九年級(jí)數(shù)學(xué)上冊(cè)教案:直接開平方法

字號(hào):

直接開平方法
    理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問(wèn)題.
    提出問(wèn)題,列出缺項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.
    重點(diǎn)
    運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.
    難點(diǎn)
    通過(guò)根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.
    一、復(fù)習(xí)引入
    學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題.
    問(wèn)題1:填空
    (1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
    解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
    問(wèn)題2:目前我們都學(xué)過(guò)哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元方程有什么不同?二次如何轉(zhuǎn)化成?怎樣降次?以前學(xué)過(guò)哪些降次的方法?
    二、探索新知
    上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
    (學(xué)生分組討論)
    老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3
    即2t+1=3,2t+1=-3
    方程的兩根為t1=1,t2=-2
    例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
    分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.
    (2)由已知,得:(x+3)2=2
    直接開平方,得:x+3=±2
    即x+3=2,x+3=-2
    所以,方程的兩根x1=-3+2,x2=-3-2
    解:略.
    例2 市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長(zhǎng)率.
    分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2
    解:設(shè)每年人均住房面積增長(zhǎng)率為x,
    則:10(1+x)2=14.4
    (1+x)2=1.44
    直接開平方,得1+x=±1.2
    即1+x=1.2,1+x=-1.2
    所以,方程的兩根是x1=0.2=20%,x2=-2.2
    因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.
    所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.
    (學(xué)生小結(jié))老師引導(dǎo)提問(wèn):解一元二次方程,它們的共同特點(diǎn)是什么?
    共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.
    三、鞏固練習(xí)
    教材第6頁(yè) 練習(xí).
    四、課堂小結(jié)
    本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無(wú)解.
    五、作業(yè)布置