教材分析
本節(jié)課選自人教版數(shù)學(xué)八年級上冊第十五章第四節(jié)第一個內(nèi)容(P165-167)。因式分解是進行代數(shù)恒等變形的重要手段之一,它在以后的代數(shù)學(xué)習(xí)中有著重要的應(yīng)用,如:多項式除法的簡便運算,分式的運算,解方程(組)以及二次函數(shù)的恒等變形等,因此學(xué)好因式分解對于代數(shù)知識的后繼學(xué)習(xí)具有相當(dāng)重要的意義。
本節(jié)是因式分解的第1小節(jié),占一個課時,它主要讓學(xué)生經(jīng)歷從分解因數(shù)到分解因式的過程,讓學(xué)生體會數(shù)學(xué)思想——類比思想,讓學(xué)生了解分解因式與整式的乘法運算之間的互逆關(guān)系,感受分解因式在解決相關(guān)問題中的作用。
學(xué)情分析
基于學(xué)生在小學(xué)已經(jīng)接觸過因數(shù)分解的經(jīng)驗,但對于因式分解的概念還完全陌生,因此,本課時在讓學(xué)生重點理解因式分解概念的基礎(chǔ)上,應(yīng)有意識地培養(yǎng)學(xué) 生知識遷移的數(shù)學(xué)能力,如:類比思想,逆向運算能力等。
學(xué)生的技能基礎(chǔ)的分析:學(xué)生已經(jīng)熟悉乘法的分配律及其逆運算,并且學(xué)習(xí)了整式的乘法運算,因此,對于因式分解的引入,學(xué)生不會感到陌生,它為今天學(xué)習(xí)分解因式打下了良好基礎(chǔ)。
學(xué)生活動經(jīng)驗基礎(chǔ)的分析:由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對于八年級學(xué)生還比較生疏,接受起來還有一定的困難,再者本節(jié)還沒有涉及因式分解的具體方法,所以對于學(xué)生來說,尋求因式分解的方法是一個難點。
教學(xué)目標
㈠、知識與技能:(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
(2)認識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。
㈡、過程與方法:(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進一步發(fā)展學(xué)生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問 題能力與綜合應(yīng)用能力。
㈢、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。
教學(xué)重點和難點
教學(xué)重點:因式分解的概念及提公因式法。
教學(xué)難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
教學(xué)過程
教學(xué)環(huán)節(jié)
教師活動
預(yù)設(shè)學(xué)生行為
設(shè)計意圖
活動1:
復(fù)習(xí)引入
看誰算得快:用簡便方法計算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ; (2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
學(xué)生在計算是分為兩類:一是正確應(yīng)用因數(shù)分解的辦法進行簡便計算;二是不懂正確應(yīng)用因數(shù)分解的辦法進行簡便計算,而采取實實在在計算辦法進行計算。
如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進行計算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算 ——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.
注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:
導(dǎo)入課題
1. P165的探究(略);
2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
學(xué)生思考:從以上問題的解決中,你知道解決這些問題的關(guān)鍵是什么?
引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
(1)3x(x-1)= ;
(2)m(a+b+c)= ;
(3)(m+4)(m-4)= ;
(4)(y-3)2= ;
(5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
(1)ma+mb+mc= ;
(2)3x2-3x= ;
(3)m2-16= ;
(4)a3-a= ;
(5)y2-6y+9= 。
學(xué)生由整式的乘法的計算逆向得到因式分解(提公因式法)。
在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動4:
歸納、得出新知
比較以下兩種運算的聯(lián)系與區(qū)別:
(1) a(a+1)(a-1)= a3-a
(2) a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
結(jié)論:把一個多項式化成幾 個整式的積的形式,這種變形叫做把這個多項式因式分解。其中,把多項式中各項的公因式提取出來做為積的一個因式,多項式各項剩下部分做為積的另一個因式這種因式分解的方法叫做提公因式法。
辨一辨:下列變形是因式分解嗎?為什么?
(1)a+b=b+a
(2)4x2y–8xy2+1=4xy(x–y)+1
(3)a(a–b)=a2–ab
(4)a2–2ab+b2=(a–b)2
學(xué)生討論、發(fā)言對因式分解,特別是提公因式法的認識、理解、看法,并總結(jié)出因式分解、提公因式法的定義。
通過學(xué)生的討論,使學(xué)生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式 的次數(shù);
(4)必須分解到每個多項式不能再分解為止。
活動5:應(yīng)用新知
例題學(xué)習(xí):
P166例1、例2(略)
在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
讓學(xué)生進一步理解提公因式法進行因式分解。
活動6:課堂練習(xí)
1.P167練習(xí);
2. 看誰連得準
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學(xué)生自主完成練習(xí)。
通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結(jié)
從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?
學(xué)生發(fā)言。
通過學(xué)生的回顧與反思,強化學(xué)生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。
活動8:課后作業(yè)
課本P170習(xí)題的第1、4大題。
學(xué)生自主完成
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。
板書設(shè)計(需要一直留在黑板上主板書)
15.4.1提公因式法 例題
1.因式分解的定義
2.提公因式法
本節(jié)課選自人教版數(shù)學(xué)八年級上冊第十五章第四節(jié)第一個內(nèi)容(P165-167)。因式分解是進行代數(shù)恒等變形的重要手段之一,它在以后的代數(shù)學(xué)習(xí)中有著重要的應(yīng)用,如:多項式除法的簡便運算,分式的運算,解方程(組)以及二次函數(shù)的恒等變形等,因此學(xué)好因式分解對于代數(shù)知識的后繼學(xué)習(xí)具有相當(dāng)重要的意義。
本節(jié)是因式分解的第1小節(jié),占一個課時,它主要讓學(xué)生經(jīng)歷從分解因數(shù)到分解因式的過程,讓學(xué)生體會數(shù)學(xué)思想——類比思想,讓學(xué)生了解分解因式與整式的乘法運算之間的互逆關(guān)系,感受分解因式在解決相關(guān)問題中的作用。
學(xué)情分析
基于學(xué)生在小學(xué)已經(jīng)接觸過因數(shù)分解的經(jīng)驗,但對于因式分解的概念還完全陌生,因此,本課時在讓學(xué)生重點理解因式分解概念的基礎(chǔ)上,應(yīng)有意識地培養(yǎng)學(xué) 生知識遷移的數(shù)學(xué)能力,如:類比思想,逆向運算能力等。
學(xué)生的技能基礎(chǔ)的分析:學(xué)生已經(jīng)熟悉乘法的分配律及其逆運算,并且學(xué)習(xí)了整式的乘法運算,因此,對于因式分解的引入,學(xué)生不會感到陌生,它為今天學(xué)習(xí)分解因式打下了良好基礎(chǔ)。
學(xué)生活動經(jīng)驗基礎(chǔ)的分析:由整式乘法尋求因式分解的方法是一種逆向思維過程,而逆向思維對于八年級學(xué)生還比較生疏,接受起來還有一定的困難,再者本節(jié)還沒有涉及因式分解的具體方法,所以對于學(xué)生來說,尋求因式分解的方法是一個難點。
教學(xué)目標
㈠、知識與技能:(1)使學(xué)生了解因式分解的意義,理解因式分解的概念。
(2)認識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運用這種關(guān)系尋求因式分解的方法。
㈡、過程與方法:(1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進一步發(fā)展學(xué)生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
(3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問 題能力與綜合應(yīng)用能力。
㈢、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學(xué)態(tài)度。
教學(xué)重點和難點
教學(xué)重點:因式分解的概念及提公因式法。
教學(xué)難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
教學(xué)過程
教學(xué)環(huán)節(jié)
教師活動
預(yù)設(shè)學(xué)生行為
設(shè)計意圖
活動1:
復(fù)習(xí)引入
看誰算得快:用簡便方法計算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ; (2)-2.67×132+25×2.67+7×2.67= ;
(3)992–1= 。
學(xué)生在計算是分為兩類:一是正確應(yīng)用因數(shù)分解的辦法進行簡便計算;二是不懂正確應(yīng)用因數(shù)分解的辦法進行簡便計算,而采取實實在在計算辦法進行計算。
如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進行計算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算 ——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.
注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:
導(dǎo)入課題
1. P165的探究(略);
2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
學(xué)生思考:從以上問題的解決中,你知道解決這些問題的關(guān)鍵是什么?
引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
(1)3x(x-1)= ;
(2)m(a+b+c)= ;
(3)(m+4)(m-4)= ;
(4)(y-3)2= ;
(5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
(1)ma+mb+mc= ;
(2)3x2-3x= ;
(3)m2-16= ;
(4)a3-a= ;
(5)y2-6y+9= 。
學(xué)生由整式的乘法的計算逆向得到因式分解(提公因式法)。
在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。
活動4:
歸納、得出新知
比較以下兩種運算的聯(lián)系與區(qū)別:
(1) a(a+1)(a-1)= a3-a
(2) a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
結(jié)論:把一個多項式化成幾 個整式的積的形式,這種變形叫做把這個多項式因式分解。其中,把多項式中各項的公因式提取出來做為積的一個因式,多項式各項剩下部分做為積的另一個因式這種因式分解的方法叫做提公因式法。
辨一辨:下列變形是因式分解嗎?為什么?
(1)a+b=b+a
(2)4x2y–8xy2+1=4xy(x–y)+1
(3)a(a–b)=a2–ab
(4)a2–2ab+b2=(a–b)2
學(xué)生討論、發(fā)言對因式分解,特別是提公因式法的認識、理解、看法,并總結(jié)出因式分解、提公因式法的定義。
通過學(xué)生的討論,使學(xué)生更清楚以下事實:
(1)分解因式與整式的乘法是一種互逆關(guān)系;
(2)分解因式的結(jié)果要以積的形式表示;
(3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式 的次數(shù);
(4)必須分解到每個多項式不能再分解為止。
活動5:應(yīng)用新知
例題學(xué)習(xí):
P166例1、例2(略)
在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
讓學(xué)生進一步理解提公因式法進行因式分解。
活動6:課堂練習(xí)
1.P167練習(xí);
2. 看誰連得準
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3.下列哪些變形是因式分解,為什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πR+2πr=2π(R+r)
學(xué)生自主完成練習(xí)。
通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
活動7:課堂小結(jié)
從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?
學(xué)生發(fā)言。
通過學(xué)生的回顧與反思,強化學(xué)生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。
活動8:課后作業(yè)
課本P170習(xí)題的第1、4大題。
學(xué)生自主完成
通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。
板書設(shè)計(需要一直留在黑板上主板書)
15.4.1提公因式法 例題
1.因式分解的定義
2.提公因式法