2017中考數(shù)學知識點總結:銳角三角函數(shù)

字號:

中考數(shù)學考點:銳角三角函數(shù)公式
    兩角和與差的三角函數(shù):
    sin(A+B) = sinAcosB+cosAsinB
    sin(A-B) = sinAcosB-cosAsinB ?
    cos(A+B) = cosAcosB-sinAsinB
    cos(A-B) = cosAcosB+sinAsinB
    tan(A+B) = (tanA+tanB)/(1-tanAtanB)
    tan(A-B) = (tanA-tanB)/(1+tanAtanB)
    cot(A+B) = (cotAcotB-1)/(cotB+cotA)
    cot(A-B) = (cotAcotB+1)/(cotB-cotA)
    ·三角和的三角函數(shù):
    sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
    cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
    tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
    ·輔助角公式:
    Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
    sint=B/(A^2+B^2)^(1/2)
    cost=A/(A^2+B^2)^(1/2)
    tant=B/A
    Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
    ·倍角公式:
    sin(2α)=2sinα·cosα=2/(tanα+cotα)
    cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
    tan(2α)=2tanα/[1-tan^2(α)]
    ·三倍角公式:
    sin(3α)=3sinα-4sin^3(α)
    cos(3α)=4cos^3(α)-3cosα
    ·半角公式:
    sin(α/2)=±√((1-cosα)/2)
    cos(α/2)=±√((1+cosα)/2)
    tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
    ·降冪公式
    sin^2(α)=(1-cos(2α))/2=versin(2α)/2
    cos^2(α)=(1+cos(2α))/2=covers(2α)/2
    tan^2(α)=(1-cos(2α))/(1+cos(2α))
    ·萬能公式:
    sinα=2tan(α/2)/[1+tan^2(α/2)]
    cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
    tanα=2tan(α/2)/[1-tan^2(α/2)]
    ·積化和差公式:
    sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
    cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
    cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
    sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
    ·和差化積公式:
    sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
    sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
    cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
    cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
    ·推導公式
    tanα+cotα=2/sin2α
    tanα-cotα=-2cot2α
    1+cos2α=2cos^2α
    1-cos2α=2sin^2α
    1+sinα=(sinα/2+cosα/2)^2
    ·其他:
    sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
    cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
    sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
    tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0