一、
兩圓外離 d﹥R+r
兩圓外切 d=R+r
兩圓相交 R-r﹤d﹤R+r(R﹥r(jià))
兩圓內(nèi)切 d=R-r(R﹥r(jià))
兩圓內(nèi)含d﹤R-r(R﹥r(jià))
二、
相交兩圓的連心線垂直平分兩圓的公共弦
三、
把圓分成n(n≥3):
依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
四、
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
五、
正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)
正三角形面積√3a/4 a表示邊長(zhǎng)
如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
六、
弧長(zhǎng)計(jì)算公式:L=n∏R/180
扇形面積公式:S扇形=n∏R/360=LR/2
內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)
兩圓外離 d﹥R+r
兩圓外切 d=R+r
兩圓相交 R-r﹤d﹤R+r(R﹥r(jià))
兩圓內(nèi)切 d=R-r(R﹥r(jià))
兩圓內(nèi)含d﹤R-r(R﹥r(jià))
二、
相交兩圓的連心線垂直平分兩圓的公共弦
三、
把圓分成n(n≥3):
依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
四、
任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
五、
正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)
正三角形面積√3a/4 a表示邊長(zhǎng)
如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
六、
弧長(zhǎng)計(jì)算公式:L=n∏R/180
扇形面積公式:S扇形=n∏R/360=LR/2
內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)