知識點:高二數(shù)學向量的基本算法

字號:

為大家整理的知識點:高二數(shù)學向量的基本算法文章,供大家學習參考!更多最新信息請點擊高二考試網(wǎng)
    1、向量的加法
    向量的加法滿足平行四邊形法則和三角形法則。
    AB+BC=AC。
    a+b=(x+x',y+y')。
    a+0=0+a=a。
    向量加法的運算律:
    交換律:a+b=b+a;
    結合律:(a+b)+c=a+(b+c)。
    2、向量的減法
    如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
    AB-AC=CB. 即“共同起點,指向被減”
    a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
    3、數(shù)乘向量
    實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
    當λ>0時,λa與a同方向;
    當λ<0時,λa與a反方向;
    當λ=0時,λa=0,方向任意。
    當a=0時,對于任意實數(shù)λ,都有λa=0。
    注:按定義知,如果λa=0,那么λ=0或a=0。
    實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
    當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
    當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
    數(shù)與向量的乘法滿足下面的運算律
    結合律:(λa)·b=λ(a·b)=(a·λb)。
    向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
    數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
    數(shù)乘向量的消去律:① 如果實數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
    4、向量的的數(shù)量積
    定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
    定義:兩個向量的數(shù)量積(內積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
    向量的數(shù)量積的坐標表示:a·b=x·x'+y·y'。
    向量的數(shù)量積的運算率
    a·b=b·a(交換率);
    (a+b)·c=a·c+b·c(分配率);
    向量的數(shù)量積的性質
    a·a=|a|的平方。
    a⊥b 〈=〉a·b=0。
    |a·b|≤|a|·|b|。