知識點(diǎn)總是整理后才更直觀、更便于學(xué)習(xí),那么同學(xué)們對八年級數(shù)學(xué)的知識點(diǎn)總結(jié)過嗎?下面是由出國留學(xué)網(wǎng)小編為大家整理的“數(shù)學(xué)八年級下冊知識點(diǎn)總結(jié)”,僅供參考,歡迎大家閱讀。
數(shù)學(xué)八年級下冊知識點(diǎn)總結(jié)
第十六章 分式
一.知識框架
二.知識概念
1.分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
2.分式有意義的條件:分母不等于0
3.約分:把一個分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約分。
4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。
分式的基本性質(zhì):分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C為整式,且C≠0)
5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.
6.分式的四則運(yùn)算:1.同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c
2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進(jìn)行計算.用字母表示為:a/b±c/d=ad±cb/bd
3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b * c/d=ac/bd
4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc
(2).除以一個分式,等于乘以這個分式的倒數(shù):a/b÷c/d=a/b*d/c
7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.
8.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的.值;③驗根(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根).
分式和分?jǐn)?shù)有著許多相似點(diǎn)。教師在講授本章內(nèi)容時,可以對比分?jǐn)?shù)的特點(diǎn)及性質(zhì),讓學(xué)生自主學(xué)習(xí)。重點(diǎn)在于分式方程解實(shí)際應(yīng)用問題。
第十七章 反比例函數(shù)
一.知識框架
二.知識概念
1.反比例函數(shù):形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù)。其他形式xy=k
2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點(diǎn)
3.性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小;
當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大。
4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積。
在學(xué)習(xí)反比例函數(shù)時,教師可讓學(xué)生對比之前所學(xué)習(xí)的一次函數(shù)啟發(fā)學(xué)生進(jìn)行對比性學(xué)習(xí)。在做題時,培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。
第十八章 勾股定理
一.知識框架
二 知識概念
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。
2.定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理。
3.我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
勾股定理是直角三角形具備的重要性質(zhì)。本章要求學(xué)生在理解勾股定理的前提下,學(xué)會利用這個定理解決實(shí)際問題??梢酝ㄟ^自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受
第十九章 四邊形
一.知識框架
二.知識概念
1.平行四邊形定義: 有兩組對邊分別平行的四邊形叫做平行四邊形。
2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
3.平行四邊形的判定 1.兩組對邊分別相等的四邊形是平行四邊形
2.對角線互相平分的四邊形是平行四邊形;
3.兩組對角分別相等的四邊形是平行四邊形;
4.一組對邊平行且相等的四邊形是平行四邊形。
4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
5.直角三角形斜邊上的中線等于斜邊的一半。
6.矩形的定義:有一個角是直角的平行四邊形。
7.矩形的性質(zhì): 矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
8.矩形判定定理: 1.有一個角是直角的平行四邊形叫做矩形。
2.對角線相等的平行四邊形是矩形。
3.有三個角是直角的四邊形是矩形。
9.菱形的定義 :鄰邊相等的平行四邊形。
10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
11.菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形。
2.對角線互相垂直的平行四邊形是菱形。
3.四條邊相等的四邊形是菱形。
12.S菱形=1/2×ab(a、b為兩條對角線)
13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
14.正方形的性質(zhì):四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
15.正方形判定定理: 1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。
16.梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
17.直角梯形的定義:有一個角是直角的梯形
18.等腰梯形的定義:兩腰相等的梯形。
19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
本章內(nèi)容是對平面上四邊形的分類及性質(zhì)上的研究,要求學(xué)生在學(xué)習(xí)過程中多動手多動腦,把自己的發(fā)現(xiàn)和知識帶入做題中。因此教師在教學(xué)時可以多鼓勵學(xué)生自己總結(jié)四邊形的特點(diǎn),這樣有利于學(xué)生對知識的把握。
第二十章 數(shù)據(jù)的分析
一.知識框架
二.知識概念
1.加權(quán)平均數(shù):加權(quán)平均數(shù)的計算公式。 權(quán)的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)中的重要程度。
2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。
3. 眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。
4. 極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。
5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。
本章內(nèi)容要求學(xué)生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學(xué)生的統(tǒng)計意識和數(shù)據(jù)處理的方法與能力。在教學(xué)過程中,以生活實(shí)例為主,讓學(xué)生體會到數(shù)據(jù)在生活中的重要性。
拓展閱讀:九年級數(shù)學(xué)下冊知識點(diǎn)復(fù)習(xí)資料
經(jīng)過圓心的弦是直徑;
圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧;
圓上任意一條直徑的兩個端點(diǎn)分圓成兩條弧,每一條弧叫做半圓;
大于半圓弧的弧叫優(yōu)弧,小于半圓弧的弧叫做劣弧;
由弦及其所對的弧組成的圖形叫做弓形。
(1)當(dāng)兩圓外離時,d>R_+r;
(2)當(dāng)兩圓相外切時,d=R_+r;
(3)當(dāng)兩圓相交時,R_-r
(4)當(dāng)兩圓內(nèi)切時,d=R_-r(R>r);
(4)當(dāng)兩圓內(nèi)含時,d
其中,d為圓心距,R、r分別是兩圓的半徑。
如何判定四點(diǎn)共圓,我們主要有以下幾種方法:
(1)到一定點(diǎn)的距離相等的n個點(diǎn)在同一個圓上;
(2)同斜邊的直角三角形的各頂點(diǎn)共圓;
(3)同底同側(cè)相等角的三角形的各頂點(diǎn)共圓;
(4)如果一個四邊形的一組對角互補(bǔ),那么它的四個頂點(diǎn)共圓;
(5)如果四邊形的一個外角等于它的內(nèi)對角,那么它的四個頂點(diǎn)共圓;
(6)四邊形ABCD的對角線相交于點(diǎn)P,若PA_*PC=PB_*PD,則它的四個頂點(diǎn)共圓;
(7)四邊形ABCD的一組對邊AB、DC的延長線相交于點(diǎn)P,若PA_*PB=PC_*PD,則它的四個頂點(diǎn)共圓。
1、作直徑上的圓周角
當(dāng)告訴了一條直徑,一般通過作直徑上的圓周角,利用直徑所對的圓周角是直角這一
條件來證明問題.
2、作弦心距
當(dāng)告訴圓心和弦,一般通過過圓心作弦的垂線,利用弦心距平分弦這一條件證明問題.
3、過切點(diǎn)作半徑
當(dāng)含有切線這一條件時,一般通過把圓心和切點(diǎn)連起來,利用切線與半徑垂直這一性
質(zhì)來證明問題.
4、作直徑
當(dāng)已知條件含有直角,往往通過過圓上一點(diǎn)作直徑,利用直徑所對的圓周角為直角這
一性質(zhì)來證明問題.
5、作公切線
當(dāng)已知條件中含兩圓相切這一條件,往往通過過這個切點(diǎn)作兩圓的公切線,通過公切
線找到兩圓之間的關(guān)系.
6、作公共弦
當(dāng)含有兩圓相交這一條件時,一般通過作兩圓的公共弦,由兩圓的弦之間的關(guān)系,找
出兩圓的角之間的關(guān)系.
7、作兩圓的連心線
若已知中告訴兩圓相交或相切,一般通過作兩圓的'連心線,利用兩相交圓的連心線垂直
平分公共弦或;兩相切圓的連心線必過切點(diǎn)來證明問題.
8、作圓的切線
若題中告訴了我們半徑,往往通過過半徑的外端作圓的切線,利用半徑與切線垂直或利
用弦切角定理來證明問題.
9、一圓過另一圓的圓心時則作半徑
題中告訴兩個圓相交,其中一個圓過另一個圓的圓心,往往除了通過作兩圓的公共弦外,
還可以通過作圓的半徑,利用同圓的半徑相等來證明問題.
10、作輔助圓
當(dāng)題中涉及到圓的切線問題(無論是計算還是證明)時,通常需要作輔助線。一般地,
有以下幾種添加輔助線的作法:
(1)已知一直線是圓的切線時,通常連結(jié)圓心和切點(diǎn),使這條半徑垂直于切線.
(2)若已知直線經(jīng)過圓上的某一點(diǎn),需要證明某條直線是圓的切線時,往往需要作出經(jīng)
過這一點(diǎn)的半徑,證明直線垂直于這條半徑,簡記為“連半徑,證垂直”;若直線與圓的公
共點(diǎn)沒有確定,則需要過圓心作直線的垂線,得到垂線段,再通過證明這條垂線段的長等
于半徑,來證明某條直線是圓的切線.簡記為“作垂直,證半徑”.