎng)是9厘米、寬是6厘米、高是7厘米的長(zhǎng)方體木塊疊成一個(gè)正方體,至少需要這種長(zhǎng)方體木塊_____塊。
5、一個(gè)公共汽車站,發(fā)出五路車,這五路車分別為每隔3、5、9、15、10分發(fā)一次,第一次同時(shí)發(fā)車以后,_____分又同時(shí)發(fā)第二次車。
6、動(dòng)物園的飼養(yǎng)員給三群猴子分花生,如只分給第一群,則每只猴子可得12粒;如只分給第二群,則每只猴子可得15粒;如只分給第三群,則每只猴子可得20粒。那么平均給三群猴子,每只可得_____粒。
7、這樣的自然數(shù)是有的:它加1是2的倍數(shù),加2是3的倍數(shù),加3是4的倍數(shù),加4是5的倍數(shù),加5是6的倍數(shù),加6是7的倍數(shù),在這種自然數(shù)中除了1以外最小的是_____。
8、能被3、7、8、11四個(gè)數(shù)同時(shí)整除的六位數(shù)是_____。
9、把26,33,34,35,63,85,91,143分成若干組,要求每一組中任意兩個(gè)數(shù)的公約數(shù)是1,那么至少要分成_____組。
10、210與330的最小公倍數(shù)是公約數(shù)的_____倍。
【參考答案】
1、9若梨減少2個(gè),則有20-2=18(個(gè));若將蘋果增加2個(gè),則有25+2=27(個(gè)),這樣都被小朋友剛巧分完。由此可知小朋友人數(shù)是18與27的公約數(shù)。所以最多有9個(gè)小朋友。
2、36根據(jù)題意不難看出,這個(gè)大班小朋友的人數(shù)是115-7=108,148-4=144,74-2=72的公約數(shù)。所以,這個(gè)大班的小朋友最多有36人。
3、56所鋪成正方形的木板它的邊長(zhǎng)必定是長(zhǎng)方形木板長(zhǎng)和寬的倍數(shù),也就是長(zhǎng)方形木板的長(zhǎng)和寬的公倍數(shù),又要求最少需要多少塊,所以正方形木板的邊長(zhǎng)應(yīng)是14與16的最小公倍數(shù)。
先求14與16的最小公倍數(shù)。
21614
87
故14與16的最小公倍數(shù)是287=112。
因?yàn)檎叫蔚倪呴L(zhǎng)最小為112厘米,所以最少需要用這樣的木板
=78=56(塊)
4、5292與上題類似,依題意,正方體的棱長(zhǎng)應(yīng)是9,6,7的最小公倍數(shù),9,6,7的最小公倍數(shù)是126。所以,至少需要這種長(zhǎng)方體木塊
=142118=5292(塊)
[注]上述兩題都是利用最小公倍數(shù)的概念進(jìn)行“拼圖”的問題,前一題是平面圖形,后一題是立體圖形,思考方式相同,后者可看作是前者的推廣。將平面問題推廣為空間問題是數(shù)學(xué)家喜歡的研究問題的方式之一。希望引起小朋友們注意。
5、90
依題意知,從第一次同時(shí)發(fā)車到第二次同時(shí)發(fā)車的時(shí)間是3,5,9,15和10的最小公倍數(shù)。
因?yàn)?,5,9,15和10的最小公倍數(shù)是90,所以從第一次同時(shí)發(fā)車后90分又同時(shí)發(fā)第二次車。
6、5
依題意得
花生總粒數(shù)=12第一群猴子只數(shù)
=15第二群猴子只數(shù)
=20第三群猴子只數(shù)
由此可知,花生總粒數(shù)是12,15,20的公倍數(shù),其最小公倍數(shù)是60。花生總粒數(shù)是60,120,180,……,那么
第一群猴子只數(shù)是5,10,15,……
第二群猴子只數(shù)是4,8,12,……
根據(jù)題目要求,有相同質(zhì)因數(shù)的數(shù)不能分在一組,26=213,91=713,143=1113,所以,所分組數(shù)不會(huì)小于3。下面給出一種分組方案:
(1)26,33,35;(2)34,91;(3)63,85,143。
因此,至少要分成3組。
[注]所求組數(shù)不一定等于出現(xiàn)次數(shù)最多的質(zhì)因數(shù)的出現(xiàn)次數(shù),如15=35,21=37,35=57,3,5,7各出現(xiàn)兩次,而這三個(gè)數(shù)必須分成三組,而不是兩組。
除了上述分法之外,還有多種分組法,下面再給出三種:
(1)26,35;33,85,91;34,63,143。
(2)85,143,63;26,33,35;34,91。
(3)26,85,63;91,34,33;143,35。
10、77
根據(jù)“甲乙的最小公倍數(shù)甲乙的公約數(shù)=甲數(shù)乙數(shù)”,將210330分解質(zhì)因數(shù),再進(jìn)行組合有
210330=235723511
=223252711
=(235)(235711)
因此,它們的最小公倍數(shù)是公約數(shù)的711=77(倍)。
【填空題】
1、把20個(gè)梨和25個(gè)蘋果平均分給小朋友,分完后梨剩下2個(gè),而蘋果還缺2個(gè),一共有_____個(gè)小朋友。
2、幼兒園有糖115顆、餅干148塊、桔子74個(gè),平均分給大班小朋友;結(jié)果糖多出7顆,餅干多出4塊,桔子多出2個(gè)。這個(gè)大班的小朋友最多有_____人。
3、用長(zhǎng)16厘米、寬14厘米的長(zhǎng)方形木板來拼成一個(gè)正方形,最少需要用這樣的木板_____塊。
4、用長(zhǎng)是9厘米、寬是6厘米、高是7厘米的長(zhǎng)方體木塊疊成一個(gè)正方體,至少需要這種長(zhǎng)方體木塊_____塊。
5、一個(gè)公共汽車站,發(fā)出五路車,這五路車分別為每隔3、5、9、15、10分發(fā)一次,第一次同時(shí)發(fā)車以后,_____分又同時(shí)發(fā)第二次車。
6、動(dòng)物園的飼養(yǎng)員給三群猴子分花生,如只分給第一群,則每只猴子可得12粒;如只分給第二群,則每只猴子可得15粒;如只分給第三群,則每只猴子可得20粒。那么平均給三群猴子,每只可得_____粒。
7、這樣的自然數(shù)是有的:它加1是2的倍數(shù),加2是3的倍數(shù),加3是4的倍數(shù),加4是5的倍數(shù),加5是6的倍數(shù),加6是7的倍數(shù),在這種自然數(shù)中除了1以外最小的是_____。
8、能被3、7、8、11四個(gè)數(shù)同時(shí)整除的六位數(shù)是_____。
9、把26,33,34,35,63,85,91,143分成若干組,要求每一組中任意兩個(gè)數(shù)的公約數(shù)是1,那么至少要分成_____組。
10、210與330的最小公倍數(shù)是公約數(shù)的_____倍。
【參考答案】
1、9若梨減少2個(gè),則有20-2=18(個(gè));若將蘋果增加2個(gè),則有25+2=27(個(gè)),這樣都被小朋友剛巧分完。由此可知小朋友人數(shù)是18與27的公約數(shù)。所以最多有9個(gè)小朋友。
2、36根據(jù)題意不難看出,這個(gè)大班小朋友的人數(shù)是115-7=108,148-4=144,74-2=72的公約數(shù)。所以,這個(gè)大班的小朋友最多有36人。
3、56所鋪成正方形的木板它的邊長(zhǎng)必定是長(zhǎng)方形木板長(zhǎng)和寬的倍數(shù),也就是長(zhǎng)方形木板的長(zhǎng)和寬的公倍數(shù),又要求最少需要多少塊,所以正方形木板的邊長(zhǎng)應(yīng)是14與16的最小公倍數(shù)。
先求14與16的最小公倍數(shù)。
21614
87
故14與16的最小公倍數(shù)是287=112。
因?yàn)檎叫蔚倪呴L(zhǎng)最小為112厘米,所以最少需要用這樣的木板
=78=56(塊)
4、5292與上題類似,依題意,正方體的棱長(zhǎng)應(yīng)是9,6,7的最小公倍數(shù),9,6,7的最小公倍數(shù)是126。所以,至少需要這種長(zhǎng)方體木塊
=142118=5292(塊)
[注]上述兩題都是利用最小公倍數(shù)的概念進(jìn)行“拼圖”的問題,前一題是平面圖形,后一題是立體圖形,思考方式相同,后者可看作是前者的推廣。將平面問題推廣為空間問題是數(shù)學(xué)家喜歡的研究問題的方式之一。希望引起小朋友們注意。
5、90
依題意知,從第一次同時(shí)發(fā)車到第二次同時(shí)發(fā)車的時(shí)間是3,5,9,15和10的最小公倍數(shù)。
因?yàn)?,5,9,15和10的最小公倍數(shù)是90,所以從第一次同時(shí)發(fā)車后90分又同時(shí)發(fā)第二次車。
6、5
依題意得
花生總粒數(shù)=12第一群猴子只數(shù)
=15第二群猴子只數(shù)
=20第三群猴子只數(shù)
由此可知,花生總粒數(shù)是12,15,20的公倍數(shù),其最小公倍數(shù)是60。花生總粒數(shù)是60,120,180,……,那么
第一群猴子只數(shù)是5,10,15,……
第二群猴子只數(shù)是4,8,12,……
根據(jù)題目要求,有相同質(zhì)因數(shù)的數(shù)不能分在一組,26=213,91=713,143=1113,所以,所分組數(shù)不會(huì)小于3。下面給出一種分組方案:
(1)26,33,35;(2)34,91;(3)63,85,143。
因此,至少要分成3組。
[注]所求組數(shù)不一定等于出現(xiàn)次數(shù)最多的質(zhì)因數(shù)的出現(xiàn)次數(shù),如15=35,21=37,35=57,3,5,7各出現(xiàn)兩次,而這三個(gè)數(shù)必須分成三組,而不是兩組。
除了上述分法之外,還有多種分組法,下面再給出三種:
(1)26,35;33,85,91;34,63,143。
(2)85,143,63;26,33,35;34,91。
(3)26,85,63;91,34,33;143,35。
10、77
根據(jù)“甲乙的最小公倍數(shù)甲乙的公約數(shù)=甲數(shù)乙數(shù)”,將210330分解質(zhì)因數(shù),再進(jìn)行組合有
210330=235723511
=223252711
=(235)(235711)
因此,它們的最小公倍數(shù)是公約數(shù)的711=77(倍)。