2015公務員行測測驗數量關系模擬題

字號:

1.
    小張,小王,小李和小東四人,其中每三個人的歲數之和為 65,68,62,75。這四個人中年齡最小的是多少歲?( )
    A.15
    B.16
    C.17
    D.18
    2.
    甲班有42名學生,乙班有48名學生。已知在某次數學考試中按百分制評卷,評卷結果各班的數學總成績相同,各班的平均成績都是整數,并且平均成績都高于80分,那么甲班的平均成績比乙班高多少分?
    A.10
    B.11
    C.12
    D.13
    3.小明前三次數學測驗的平均分數是88分,要想平均分數達到90分以上,他第四次測驗至少要達到( )。
    A.98
    B.96
    C.94
    D.92
    4.
    某班一次期末數學考試成績,平均分為95.5分,后來發(fā)現小林的成績是97分,被誤寫成79分,再次計算后,該班平均成績是95.95分,則該班人數是( )。
    A.30人
    B.40人
    C.50人
    D.60人
    5.
    在1-101中5的倍數的所有數的平均數是( )。
    A.52.5
    B.53.5
    C.54.5
    D.55.5
    1.答案: A
    解析:
    每三個人的歲數之和為65,68,62,75,把他們相加得65+68+62+75=270(歲),每個人歲數重復了相加了3次,因此這四個人的年齡之和為270÷3=90(歲),其中除了年齡最小的人外其他三個人年齡之和,即為75,故年齡最小的人的歲數為90-75=15 (歲),選A選項。
    2.答案: C
    解析:
    解析1:
    設乙班學生的平均成績?yōu)閤分,甲班比乙班平均成績高y分,則可得方程:42(x+y)=48x,x=7y。將選項分別代入等式,x分別等于70,77,84,91。根據已知條件各班平均成績都高于80分,可排A、B項。將C、D項代入已知條件算出甲班的平均成績分別為96、104,因為考試按百分制評卷,排除D。故本題正確答案為C。
    解析2:
    由題干總成績相同,可知總成績是42和48的公倍數。兩個數的最小公倍數為336,所以總成績是336的倍數,記作336n(n為整數),則平均分差異為336n÷42-336n÷48=n。又試卷為百分制,且平均分都高于80分,那么48×80<336n<42×100,故80/7    3.答案: B
    解析: >>假設四次平均分剛好等于>90>分時,>第四次考試分數才是最少的,故第四次測驗至少要得>90×4-88×3=96>分。因此,本題答案為>B項。
    4.答案: B
    解析:
    解析1:
    設該班的人數是M,則95.5M-79=95.95M-97,解方程得M=40。故正確答案為B。
    解析2:
    小林改正成績后多出97-79=18分,均分給全班人從而使平均成績提高,所以該班的人數是18/(95.95-95.5)=40(人),故正確答案為B。
    5.答案: A
    解析:
    所有5的倍數組成的數列為等差數列,因此其平均數等于首項與末項和的一半。首項為5,末項為100,因此平均數=(5+100)÷2=52.5。故正確答案為A。