(1)空間幾何體
①利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量空間圖形,認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu)。
②能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)使用材料(如紙板)制作模型,會(huì)用斜二側(cè)法畫出它們的直觀圖。
③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。
④完成實(shí)習(xí)作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求)。
⑤了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。
(2)點(diǎn)、線、面之間的位置關(guān)系
①借助長(zhǎng)方體模型,在直觀認(rèn)識(shí)和理解空間點(diǎn)、線、面的位置關(guān)系的基礎(chǔ)上,抽象出空間線、面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理。
◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)。
◆公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。
◆公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
◆公理4:平行于同一條直線的兩條直線平行。
◆定理:空間中如果兩個(gè)角的兩條邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。
②以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),通過直觀感知、操作確認(rèn)、思辨論證,認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定。
操作確認(rèn),歸納出以下判定定理。
◆平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。
◆一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。
◆一條直線與一個(gè)平面內(nèi)的兩條相交直線垂直,則該直線與此平面垂直。
◆一個(gè)平面過另一個(gè)平面的垂線,則兩個(gè)平面垂直。
操作確認(rèn),歸納出以下性質(zhì)定理,并加以證明。
◆一條直線與一個(gè)平面平行,則過該直線的任一個(gè)平面與此平面的交線與該直線平行。
◆兩個(gè)平面平行,則任意一個(gè)平面與這兩個(gè)平面相交所得的交線相互平行。
◆垂直于同一個(gè)平面的兩條直線平行。
◆兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。
③能運(yùn)用已獲得的結(jié)論證明一些空間位置關(guān)系的簡(jiǎn)單命題。
①利用實(shí)物模型、計(jì)算機(jī)軟件觀察大量空間圖形,認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用這些特征描述現(xiàn)實(shí)生活中簡(jiǎn)單物體的結(jié)構(gòu)。
②能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體、球、圓柱、圓錐、棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述的三視圖所表示的立體模型,會(huì)使用材料(如紙板)制作模型,會(huì)用斜二側(cè)法畫出它們的直觀圖。
③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。
④完成實(shí)習(xí)作業(yè),如畫出某些建筑的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求)。
⑤了解球、棱柱、棱錐、臺(tái)的表面積和體積的計(jì)算公式(不要求記憶公式)。
(2)點(diǎn)、線、面之間的位置關(guān)系
①借助長(zhǎng)方體模型,在直觀認(rèn)識(shí)和理解空間點(diǎn)、線、面的位置關(guān)系的基礎(chǔ)上,抽象出空間線、面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理。
◆公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)。
◆公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。
◆公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
◆公理4:平行于同一條直線的兩條直線平行。
◆定理:空間中如果兩個(gè)角的兩條邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)。
②以立體幾何的上述定義、公理和定理為出發(fā)點(diǎn),通過直觀感知、操作確認(rèn)、思辨論證,認(rèn)識(shí)和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定。
操作確認(rèn),歸納出以下判定定理。
◆平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。
◆一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。
◆一條直線與一個(gè)平面內(nèi)的兩條相交直線垂直,則該直線與此平面垂直。
◆一個(gè)平面過另一個(gè)平面的垂線,則兩個(gè)平面垂直。
操作確認(rèn),歸納出以下性質(zhì)定理,并加以證明。
◆一條直線與一個(gè)平面平行,則過該直線的任一個(gè)平面與此平面的交線與該直線平行。
◆兩個(gè)平面平行,則任意一個(gè)平面與這兩個(gè)平面相交所得的交線相互平行。
◆垂直于同一個(gè)平面的兩條直線平行。
◆兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。
③能運(yùn)用已獲得的結(jié)論證明一些空間位置關(guān)系的簡(jiǎn)單命題。