老師在新授課程時(shí),一般會(huì)準(zhǔn)備教案課件,這就需要我們老師自己抽時(shí)間去完成。要知道寫了教案課件,是可以體現(xiàn)老師在教學(xué)上面的專業(yè)素養(yǎng),寫教案課件時(shí)應(yīng)該注意哪些問題?感謝查閱編輯為你推薦“函數(shù)的單調(diào)性課件”,文章僅供您參考使用!
函數(shù)的單調(diào)性課件(篇1)
上的值與最小值,你認(rèn)為應(yīng)通過什么方法去求解?
3.分組討論,回答問題
①學(xué)生回答:f(x2)是極大值,f(x1)與f(x3)都是極小值.
②依照極值點(diǎn)的定義討論得出:f(a)、f(b)不是函數(shù)y=f(x)的極值.
③直觀地從函數(shù)圖象中看出:f(x3)是最小值,f(b)是值.
(教師在回答完問題①②③之后,再提問:如果在沒有給出函數(shù)圖象的情況下,怎樣才能判斷出f(x3)是最小值,而f(b)是值呢?)
④與學(xué)生共同討論,得出求函數(shù)最值的一般方法:
i)求y=f(x)在(a,b)內(nèi)的極值(極大值與極小值);
ii)將函數(shù)y=f(x)的各極值與f(a)、f(b)作比較,其中的一個(gè)為值,最小的一個(gè)為最小值.
4.分析講解例題
例4求函數(shù)y=x4-2x2+5在區(qū)間
函數(shù)的單調(diào)性課件(篇2)
一.說教材
地位及重要性
函數(shù)的單調(diào)性一節(jié)屬高中數(shù)學(xué)第一冊(cè)(上)的必修內(nèi)容,在高考的重要考查范圍之內(nèi)。函數(shù)的單調(diào)性是函數(shù)的一個(gè)重要性質(zhì),也是在研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì),并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)的定性分析以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用。通過對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生掌握函數(shù)單調(diào)性的概念和證明函數(shù)單調(diào)性的步驟,又可加深對(duì)函數(shù)的本質(zhì)認(rèn)識(shí)。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。
教學(xué)目標(biāo)
(1)了解能用文字語言和符號(hào)語言正確表述增函數(shù)、減函數(shù)、單調(diào)性、單調(diào)區(qū)間的概念;
(2)了解能用圖形語言正確表述具有單調(diào)性的函數(shù)的圖象特征;
(3)明確掌握利用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的方法與步驟;并能用定義證明某些簡單函數(shù)的單調(diào)性;
(4)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力、用運(yùn)動(dòng)變化、數(shù)形結(jié)合、分類討論的方法去分析和處理問題,以提高學(xué)生的思維品質(zhì);同時(shí)讓學(xué)生體驗(yàn)數(shù)學(xué)的藝術(shù)美,養(yǎng)成用辨證唯物主義的觀點(diǎn)看問題。
教學(xué)重難點(diǎn)
重點(diǎn)是對(duì)函數(shù)單調(diào)性的有關(guān)概念的本質(zhì)理解。
難點(diǎn)是利用函數(shù)單調(diào)性的概念證明或判斷具體函數(shù)的單調(diào)性。
二.說教法
根據(jù)本節(jié)課的內(nèi)容及學(xué)生的實(shí)際水平,我嘗試運(yùn)用問題解決與多媒體輔助教學(xué)的模式。力圖通過提出問題、思考問題、解決問題的過程,讓學(xué)生主動(dòng)參與以達(dá)到對(duì)知識(shí)的發(fā)現(xiàn)與接受,進(jìn)而完成對(duì)知識(shí)的內(nèi)化,使書本知識(shí)成為自己知識(shí);同時(shí)也培養(yǎng)學(xué)生的探索精神。
三.說學(xué)法
在教學(xué)過程中,教師設(shè)置問題情景讓學(xué)生想辦法解決;通過教師的啟發(fā)點(diǎn)撥,學(xué)生的不斷探索,最終把解決問題的核心歸結(jié)到判斷函數(shù)的單調(diào)性。然后通過對(duì)函數(shù)單調(diào)性的概念的學(xué)習(xí)理解,最終把問題解決。整個(gè)過程學(xué)生學(xué)生主動(dòng)參與、積極思考、探索嘗試的動(dòng)態(tài)活動(dòng)之中;同時(shí)讓學(xué)生體驗(yàn)到了學(xué)習(xí)數(shù)學(xué)的快樂,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力和以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問題的習(xí)慣。
四.說過程
通過設(shè)置問題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點(diǎn)撥、啟發(fā)、引導(dǎo)為教師職責(zé)。
設(shè)置問題情景
[引例]學(xué)校準(zhǔn)備建造一個(gè)矩形花壇,面積設(shè)計(jì)為16平方米。由于周圍環(huán)境的限制,其中一邊的長度長不能超過10米,短不能少于4米。記花壇受限制的一邊長為x米,半周長為y米。
寫出y與x的函數(shù)表達(dá)式;
求(1)中函數(shù)的最大值。
(用多媒體出示問題,并讓學(xué)生思考)
函數(shù)的單調(diào)性課件(篇3)
內(nèi)有值和最小值;在(a,b)內(nèi)可導(dǎo),是為了能用求導(dǎo)的方法求解.
4.求函數(shù)值和最小值,先確定函數(shù)的極大值和極小值,然后,再比較函數(shù)在區(qū)間兩端的函數(shù)值,因此,用導(dǎo)數(shù)判斷函數(shù)極大值與極小值是解決函數(shù)最值問題的關(guān)鍵.
5.有關(guān)函數(shù)最值的實(shí)際應(yīng)用問題的教學(xué),是本節(jié)內(nèi)容的難點(diǎn).教學(xué)時(shí),必須引導(dǎo)學(xué)生確定正確的數(shù)學(xué)建模思想,分析實(shí)際問題中各變量之間的關(guān)系,給出自變量與因變量的函數(shù)關(guān)系式,同時(shí)確定函數(shù)自變量的實(shí)際意義,找出取值范圍,確保解題的正確性.從此,在函數(shù)最值的求法中多了一種非常優(yōu)美而簡捷的方法——求導(dǎo)法.依教學(xué)大綱規(guī)定,有關(guān)此類函數(shù)最值的實(shí)際應(yīng)用問題一般指單峰函數(shù),而文科所涉及的函數(shù)必須是在所學(xué)導(dǎo)數(shù)公式之內(nèi)能求導(dǎo)的函數(shù).
教學(xué)過程
1.復(fù)習(xí)函數(shù)極值的一般求法
①學(xué)生復(fù)述求函數(shù)極值的三個(gè)步驟.
②教師強(qiáng)調(diào)理解求函數(shù)極值時(shí)應(yīng)注意的幾個(gè)問題.
2.提出問題(用字幕打出)
①在教科書中的(圖2-11)中,哪些點(diǎn)是極大值點(diǎn)?哪些點(diǎn)是極小值點(diǎn)?
②x=a、x=b是不是極值點(diǎn)?
③在區(qū)間
函數(shù)的單調(diào)性課件(篇4)
各位評(píng)委老師,大家好!
我是本科數(shù)學(xué)**號(hào)選手,今天我要進(jìn)行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時(shí)《函數(shù)單調(diào)性與最大(小)值》(可以在這時(shí)候板書課題,以緩解緊張)。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評(píng)價(jià)五個(gè)方面來陳述我對(duì)本節(jié)課的設(shè)計(jì)方案。懇請(qǐng)?jiān)谧膶<以u(píng)委批評(píng)指正。
一、教材分析
1、教材的地位和作用
(1)本節(jié)課主要對(duì)函數(shù)單調(diào)性的學(xué)習(xí);
(2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時(shí)又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)
(3)它是歷年高考的熱點(diǎn)、難點(diǎn)問題
(根據(jù)具體的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問題就刪掉)
2、教材重、難點(diǎn)
重點(diǎn):函數(shù)單調(diào)性的定義
難點(diǎn):函數(shù)單調(diào)性的證明
重難點(diǎn)突破:在學(xué)生已有知識(shí)的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實(shí)現(xiàn)重難點(diǎn)突破。(這個(gè)必須要有)
二、教學(xué)目標(biāo)
知識(shí)目標(biāo):(1)函數(shù)單調(diào)性的定義
(2)函數(shù)單調(diào)性的證明
能力目標(biāo):培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想
情感目標(biāo):培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)
(這樣的教學(xué)目標(biāo)設(shè)計(jì)更注重教學(xué)過程和情感體驗(yàn),立足教學(xué)目標(biāo)多元化)
三、教法學(xué)法分析
1、教法分析
“教必有法而教無定法”,只有方法得當(dāng)才會(huì)有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評(píng)價(jià)法
2、學(xué)法分析
“授人以魚,不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。
(前三部分用時(shí)控制在三分鐘以內(nèi),可適當(dāng)刪減)
四、教學(xué)過程