數學竟賽建模論文(優(yōu)秀18篇)

字號:

    青春是我們最寶貴的資本,我想我們需要充分利用青春的力量去追逐夢想??偨Y要寫得客觀中帶有一些主觀評價,該如何衡量呢?總結是在一段時間內對學習和工作生活等表現加以總結和概括的一種書面材料,它可以促使我們思考,我想我們需要寫一份總結了吧。那么我們該如何寫一篇較為完美的總結呢?以下是小編為大家收集的總結范文,僅供參考,大家一起來看看吧。
    數學竟賽建模論文篇一
    摘要:隨著現代社會的發(fā)展,數學的廣泛用途已經無需質疑,他深入到我們生活的方方面面?,F階段,數學建模已經成為應用數學知識解決日常問題的一個重要手段。本文通過簡述數學建模的方法與過程,以及應用數學建模解決實際經濟問題的應用,展現的了數學學習的重要意義,以及數學在經濟問題解決中的重要作用。
    經濟現象具有多變性,隨著經濟社會的發(fā)展,國際間貿易往來的日趨緊密,日常經濟形勢受到的影響因素越來越復雜多變。而日常經濟生活中所遇到的經濟現象同樣存在著諸多的變化的影響因素。如何應對這些難以把控的變量,做好風險的預估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數學知識、應用數學建模為工具進行較為理性的計算,為經濟決策、企業(yè)規(guī)劃提供重要的幫助。
    數學建模,其實就是建立數學模型的簡稱,實際上數學建??梢苑Q之為解決問題的一種思考方法,借助數學工具應用已知的定理定義進行合理的運算,推導出一種理性的結果的過程。數學建模是可以聯系數學和外部世界的一個中介和橋梁,在工業(yè)設計、經濟領域、工程建設等各個方面,運用數學的語言和方法進行問題的求解和推導,實際上,都是一種數學建模的過程。數學建模的主要過程可以總結為如下的框圖形式:實際上,數學模型的最終建立是一個反復驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數學模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統計各種信息數據;2.模型假設:根據建模目的,結合實際對象的特性,對復雜問題進行簡化,提取主要因素,提煉精確的數學語言;3.模型建立:根據提煉的主要因素,選擇適當的數學工具,建立各個量(變量、常量)間的數學關系,化實際問題為數學語言;4.模型求解:對上述數學關系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結果與實際問題結合,綜合分析,找到模型的缺陷和不足,進行數學上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結果與實際情況相驗證,檢驗模型的合理性和適用性。
    二、經濟問題數學模型的建立。
    經濟類問題因為其特有的特點,可以按照變量的性質分為兩類:概率型和確定型。概率型應用于處理具有隨機性情況的模型,可以解決類似風險評估、最優(yōu)產量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設,精確的對一種特定情況的結果做出判斷,如成本核算、損失評估等。對經濟問題的建模計算實際上是一個從經濟世界進入數學世界再回到經濟世界的過程。建立經濟數學模型,需要首先對實際經濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質的特征性的東西。將原始的復雜的經濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應用數學知識建立完整的數學經濟模型。
    三、建模舉例。
    四、結語。
    綜上所述,我們可以看到,數學建模在經濟中的應用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規(guī)避風險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們去努力的學習和思考。
    數學竟賽建模論文篇二
    摘要:所謂數學建模,即借助數學模型,處理所遇到的具體問題的課程,在本文中,分別就教學、模型建立以及相應的信息檢索來進行研究,通過將這三面進行相應的糅合從而證明可以將計算機技術引入到相應的建模實踐中,從而有效促進數學建模的發(fā)展,使得教學質量得以有效提升。
    關鍵詞:數學建模;計算機應用;融合。
    目前計算機在生活中應用極為廣泛,借助于計算機能夠使得先前較為復雜繁瑣的問題得以簡化,有效提升計算速率。就數學建模來看,計算機在此方面的作用不言而喻。對于此,人們普遍認為,能夠借助于計算機將任何一個數學問題進行簡化處理。而對于生活中所遇到的任意一個實際問題,均能夠借助于相應的數學模型來進行表示,在建模過程中,也可以根據實際情況來做出一些相應的簡化處理,從而將其歸屬于完全的數學問題,最終建立起能夠用變量所描述的數學模型。之后,借助于相應的計算機、軟件以及編程方面的知識,來對此模型進行相應的求解計算。
    2.計算機技術在數學建模中的應用。
    計算機在數學建模中的應用面非常的廣泛,限于筆者的水平,本文主要就兩個方面展開討論:第一,確定建模思想;第二,對數學模型進行求解計算。
    2.1計算機技術輔助確立數學建模思想。
    對于數學建模,其最為重要的目的便是為了能夠提升學生對于數學知識的使用性,借助于相關的數學思想來對實際問題進行解決,同時,還能夠促進學生數學思想的發(fā)展、建模能力發(fā)展以及相關數學知識的完善,最終提升其對于數學知識的使用能力。培養(yǎng)數學思維重在將學生所思所想以最快最佳的方式展示出來,計算機技術在數學建模中的應用使得這個設想變得可能。因為數學模型的計算和設計工作量大,傳統的計算辦法不能迅速解決某個問題,但是在建模的輔助下一切問題迎刃而解。
    2.2計算機技術促進數學建模結果求解。
    對于數學建模,其屬于一項系統性工程,整個過程工作量較多。在前期,對于模型的構想與建立需要不斷完善,此后,對于模型的求解也是極為困難的,這主要因為其涉及到非常多的數據處理與計算。在計算數學模型時,不僅速度快,準確度也很高,如表1給出了手動解30維線性方程組和計算機解30維方程組的時間,手動所用時間是計算所用時間的1200倍。
    同時,對于一些借助紙和筆而無法實現的計算,通過計算機能夠較快實現,其中主要涉及到相關的編程、繪圖等操作。
    計算機在數學建模領域擁有極為重要的優(yōu)勢與作用。如計算機的計算速度快、可以輔助作圖,甚至可以輔助做立體圖形。同時,借助于計算機也能夠使得模型得以進一步完善,也就是說兩者彼此之間相輔相成。
    數學建模的出現,主要是為了便于處理同工程或者科研相關的問題的,和試題類有著較大區(qū)別。其所處理問題具有一定的特性,即圍繞日常具體問題展開,科研背景突出,需要的知識結構復雜,涉及的范圍龐大,因素多且難,非常規(guī)特征明顯,缺乏有效的處理措施,涉及數據多,要選擇的算法亦十分繁瑣,得出的結果存在波動性,要有限定的前提,通常僅可獲取近似解。而計算機的出現,則在一定程度上使這種情況得到緩解。是數學建模多樣化,令設計領域更加寬泛,如數學建??梢阅7度祟惔竽X的記憶功能。
    3.2計算機使數學模型求解更為簡單。
    計算機在數學建模中的應用使得數學模型求解更為簡單體現在以下幾個方面:
    (1)計算量問題得到解決。以前計算量大是制約數學建模發(fā)展的主要因素之一,現在在計算機的幫助下,只要模型完善,計算量大已經不是問題。如德國的神威計算機,計算速度達到了12.5億億次/秒。
    (2)可視化功能使抽象問題具體化?,F代計算機都有強大的作圖功能,會使數學模型中的一些抽象概念、問題解決過程都變得可視化。圖表的制作更是非常簡單。
    3.3計算機利用數學建模尋求最優(yōu)解成為可能。
    在3.1節(jié)中已經提到,在計算機沒有應用到數學建模中之前,很多數學模型的解只是近似解,連精確解都談不上,更不用說是最優(yōu)解。其主要原因是模型本身的計算量太大,筆和紙這兩樣工具更不能在短時間內攻下數學模型計算這塊,此外筆和紙根本不可能完成某些圖表的制作也是原因之一。計算機有效的解決了這兩個問題,這就會使得數學模型得到精確解。在求得精確解的基礎之上還可以進一步尋求最優(yōu)解,因為數學模型的解往往是多解的,不是唯一解。
    4.總結。
    數學模型,其主要是通過使用相應的數學語言來對實際問題進行相應的表示,也就是說,模型的實質主要是為了有效解決生活中的實際問題。通過借助于計算機能夠使得復雜問題得以有效簡化,對于促進社會發(fā)展起到了重要作用。因而,在未來發(fā)展中數學建模也將會像計算機一樣得到廣泛重視。目前,對于教育界而言,其主要問題在于理論與實踐相脫節(jié)。我們的教學越來越形式、抽象。在教材中,充斥著大量的定理、理論證明等等,但是并沒有將其與實際生活相結合,而對于借助相應的數學教學來實現腦力發(fā)展的系統化更是微乎其微。將計算機與數學建模相結合,這是未來數學領域發(fā)展所必須經歷的一個過程。
    參考文獻:
    數學竟賽建模論文篇三
    摘要:不知不覺中,數學建模已經成為在學生中一個非常熱門的名詞隨著各類數學建模大賽的如火如荼,數學建模的概念已經逐步走入到我們中學生的視線中。很多同學對于數學、對于數學建模的理解還存在著很多偏頗之處,認為數學這門學科太過深奧,比較難以學習領悟透徹,本文通過自身的理解,簡要介紹了數學建模的概念與過程,體現了數學思想在問題解決過程中的指導作用,同時揭開數學建模的神秘面紗,讓數學以更加平易近人的方式成為我們數學的工具。
    關鍵詞:數學建模;過程;應用。
    數學是一門高度的抽象并且嚴密的科學這沒錯,但是同樣的數學中的許多結論與方法,我們可以很好的應用在生活中的方方面面。數學應該是理工科學生最重要的一門基礎學科,然而我們大部分的同學,甚至我自己常常都會有“不知道學了數學有什么用,學會了微分與導數日常生活也用不到”的困惑,除了備戰(zhàn)考試,“學而無趣”、“學而無用”的現象還是非常明顯的。但是伴隨著現代社會的高速發(fā)展,我們所掌握的科學技術水平也在穩(wěn)步提高,數學本身的發(fā)展也是日新月異。時至今日,數學在其他各個學科之中的應用已經顯得尤其重要。如何通過靈活的應用所掌握的數學知識去解決各類生產生活中遇到的實際問題時,建立合理地數學模型就成為至關重要的一點。
    人們在對一個現實對象進行觀察、分析和研究的過程中經常使用模型,如科技館里的各類機械模型、水壩模型、火箭模型等,實際上,我們常常接觸到的照片、玩具、地圖、電路圖實驗器材等都是模型。通過使用一定的模型,可以能夠概括、集中以及更直觀的反映現實對象的一些特征,進而可以幫助人們迅速、有效地了解并掌握所研究的對象。而隨著現代計算機技術與理論的日漸成熟,以及我們研究對象逐步復雜化、抽象畫,可以通過計算機模擬的數學模型應運而生。其實數學模型不過是更抽象些的模型,而數學建模就是建立這一模型的過程,并且能夠將建模后計算得到的結果來解釋實際問題,同時接受實際的檢驗。當我們需要對一個實際問題從定量的角度分析和研究時,就需要通過深入調查研究、了解對象信息,并作出作出簡化假設、分析內在規(guī)律,然后用數學的符號和語言,把這一問題表述為數學式子即為數學模型。這一數學模型再經過反復的檢驗和修正最終得到的模型結果來解釋實際問題,并且可以接受實際的檢驗。當今時代,數學的應用已經不僅局限在工程技術、自然科學等領域,并以空前的廣度和深度向環(huán)境、人口、金融、醫(yī)學、地質、交通等嶄新的領域滲透,形成了所謂的數學技術,并成為現代高新技術的重要組成。這其中,建立研究對象的數學模型并計算求解成為首要的和關鍵的步驟。數學建模和計算機技術在知識經濟時代為科學研究提供了重要的幫助。
    數學建模的過程可粗略以上方框圖表示,其具體步驟可以概述為:1)通過分析問題的實際情況,可以充分了解所面臨問題的背景,去大膽分析并且暴漏出問題的本質,針對研究對象提出問題。2)忽略非主要因素,直接列出研究的對象的關鍵問題。將復雜問題簡化,抓住關鍵點,大大提高問題解決的效率。3)通過應用數學公式與理論,尋找客觀規(guī)律。必要時可以借助計算機軟件,形成合適的數學模型。4)通過運作已建立的數學模型,產生結果,進而通過結果的對比判斷所建立的數學模型是否真正符合實際的客觀規(guī)律。這是一個動態(tài)的檢驗、修改的過程,通常需要多次的模擬和完善才能夠建立起合理有效的數學模型。5)將建成的數學模型規(guī)律轉化為解決實際生活中的各種問題的方法,進而可以直接或間接地提高生產、生活效率。數學建模其實就是連接數學理論知識和數學實際應用兩者之間的一條紐帶??傆幸恍┩瑢W將數學建??吹枚嗝吹母呱钅獪y,其實我們在以前的日常的學習中早就已經接觸過了數學建?!,F在經常被我們當成搞笑段子來講的一些小學學習數學的階段做過的很多應用題,實際就是一種簡單的數學建模。數學建模的確切的含義目前尚無定論,但比較莫忠一是的看法為:通過將實際問題的抽象化,歸納并簡化問題,進而確定變量跟參數,運用數學的理論和方法,逐步確立比較合理的數學模型;然后再應用數學與其他相關學科中的理論和方法借助計算機等相關技術手段,建立起數學模型;接著我們會對此模型進行反復地驗證,分析討論,不斷地對其進行修正,逐漸地改進使它更加的規(guī)范化。簡單來說,數學建模就是以現實作為背景,用數學科學理論作依托,解決實際生產生活中問題的過程。因而,可以說我們所熟知的任何一個數學上的概念、定理、命題或者結構,都可以看作是數學模型。
    進入計算機技術引領的20世紀,隨著電子計算機的出現與飛速發(fā)展,數學以前所未有的廣度和深度向各個領域滲透,而數學建模正是這其中的紐帶。在統工程技術領域諸如機械、電機、土木、水利等方面,數學建模已展現了其重要作用。建立在數學模型和計算機模擬基礎上的新型技術,已經憑借其快速、經濟、方便的優(yōu)勢,大量地替代了傳統工程設計中的現場實驗和物理模擬等手段。高科技時代下的技術本質上已經成為一種數學技術,源于支撐現代科技的計算機軟件是數學建模、數值計算和計算機圖形學相結合的產物在這個意義上,數學不再僅僅作為一門科學,它是許多技術的基礎,而且直接走向了技術的前臺。馬克思說過,一門科學只有成功地運用數學時,才算達到了完善的地步。展望21世紀,數學必將大踏步地進入所有學科,數學建模將迎來蓬勃發(fā)展的新時期。
    數學竟賽建模論文篇四
    【論文關鍵詞】空氣管理系統;信號驅動;控制邏輯建模。
    0引言。
    空氣管理系統是民用飛機上非常重要的機載系統之一,負責控制飛機引氣、座艙壓力調節(jié)、機翼防冰、溫度控制等功能[1-5]??諝夤芾硐到y控制是以兩個綜合空氣管理系統控制器(iasc)為控制中樞,以各種傳感器發(fā)來的監(jiān)控信號、外部系統發(fā)來的通訊信號為輸入,經iasc內部邏輯運算后,驅動各種受控設備,如風扇、活門、加熱器等,來實現飛機空氣溫度、壓力、流量等控制功能,并將系統狀態(tài)信息發(fā)送給外部系統實現顯示、告警及記錄功能。
    空氣管理系統控制功能需求是以系統需求為依據,結合所采用的控制架構細化而來。各控制功能由若干個控制邏輯組成。在空氣管理系統研制過程中需要進行控制功能的確認與驗證。仿真的方式能有效提高效率,降低成本,而建立各種控制邏輯模型則是進行仿真確認與驗證的基礎。本文研究了一種信號驅動的空氣管理系統控制邏輯建模方法。
    1信號驅動的控制邏輯建模方法。
    信號驅動是指由各種信號作為基本單元來進行控制邏輯建模。各個信號表示著不同的狀態(tài)變量,空氣管理系統控制器根據不同的輸入狀態(tài)變量的值來決定發(fā)出的指令信號。通過基本信號來表述邏輯能從最底層關系開始,逐步向上搭建整套控制邏輯。具體的建模過程包括構建信號庫、搭建邏輯樹以及驅動功能驗證邏輯3個步驟。
    1.1構建信號庫。
    構建信號庫是為了方便在構建邏輯時隨時調用而將一些基本的輸入信號信息收集并按照一定的編碼方式存儲起來。空氣管理系統邏輯運算中需要用到的信號屬性包括信號名稱、信號功能范圍、信號有效性、信號設備源。所以可將每條信號按照[id|name,range(min,max),valid,source]的方式進行整理,例如由控制器iasc1的a通道發(fā)出的座艙高度告警信號可表示為[00001|cab_alt_w,(0,1),true,iasc1a]。集合所有控制器接收的信號,從而形成空氣管理系統信號庫。
    1.2搭建邏輯樹。
    邏輯樹的根節(jié)點一般是各個基本信號組成的關系式,例如cab_alt_w=1,表示座艙告警為真。這些關系式通過基本的與/或邏輯算子連接,從而形成基本的邏輯樹,這些邏輯樹的輸出結果為ture或者false。在搭建邏輯樹的過程中,當一條邏輯鏈比較長時,可將一棵邏輯樹的輸出作為另外一棵邏輯樹的輸入而形成邏輯嵌套,建模論文這種方式能簡化邏輯樹的搭建過程。邏輯樹的表達可用邏輯方程來記錄。例如座艙高度告警邏輯可按以下兩種方式表達。
    將所有的邏輯按照邏輯樹的方式搭建起來,可形成一個邏輯庫,在后續(xù)定義功能時即可直接調用來構建功能。
    1.3驅動功能驗證邏輯。
    若干條邏輯合在一起,可以驅動復雜的功能。通過功能的仿真即可驗證各種邏輯的正確性。從功能層面進行驗證因為意義更明確更方便實施,且一條功能的驗證即可驗證多條邏輯,功能驗證的方式是選擇功能相關的所有信號,設定各信號的狀態(tài)值,作為組成功能的所有邏輯的輸入,計算得到功能輸出值,觀察是否與預期一致。
    2空氣管理系統cas與簡圖頁邏輯建模與驗證。
    cas與簡圖頁是供飛行員了解各系統狀態(tài)的重要頁面,由系統負責提供信號,指示系統按照指定的cas與簡圖頁邏輯進行顯示?;诒疚牡乃枷耄M行空氣管理系統cas與簡圖頁邏輯建模與功能驗證,開發(fā)了相應的軟件平臺。
    2.1空氣管理系統cas邏輯建模。
    定義cas主要需要定義cas等級、cas顯示內容以及cas顯示邏輯。cas等級按照嚴重程度可分為waring,caution,advisory,status四種,分別用紅色、黃色、青色、白色來表示。本文定義的cas邏輯是由系統發(fā)出cas相關信號后,由這些信號運算后顯示在cas頁面的邏輯,空氣管理系統cas消息主要顯示系統工作狀態(tài)以及在一些危險狀態(tài)如座艙高度過高、機翼防冰失效等情況下告警。
    cas定義模塊主要提供cas名稱、內容、等級的編輯頁面,cas邏輯的指定可直接調用邏輯庫中的邏輯。
    2.2空氣管理系統簡圖頁邏輯建模。
    空氣管理系統簡圖頁功能是通過簡要示意圖顯示系統主要設備與管路內空氣的狀態(tài),管路的空氣狀態(tài)信息需要根據上下游的設備狀態(tài)來判斷,這些判斷關系組成了簡圖頁的邏輯??諝夤芾硐到y簡圖頁的主要圖形元素是活門與管路流線,其邏輯定義可分為活門與流線顯示邏輯定義。簡圖頁定義模塊設計了自定義活門與管路繪制工具,通過活門與流線顯示邏輯定義指定顯示顏色的驅動邏輯,構成整體的簡圖頁顯示邏輯。
    2.3空氣管理系統cas與簡圖頁功能驗證。
    前面構建了空氣管理系統cas與簡圖頁的邏輯,通過指定各功能相關輸入信號的值,在邏輯運算后再直觀地顯示在頁面上,從而可以確認功能是否正確實現。在驗證時只需根據場景需要,設定各信號的模擬值,由系統后臺運算得到功能輸出信號值,并驅動頁面上的顯示元素顯示相應的狀態(tài)。
    通過上述幾個步驟,能對空氣管理系統cas與簡圖頁功能進行整體的驗證,有效提高了cas與簡圖頁功能的設計與確認效率,也能為后續(xù)系統排故提供支持。
    3結論。
    本文結合空氣管理系統控制架構特點,提出了信號驅動的邏輯建模方法。本文方法具有如下特點:
    1)構建了空氣管理系統基礎信號庫,能支持在邏輯層、功能層隨時調用相關的信號信息;。
    2)構建了空氣管理系統邏輯庫,支持上層功能的搭建與驗證;。
    3)開發(fā)了控制邏輯建模工具,能模擬各種場景下的功能驗證,提高了設計效率。
    【參考文獻】。
    [1]程立嘉,程曉忠,左彥聲.大型客機空氣管理系統現狀與發(fā)展趨勢[j].航空科學技術,20xx.3:7-8.
    [2]徐紅專,崔文君,張惠娟.電子電動式座艙壓力調節(jié)系統研究[j].江蘇航空,20xx,3:8-13.
    數學竟賽建模論文篇五
    摘要:高校課程改革要求培養(yǎng)具有適應性和創(chuàng)新性的高素質人才,培養(yǎng)大學生的創(chuàng)造能力和實踐能力已經引起了廣泛關注。數學建模是提高學生應用意識和數學素質的重要途徑之一。學校結合各學科特點及學生情況,開設數學建模課程,改變傳統的數學教學方式,在各科教學中穿插數學建模思想,通過課內、課外數學教學的有機結合,培養(yǎng)大學生的數學建模思想,能夠使學生應用數學知識解決實際問題的能力增強,有利于提高大學生的創(chuàng)新思維能力和綜合素質。
    關鍵詞:數學建模;科技創(chuàng)新;實踐能力。
    一、引言。
    加強大學生的創(chuàng)新精神和創(chuàng)新思維能力的培養(yǎng),已是世界各國教學改革的共同趨勢,也是我國實現“科教興國”戰(zhàn)略的基本要求。新的課程改革強調數學與實際生活的聯系,多年來的教育實踐證明,數學建模的教學在大學生的創(chuàng)新教學中的地位和意義已是舉足輕重。學??梢酝ㄟ^數學建模,培養(yǎng)學生搜集和處理信息的能力、獲取新知識的能力、分析解決問題的能力以及交流與合作的能力。數學教育本質上是一種素質教育,從開始受教育,就接觸數學學科,數學的重要性可見一斑,不僅僅是要掌握這門課的知識這么簡單,現實生活中的很多實際問題都能用數學語言來描述,把實際問題轉化為數學問題,再來描述、解決問題的過程就是建立數學模型、求解數學模型的過程。在數學教學中,就不能和現實完全脫離,這種和現實脫軌的傳統教學狀態(tài)使學生雖然掌握了技術,卻不能學以致用,填鴨式的教育并不能使學生真正成為現在社會需要的有用人才,數學建模就是將數學和外界聯系起來的一個通道。通過數學建模培養(yǎng)大學生對于新問題在短時間之內的解決問題的能力,有利于培養(yǎng)大學生的創(chuàng)新思想。
    二、制約大學生創(chuàng)新能力發(fā)展的問題。
    目前,數學教育主要還是關注在題目上,學習的目的大部分都是為了獲取高分。如果高校的教育從公式、定理展開,學生的作業(yè)、學習也依葫蘆畫瓢的積分微分,這種方式訓練出來的學生,往往知其然而不知其所以然,雖然按教材中規(guī)中矩、按部就班地授課,可以使學生在短時間內掌握知識,也能獲得暫時的效果,然而當學生走向社會時,這樣學習到的知識往往不能給他們帶來更多的幫助,這種情況顯然不是在數學教育中理想的狀態(tài)。書本上看起來或晦澀難懂或明了清楚的概念理論應該不僅僅帶給學生在校時的分數、獎學金,應該了解精髓,懂得他們背后的思想和生命力才是數學帶給我們遠比學習成績更重要的東西。
    無論是以后從事什么崗位,接受過的數學教育鍛煉過思維、邏輯,使學生在面對實際問題時更能明白事情的問題所在,更能有邏輯、更有方法的解決問題。這就是要培養(yǎng)學生的自主思考、發(fā)散創(chuàng)新的能力。傳統的教學過程既然很難做到,那么就要通過別的方法訓練大學生面對問題、解決問題的能力。在高校中推廣數學建模是一種能實施、易實施又有效的方法。
    三、高校大學生數學建模創(chuàng)新活動的建設內容。
    針對現狀問題,我們以培養(yǎng)大學生的創(chuàng)新能力及實踐能力為目的,通過建設高效的數學建模創(chuàng)新活動,激發(fā)大學生的創(chuàng)新活力和運用數學方法解決復雜實際問題的綜合能力,拓寬學生的知識面,培養(yǎng)學生的創(chuàng)新精神和團隊合作意識。
    1.從全校相關專業(yè)中選拔有實戰(zhàn)經驗的教師進行培訓根據不同專業(yè)的特色,從全校范圍內選拔優(yōu)秀的數學建模指導教師團隊;根據數學建模特點,對指導教師進行專業(yè)培訓和學術交流。比如,參加數學建模培訓班,與其他高校優(yōu)秀建模教師進行學術交流。邀請有實戰(zhàn)經驗的專家做數學建模的學術報告。根據指導教師特點進行分工,研究不同領域的數學建模問題,通過專兼結合達到知識結構的優(yōu)勢互補。
    2.將數學建模思想融入學生的認知當中現代認知心理學家布魯納說:“探索是數學教學的生命線?!眒oor教學法提出學習數學最好的方式是“在做數學中學習數學”。因此,在教學中調動學生積極參與數學建模過程中,探索建模方法。在選題時老師應引導學生,開發(fā)學生的開放性、探索性,開拓更廣闊的探索空間。講解建模環(huán)節(jié),教師要善于把建模材料組織成一個體系,為學生創(chuàng)造探索環(huán)境。數學建模環(huán)節(jié),教師應尊重學生的主體地位,激勵學生獨立思考,出錯環(huán)節(jié)協助其自主分析出錯原因,并從錯誤中尋出思維的合理之處。教師引導學生建模主要從兩個方面入手:一將實際問題轉化為數學問題的能力;二對轉化過來的問題,應用數學解決的能力。在教學過程中,教師可以將實際問題還原成所學數學知識,使學生可以借助自己的認知結構主動構建數學模型;從數學問題原型出發(fā),引導學生觀察、分析、概括得到數學概念、公式、定理、法則的教學方式符合知識的發(fā)生發(fā)展的過程,體現教學中解決問題的心理過程。
    3.在全校根據文理科專業(yè)開設數學建模通識課大一上學期,全校范圍內開設數學建模通識課,結合各學科的特點,分別開設文科班和理科班,不僅理科生可以受到數學建模思想的熏陶,文科生也可以根據自身的認知體驗到數學建模帶來的樂趣。邀請有經驗的數學建模指導教師進行講授,要結合學生感興趣的問題入手。
    比如,20xx年高教社杯全國大學生數學建模競賽題目b題“拍照賺錢”的任務定價,通過學生感興趣的“拍照賺錢”等實際問題讓學生切身體會到數學建模思想與生活息息相關,讓學生帶著問題學習。對一些同學難以理解的數學模型的講解時,教師可以將數學問題轉化為學生已有的認知當中,既通俗易懂,又能夠讓學生通過數學建模產生樂趣。比如,學生在學習難理解的貝葉斯模型時,先驗概率對后驗概率的影響,不知其意而死記硬背,教學中可以用原型引出貝葉斯模型:已知外界的環(huán)境變化影響最終決策者的判斷;高等數學中的矩陣,矩陣分解可通過數學建模應用于人臉圖像識別、矩陣的特征值及特征向量可以用于數據降維等。通過模型學習概念,強化數學來源于生活的思想教育,理論聯系實際的數學課堂教學模式讓學生看到問題的提出,有利于學生的創(chuàng)造性思維能力的培養(yǎng),以此激發(fā)學生對數學建模的學習興趣。學期結束時,要求學生根據教師提供的數學問題提交一份數學建模論文。
    4.成立數學建模興趣小組成立數學建模課外興趣小組群,通過qq、微信等社交平臺,充分發(fā)揮大學生的主觀能動性,形成良好的學習氛圍。學生通過數學建模學習如何在團隊中發(fā)揮自己的長處,如何合作完成共同的任務。在數學建模課外興趣小組中,學生互相討論時,不同的思維碰撞會產生不同的想法,能激勵大學生養(yǎng)成勤于動腦、善于思考的能力,能在一定程度上鍛煉學生的靈活性和思考問題的多面性。課外小組中,學校舉辦數學建模系列講座,可以邀請有經驗的專家教師給大家講解數學在實際中的不同應用,宣傳數學建?;舅枷?,使學生全面理解模型的適用范圍、典型特征、建模及求解過程。通過對模型深入的理解,學生了解數學建模全過程,進而舉一反三。此外,根據學生的不同特點,分配給學生不同的學習任務,既激起大學生對數學建模的興趣,又保證個性化的培養(yǎng)教育,學生們在小組中能體會到團隊協作的重要性。學??梢蚤_展數學文化節(jié),依托豐富多彩的數學課外閱讀活動,使學生感受數學文化,學會用數學的眼光看待世界,用數學的頭腦解決身邊的問題,以此提升學生的數學素養(yǎng),重點培養(yǎng)學生的發(fā)散思維,以及以新穎獨特的方式解決問題的思維方式。
    5.參賽人員層級選拔及實訓。
    (1)校內選拔。全校選拔人員采取自愿報名的方式。自愿參加的成員能積極、主動地學習,積極地思考問題,將他們的能力最大限度地發(fā)揮出來。指導教師給定幾個經典題目,按照全國大學生數學建模競賽的所有規(guī)則進行模擬競賽,通過賽前鼓勵調動學生的創(chuàng)造性思維能力,讓學生積極參與。賽中指導教師根據每一位參賽隊員的特點進行有針對性的指導,發(fā)揚每個學生的優(yōu)點,提高每一位參賽隊員的學業(yè)素質及水平。賽后根據每位學生在活動中的表現,評出各個學生的等級獎(一、二、三等獎及優(yōu)秀獎)。根據成績及學生在比賽中的表現,選拔出前20組優(yōu)秀學生團隊。
    (2)優(yōu)秀學生培訓。學校有針對地對在校內選拔的優(yōu)秀創(chuàng)新人才進行集中培訓和實訓,從實際出發(fā),以學校培養(yǎng)創(chuàng)新性人才的目標為指導思想。在數學建模過程中,邀請往屆參賽得獎的學生進行交流,介紹經驗。教師帶領學生觀摩其他學校的數學建模培養(yǎng)方式,促進大學生中優(yōu)秀人才的脫穎而出、健康快速成長,加強各高校之間以及高校與企業(yè)之間的研究,讓大學生從中獲得知識,并讓學生有競爭意識。學院設立數學建模暑期培訓,主要涉及有建模所需數學知識講解、建模案例分析、建模案例練習、全國大學生優(yōu)秀作品分析、最終的建??荚嚈z測。
    (3)基于理論方法和具體實戰(zhàn)的培訓。理論課方面,主要介紹數學建?;舅枷?、常用建模方法,以及較為經典的建模案例。在教學方法上,教師可以采用啟發(fā)式教學,引領學生參與建模的全過程,使學生領悟數學建模的精髓,激發(fā)對數學建模的興趣。實驗課方面,為提高學生分析解決問題、設計實現算法的能力,介紹主要軟件(matlab、spss、r和python)及其軟件包,教學生直接利用軟件編程求解一些簡單的數學模型。實驗課中,教師給出建模案例,讓學生練習,包括(分析問題、提出假設、建立模型、算法設計、實驗操作、結果檢驗、撰寫論文),最后帶領學生參加全國大學生數學建模競賽。英語基礎比較好的學生可以參加美國大學生數學建模競賽。
    四、結束語。
    創(chuàng)新人才的培養(yǎng)是時代發(fā)展的需要,是時代對教育提出的新要求。數學建模競賽對大學生的實踐創(chuàng)新能力十分有效,因此學校改變傳統數學方式的局限性,要結合最新的科學前沿問題,通過課堂數學教學、課外活動將數學建模融入學生的認知當中,通過數學建模思想的培養(yǎng),提高當代大學生的創(chuàng)造性思維能力,培養(yǎng)學生搜集和處理信息的能力、獲取新知識的能力、分析解決問題的能力以及交流與合作的能力。
    參考文獻:
    [1]楊艷琦.基于數學建模培訓大學生創(chuàng)新能力[j].產業(yè)與科技論壇,20xx。
    [4]姜啟源,謝金星.數學模型(第三版)[m].北京:高等教育出版社,20xx。
    數學竟賽建模論文篇六
    摘要:以文獻綜述法為主要策略,查閱知網和萬方數據庫中有關高職數學建模教學的相關文獻,對高職數學建模教學現狀,存在問題以及優(yōu)化發(fā)展對策的文獻研究成果進行梳理,通過研究綜述發(fā)現:以建模思維構建課堂情境已成為國內眾多高職院校數學課程教學的重要方法,對數學教學效果的提升也起到了積極的作用,但在教學方法創(chuàng)新和學生有效引導等方面仍存在一些問題,希望各級高職院校能夠針對凸顯出的問題進行有效整改。
    關鍵詞:高職數學;建模教學;現狀與發(fā)展;綜述分析。
    (一)數學模型。
    數學模型是一種使用數學語言對現實問題的抽象化表達形式。它是人們用數學方法解決現實問題的工具,基于數學模型的現實問題表達往往有著量化的表現形式,再通過數學方法的推演和求解,將現實問題中蘊含的數學含義表達出來。在數學、經濟、物理等研究領域,有很多經典的數學模型,例如:,馬爾薩斯人口增長理論模型、馬爾維次投資組合選擇模型等,這些數學模型的構建幫助人們解決了很多現實的問題,提升了相關領域量化分析的精確度。
    數學建模教學是一種基于數學模型的教學方法,在高職院校數學教學中被普遍應用,具體來說數學建模教學的一般步驟為:
    (1)模型理論依據分析。在教學中倘若需要以某一個知識點為基礎建設數學模型時,教師應該以前人的研究成果為依據,找尋模型建設的理論支撐點,切忌假大空似的模型構建思路。
    (2)以教學內容為基礎假設模型。根據教學內容的需要,對待研究問題進行模型化假設,提出因變量、自變量等模型語言。
    (3)建立模型。在假設的基礎上建立模型。
    (4)解析模型。將待求解的數學數據代入模型進行解析計算。
    (5)模型應用效果檢驗。將模型解析的結果與實際情況進行比較,以檢驗模型解析的準確性和實效性。
    二、高職數學建模教學現狀與問題研究綜述。
    (一)教學現狀綜述。
    施寧清等人(20xx)采用試驗法研究了建模教學在高職數學課程教學中的效果,試驗的過程以對照班和實驗班對比教學的形式展開,針對試驗班的教學采用數學建模的方法,而對照班的教學則采用傳統的講授法展開,通過一段時間的教學實踐后設置評估變量對兩個班級學生的數學學習效果進行了總結,結果顯示:試驗班學生的數學考試成績、建模應用能力等均優(yōu)于對照班,說明建模法對高職數學教學質量的提升效益明顯。危子青等人(20xx)項目教學法與建模思想融合的高職數學教學形式,指出:該種教學的特色在于將高職數學課程的教學內容劃分為若干個子項目,對每一個項目都進行模型化構建,并以模型為素材設計和組織項目化教學,通過教學應用后發(fā)現學生不僅掌握了項目教學的學習精髓,也掌握了數學模型的構建解析技能,教學效益獲得了雙豐收。馮寧(20xx)肯定了建模思想對高職數學教學帶來的效益,指出:通過引入建模教學,能夠最大化鍛煉學生的發(fā)散性思維,以及數學邏輯應用能力,對教學效果的促進效益明顯。
    (二)存在問題綜述。
    盡管建模法對高職數學教學帶來的效益十分明顯,但在多年的教學實踐中一些問題也不斷凸顯出來有待進一步整改,為此國內一些學者也將研究的視角放在建模法在高職數學教學中存在問題的研究上,例如:孟玲(20xx)從教學方法的教學分析了高職數學建模教學中的問題,指出:很多高職生對數學學習的興趣不足,加之傳統的數學模型又十分抽象,學生理解起來比較困難,一些高職數學教師采用傳統的建模教學思路組織教學并不利于學生學習興趣的激發(fā),而抽象的數學模型與陳舊的教學方法結合反而降低的教學的效果。曹曉軍(20xx)則認為:很多數學教師并不注重引導學生科學地理解數學模型,并在此基礎上有效地接受學習內容,而是一味地采用灌輸法設計教學過程,不利于數學模型在課程教學中的應用效益提升。
    三、高職數學建模教學發(fā)展對策綜述。
    針對建模法在高職數學教學中凸顯出的問題,一些學者也提出了對策。例如,齊松茹(20xx)認為應創(chuàng)新建模教學的形式和方法,如引入游戲教學法,將深奧的數學模型趣味化,通過組織多元化的教學游戲激發(fā)起學生參與建模學習的興趣。谷志元(20xx)則認為教師應該加大對學生的引導,通過課前、中、后期的有效引導,幫助學生有效地建立起對數學模型的認知,逐步教會學生利用模型解決實際問題,達到學以致用的教學效果,以提升數學模型在課程教學中的價值。周瑋(20xx)則提出了結合網絡課堂建立研討式課堂的建模教學新思路,不失為一種高職數學建模教學的創(chuàng)新教法。
    四、結語。
    通過對已有文獻的查閱和梳理發(fā)現,高職數學課程教學中引入建模方法對于課程教學實效性提升的效果已經得到了國內眾多學者的肯定,但在應用中也存在一些問題,比如:教學方法的創(chuàng)新度不夠,學生引導的活動不多等,為此國內一些學者也提出了針對性的教學優(yōu)化思路。本文的研究認為:建模法對于高職數學教學效益的提升有著積極的價值,在今后的教學實踐中各級高職院校教師應該結合教學的實際情況開展科學的建模教學活動,以不斷提升高職數學建模教學的實效性。
    參考文獻:
    數學竟賽建模論文篇七
    摘要:數學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當地引導下才能更好地突出學生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數學建模課堂。
    一、新課的引入需要發(fā)揮教師的作用。
    教師在數學建模課堂上的引導作用首先體現在教師對新課的引入上。教師一段精彩的導入會點燃學生學習的熱情、激發(fā)學生的學習興趣、喚起學生的好奇心,能把學生的注意力迅速集中到要學的知識上來。這對提高教學質量、提高學生的學習效果起著不可估量的作用。同時,新課前的導入環(huán)節(jié)是對學生進行情感教育的最佳時刻。學生只有在教師的引導下才能夠體會到數學建模的價值、增強學好數學建模的信心。俗話說:“好的開始是成功的一半?!睌祵W建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
    二、在教學任務的設計上需要發(fā)揮教師的作用。
    數學建模課堂一般應采用任務型教學模式,是讓學生通過自主探究、合作學習、交流展示的方式完成一系列學習任務來達到特定的教學目標和學習目標。學生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設計質量的高低。教師應通過設計一系列高質量的問題把復雜的數學建模問題分解成若干簡單問題來引導學生更好地發(fā)揮其主動性。學生也只有在這些問題的正確引導下才能突破難點并向著學習目標努力,有效防止學生思考、探究、交流的內容偏離學習目標等現象的出現。這些任務的制訂需要充分發(fā)揮教師的作用。
    三、在新舊知識的聯系點上需要發(fā)揮教師的作用。
    建構主義強調新知識是在學生已有知識的基礎上通過學生自身有意義的建構獲得的。筆者認為,學生自主建構知識應在教師的科學引導下進行。尤其是對于數學建模這樣高難度的知識更是這樣。失去了教師的科學引導,學生易產生疲倦感,久而久之會喪失學習數學建模的興趣和信心。因此,在新舊知識聯系點上應發(fā)揮教師的作用。教師應在準確掌握教學目標、難點的基礎上,充分考慮學生的認知能力、習慣、思維方式,通過有針對性的具體問題喚起學生對舊知識的回憶,再通過啟發(fā)性問題引導學生去發(fā)現新知識,從而實現溫故知新的目的。在教師引領下學生自主建構知識可以使學生少走彎路,從而使學生更加高效地自主探究、掌握新知識。
    四、在教學重點、難點上需要教師的引導。
    教學的重點、難點是每一節(jié)課的核心和主線,只有準確把握了重點、突破了難點才能更好地掌握本節(jié)課的內容。在強調學生自主探究、小組合作學習的課堂教學模式中,數學建模教材的重點、難點學生往往把握不準、難以突破。這就需要教師科學引導學生主動去發(fā)現重點、突破難點。教師引導學生發(fā)現重點、突破難點并不是讓教師直接告訴學生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導讓學生自己找到重點、并通過學生自己的思考、討論解決疑難問題。學生在教師的引導下通過自己的努力、討論解決了疑難后,學生會非常興奮,從而會越來越喜歡數學建模課。相反,在沒有教師引導的數學建模課堂中,學生經常被困難嚇倒,從而對數學建模課產生畏懼感。由此可見,教師對學生的科學引導是學生學好數學建模必不可少的環(huán)節(jié)。在以學生為本、注重學生全面發(fā)展、提倡課堂中突出學生主體地位的背景下,教師的引導仍是數學建模課堂中不可缺失的要素。數學建模課堂中學生的自主探究、合作學習與教師的科學引導并不矛盾而是相輔相成的。只有在教師科學、適時、適當地引導下才能更好地突出學生的主體地位,從而打造出自主探究、合作學習、愉悅發(fā)展的高效數學建模課堂。
    數學竟賽建模論文篇八
    摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從小學數學教學過程中數學建模入手,對如何將數學建模運用到學生解題過程中進行了分析。
    數學建模是指利用數學模型的形式去解決實際中遇到的問題,換句話說,就是利用數學思維、數學方法解決各種數學問題。數學建模是在新課程改革后出現的新概念,經過一段時間的觀察我們可以發(fā)現,數學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數學能力。這種方式能夠將復雜的數學問題利用簡單的方式找到解決方案,是提高小學數學課堂效率及課堂質量的有效手段。小學數學是小學學習中的重要課程之一,也是培養(yǎng)學生數學思維的重要階段??梢哉f,小學數學的學習是學生學習數學的關鍵,對今后的學習起到極大的影響。因此,對于小學數學教師來說,不斷的完善教學手段,提高數學課堂質量是教學工作中的重中之重。而數學建模就是為了解決數學在生活中的實際問題,能夠讓學生感受到數學本身的魅力,培養(yǎng)他們的數學思維,提高數學學習能力,從而讓小學數學教學質量也得到大幅度的提升。小學數學與數學建模之間有著密不可分的作用,兩者相互聯系、相互促進,如何有效的將數學建模運用在小學數學教學過程中,是每個小學數學教師都值得思考的問題。
    數學建模是為了解決數學中遇到的問題,數學本身特別是小學數學也是一門較貼近學生生活的學科。因此在數學學習中,教師要首先培養(yǎng)學生的數學學習意識,讓他們感受到數學與生活的緊密聯系,然后再引導學生用數學建模去解決遇到的問題。在這一過程中,數學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數學建模的方式,以達到培養(yǎng)他們的數學思維以及想象能力的目的。(二)在學生進行數學建模的過程中要利用多鼓勵的方式調動他們對數學學習的積極性,讓他們在數學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數學建模方法的熱情。
    二、提高學生想象力,用數學建模簡化問題。
    對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數學學習中,如果能將想象力與數學學習結合在一起,一定會得到意想不到的效果。教師可以根據小學生這一特點,提高他們的想象力,然后再引導他們利用數學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的'數學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
    三、選擇合適的題目作為建模案例。
    在數學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數學建模的能力。
    四、引導學生主動進行數學建模。
    在教師經過反復的教學后,學生都已經擁有了基本的數學建模知識,了解了數學建模過程,并且能夠在解題過程中簡單的使用數學建模。此時,教師在教學中就可以引導學生利用數學建模解決數學題目了。引導學生用數學建模方法解決數學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數學建模方法的探討,并在探討的過程中吸取他人的經驗,提高自己數學建模水平,同時這樣的方式能夠讓數學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數學建模的方法能夠有效的改變過去的傳統教學思路,增加學生對數學的學習興趣,提高數學解題能力。這種教學方法對于小學數學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數學課堂的教學效率和教學質量。
    數學竟賽建模論文篇九
    概率論與數理統計是一門研究隨機現象及其統計規(guī)律的數學學科,它是高等院校各專業(yè)開設的重要的基礎數學課程之一。以下是“概率統計中融入數學建模思想的教學探索論文”,希望能夠幫助的到您!
    如何運用該課程的理論知識解決實際問題具有非常重要的研究意義。每年一次的全國大學生數學建模競賽是目前各高校的規(guī)模較大的課外科技活動之一。數學建模是一門運用數學工具和計算機技術,通過建立數學模型來解決現實中各種實際問題的新學科。它通過調查,收集數據、資料,觀察和研究其固有的內在規(guī)律,提出假設,經過抽象簡化,建立反映實際問題的數學模型,即將現實問題轉化為數學問題。縱觀歷年數學建模競賽試題,像高等教育的學費問題、北京奧運會人流分布、dna序列分類問題、dvd在線租賃問題及醫(yī)院病床的合理安排等問題都不同程度地涉及到了概率論與數理統計的相關知識。筆者多年來一直為理工科的本科生講授概率論與數理統計課程,并每年輔導和指導全國大學生數學建模競賽,所以與同事們一直都在探索如何深化概率論與數理統計這門課程的教學改革,使其與數學建模思想能有機結合。本文將從以下幾方面進行探討研究。
    一、概率統計教學中融入數學建模思想的重要性。
    傳統的概率論與數理統計課程的教學,可以簡單地歸納為:數學知識+例子說明+解題+考試。這種模式雖然使學生在一定程度上掌握了基礎知識,提高了計算能力,也學會了運用所學知識解決課后作業(yè)和應付考試。但也不難看出,這種教學方式與實際嚴重脫節(jié),學生學會了書本知識,但卻不知在所學專業(yè)中該如何運用,這不僅與素質教育的宗旨相違背,也極大地削弱了學生學習這門課程的能動性,從而也影響了教學效果。數學建模的指導思想恰恰在于培養(yǎng)學生運用所學理論知識來解決現實實際問題。這不僅僅是這門課程對學生的教育問題,更是順應當前素質教育和教學改革的需要問題。
    二、在課堂教學中融入數學建模思想。
    對于講授概率論與數理統計這門課程的教師來說,有著非常重要的任務,那就是如何教好這門課程,即如何使學生通過對這門課程的學習而增強其對概率統計方法的理解與實際應用能力。
    1.教學內容上數學建模思想的滲透。眾所周知,教師對教學內容的把握起著不容忽視的作用。有效的教學是依賴于教師對該課程的內容有著全面的和深刻的理解。概率統計中的一些概念、性質、模型的應用確實有些難度,在日常教學中可以通過精選例題、切近現實生活,使學生逐漸深化對相關知識的理解,即講課的內容生活化、趣味化,生活中的概率統計問題模型化。在概率統計里這些趣味性的例子比比皆是!比如摸球、投擲骰子等常見的游戲,“父母的身高對子女的影響”、“男女生人數的均衡對一個班級學習效果的影響”等發(fā)生在身邊的事。在概率統計這門課程中數學模型的影子也隨處可見!比如像降雨概率、人體舒適度指數、超市銀臺處的等待服務時間等這樣的隨機現象問題都需要將實際問題數量化,然后對研究對象做出判斷,從而解決問題。教學內容中也可插入一些反映社會經濟生活的背景與熱點問題,使課堂教育跟上時代步伐。如有獎促銷問題、保險賠償金確定問題、交通事故問題等,這樣的內容都旨在培養(yǎng)學生利用數學工具分析解決實際問題的意識和能力,也就是培養(yǎng)學生的建模能力。
    2.教學方法中融入數學建模思想。在教學中,教師的責任更大地體現在對學生的引導能力,通過引導使學生運用自己的能力來解決相關的問題。這樣使學生不但能夠學到嚴謹的理論知識,同時也提高了學生分析問題和解決問題的能力。在教學中,我們主要采用精講與導學相結合的方法,同時在課堂教學的各個環(huán)節(jié)中也可恰當運用討論式、啟發(fā)式、歸納類比式等教學方法。在運用各種教學方法中都要充分關注學生的參與性,在與學生的互動中挖掘出課本內容中的數學建模思想,使其“顯化”出來。比如在講解隨機事件和古典概型中,可以講解摸球問題、生日巧合及配對問題、確診率及血清化驗問題等,這樣既活躍了課堂氛圍,又培養(yǎng)了學生愛思考的習慣。必須提及的是“案例教學法”,它是概率統計課程融入數學建模思想的有效而常用的教學方法之一。在教學中可以直接給出案例,然后從求解具體問題中找出相應的理論和方法。此方法縮短了數學理論與實際應用的距離,不僅可以提高學生學習的積極性,同時也使學生明白概率統計是建立在現實生活基礎上的一門課程。比如在隨機變量的數字特征中,可以給出“報童的收益問題”案例;在參數估計中,可以給出“湖中魚的數量估計”案例;在大數定律和中心極限定理中,可以給出“保險公司的收益問題”案例;等等。由于受到課時限制,可能不能充分有效地對案例進行完整講解,通常將“案例分析法”和“現代教育技術法”相結合進行教學,利用多媒體教學手段可以將案例中出現的大量統計計算均由統計軟件(如spss,sas,r等)來實現。這樣既易于被學生接受,也有助于學生掌握統計方法和實際操作能力。
    三、發(fā)揮課后作業(yè)作為課堂教學的補充與延伸作用。
    作為數學課程,課后作業(yè)是十分重要的組成部分,是進一步理解、消化和鞏固課堂教學內容的重要環(huán)節(jié)。
    1.課后試驗。在概率統計這門課程中有很多隨機試驗,并且很多統計規(guī)律也都是在隨機試驗中獲得的。比如通過投擲均勻的硬幣和均勻的六面體骰子,可以很好地理解頻率與概率之間的關系;雙色球的有(無)放回抽樣,有助于理解隨機事件的相互獨立性;統計某書上的錯別字,并判斷是否服從泊松分布等。通過讓學生們親自做實驗,不僅使他們能夠探索隨機現象的統計規(guī)律性,還能幫助他們更深刻的理解、鞏固和深化理論。
    2.課后作業(yè)。除常規(guī)概率統計練習題目外,可以增加一些有趣的、與日常生活中密切相關的概率統計題目。比如在給出了摸彩票規(guī)則和中獎規(guī)則后,解決下面三個問題:
    (1)中獎概率與摸彩票的次序有關系嗎?
    (2)假設發(fā)行了100萬張彩票,中一、二等獎的概率是多少?
    (3)若你打算摸彩票,在什么條件下中獎概率會大一些?
    3.課外實踐。針對概率統計實用性強的特點,有目的地組織學生參加社會實踐活動,深入實際,調查研究,收集數學建模的素材。只有將某種思想方法應用到實踐中去,實際解決幾個問題,才能達到理解、深化、鞏固和提高的效果。教師可以從現實中尋找素材,選擇具有豐富現實背景的學習材料,可以讓學生自由組隊,深入實際,運用統計方法調查、觀察和收集一些數據,在教師指導下運用所學知識和計算機技術,分析解決一些實際問題,寫出書面報告。比如利用閑暇時間觀察校門口某路公交車各時段乘車人數,根據觀察數據,為該線路設計一個便于操作的公交車調度方案:包括發(fā)車時刻表;共需多少輛車;以怎樣的程度能夠照顧乘客和公交公司雙方的利益。
    四、改變傳統單一的考核方式。
    考核是教學過程中不可缺少的一個教學環(huán)節(jié),是檢驗學生學習情況,評估教師教學質量的手段。傳統的概率論與數理統計課程均采用期末閉卷考試,教師通常都會按照固定的內容和格式出題,學生為了應付考試,往往把過多的精力花費在對公式和概念的死記硬背上,而忽略了所學知識在實際中的應用。雖然綜合成績是由平時成績和期末成績的各占比例計算而成,但平時成績的考核主要看課后習題所做的作業(yè),而學生的學習積極性對作業(yè)的態(tài)度差異性是很大的。為此,有必要改革傳統單一的考核方式,培養(yǎng)學生綜合運用知識的能力。考核結果包括兩部分:一部分是閉卷考試,占60%,主要考察學生對概率統計的基本知識、基本運算和基本理論的掌握程度;另一部分是開放性考核,由各占20%的平時成績和課后試驗、課外實踐構成,其中平時成績主要考查學生的作業(yè)情況、考勤情況、課堂表現情況等方面;課后試驗、課外實踐主要考核學生對概率統計知識的應用能力,可以給學生一些實際問題,或者讓學生參加社會實踐調查收集數據,學生可以自由組隊也可單獨完成,通過運用概率統計知識建立數學模型并借助計算機處理大量數據對實際問題得到解決,最后提交一份書面研究報告。如此靈活多變的考核機制,才能充分調動學生學習的積極性和主動性,才有利于學生應用能力的培養(yǎng)。
    通過在各個環(huán)節(jié)中融入數學建模思想,不但充分體現了概率統計的實用價值,搭建起概率統計知識與實際應用的橋梁,而且也使得工科類學生對概率統計這門課程的理解、認識增強了,數學的應用能力也得到了提高。
    數學竟賽建模論文篇十
    數學核心素養(yǎng)是數學課程的基本理念和總體目標的體現,可以有效地指導數學教學實踐?!镀胀ǜ咧袛祵W課程標準(實驗)》修訂稿提出了數學學科的六種核心素養(yǎng),即數學抽象、直觀想象、數學建模、邏輯推理、數學運算和數據分析。其中,數學建模是六大數學核心素養(yǎng)之一。提升數學核心素養(yǎng),要求數學教師在課堂教學中強化學生的建模意識。教師在教學中通過設置數學建?;顒?,培養(yǎng)學生的建模能力。
    數學建模是將實際問題中的因素進行簡化,抽象變成數學中的參數和變量,運用數學理論進行求解和驗證,并確定最終是否能夠用于解決問題的多次循環(huán)。數學建模能力包括轉化能力、數學知識應用能力、創(chuàng)造力和溝通與合作能力。
    1.精心設計導學案,引導學生通過自主探究進行建模。
    在新授課前,教師設計前置性學習導學案,為學生掃除知識性和方向性的障礙。通過導學案,引導學生去探究問題的關鍵,對模型的構建先有一個初步的自主學習過程。通過自主學習探究,讓學生充分暴露問題,提高模型教學的針對性。在前置性學習導學案設計的問題的啟發(fā)與引導下,學生會逐步學習、研究和應用數學模型,形成解決問題的新方法,強化建模意識和參與實踐的意識。例如,教師在引導學生構建關于測量類模型時,設計的導學案應提醒學生對測量物體進行抽象化理解,并掌握基本常識。教師應鼓勵學生采用多種不同的測量方式,分析并優(yōu)化所得數據。通過引導學生自主探究,讓學生探索并歸納不同條件下的模型建立的方法,培養(yǎng)學生的建模維能力。
    2.在教學環(huán)節(jié)中融入數學模型教學。
    教師在教學的各個環(huán)節(jié)都可以融入數學模型教學。例如,教師在新課教學時,應注意滲透數學建模思想,讓學生將新授課中的數學知識點與實際生活相聯系,將實際生活中與數學相關的案例引入課堂教學,引導學生將案例內化為數學應用模型,以此激發(fā)學生對數學學習的興趣。在不同教學環(huán)節(jié),教師通過聯系現實生活中熟悉的事例,將教材上的內容生動地展示給學生,從而強化學生運用數學模型解決實際問題的能力。
    教師通過描述數學問題產生的背景,以問題背景為導向,開展新授課的學習。教師在復習課教學環(huán)節(jié),注重提煉和總結解題模型,培養(yǎng)學生的轉換能力,讓學生多方位認識和運用數學模型。相對而言,高中階段的數學問題更加注重知識的綜合考查,對思維的靈活性要求較高。高中階段考查的數學知識、解題方法以及數學思想基本不變,設置的題目形式相對穩(wěn)定。因此,教師應適當引導,合理啟發(fā),對答題思路進行分析,逐步系統地構建重點題型的解題模型。
    3.結合教學實驗,開展數學建模活動。
    教師在開展數學建模活動時,應結合教學實驗。開展活動課和實踐課,可以促使學生進行合作學習。教師要適時進行數學實驗教學,可以每周布置一個教學實驗課例,讓學生主動地從數學建模的角度解決問題。在教學實驗中,以小組合作的形式,讓學生寫出實驗報告。教師讓學生在課堂上進行小組交流,并對各組的交流進行總結。教學實驗可以促使學生在探索中增強數學建模意識,提升數學核心素養(yǎng)。
    4.在數學建模教學中,注重相關學科的聯系。
    教師在數學建模教學中,應注重選用數學與化學、物理、生物等科目相結合的跨學科問題進行教學。教師可以從這些科目中選擇相關的應用題,引導學生通過數學建模,應用數學工具,解決其他學科的難題。例如,有些學生以為學好生物是與數學沒有關系的,因為高中生物學科是以描述性的語言為主的。這些學生缺乏理科思維,尚未樹立理科意識。例如,學生可以用數學上的概率的相加和相乘原理來解決生物上的一些遺傳病概率的計算問題,也可以用數學上的排列與組合分析生物上的減數分裂過程和配子的基因組成問題。又如,在學習正弦函數時,教師可以引導學生運用模型函數,寫出在物理學科中學到的交流圖像的數學表達式。這就需要教師在課堂教學中引導學生進行數學建模。因此,教師在數學建模教學中,應注意與其他學科的聯系。通過數學建模,幫助學生理解其他學科知識,強化學生的學習能力。注重數學與其他學科的聯系,是培養(yǎng)學生建模意識的重要途徑。
    總之,教師在數學教學過程中,應以學生為本,精心設計導學案,鼓勵學生自主探究和應用數學模型。通過建模教學,讓學生形成數學問題和實際問題相互轉化的數學應用意識和建模意識。教師通過強化數學建模意識,讓學生掌握數學模型應用的方法,可以使學生奠定堅實的數學基礎,提升數學核心素養(yǎng)。
    參考文獻:
    [1]鄭蘭,肖文平.基于問題驅動的數學建模教學理念的探索與時間[j].武漢船舶職業(yè)技術學院學報,20xx(4).
    [2]王國君.高中數學建模教學[j].教育科學(引文版),20xx(8).
    [3]李明振,齊建華.中學數學教師數學建模能力的培養(yǎng)[j].河南教育學院學報(自然科學版),20xx(2).
    數學竟賽建模論文篇十一
    大學數學包含微積分、線性代數、概率論與數理統計三門基礎課程,這是高校經管類專業(yè)必修課程;更高級的數學課程還有運籌學、最優(yōu)化理論,這些在中高級西方經濟學中會經常用到?,F實經濟中存在很多問題都與數學緊密相關,都需要嚴謹的數學方法去解決,因此數學的學習是非常重要的。數學的學習,一方面能夠培養(yǎng)學生的邏輯思維能力和空間想象能力,另一方面,數學的系統學習為經管專業(yè)后續(xù)課程(如西方經濟學、計量經濟學)提供了數學分析工具和計算方法。除了需要掌握數學分析和計算能力,經管專業(yè)應該更加注重培養(yǎng)學生的經濟直覺和數學建模能力,讓學生形象地理解數學定義和經濟現象。雖然現在高校中經管類專業(yè)的數學教育過程融合了一些本專業(yè)的知識,但仍存在很多問題。筆者根據自己以及同行的教學經驗,提出相應的改革措施以更好挖掘數學方法在經管中的有效作用。
    一、經管類專業(yè)大學數學的特點。
    每個專業(yè)都有其獨特的學習內容和方法。經管專業(yè)作為我國培養(yǎng)經濟工作人員的特殊專業(yè)而成為國家重視、社會關注的專業(yè)。大學數學是社會科學和自然科學的基礎,因此其在經濟學理論中有著舉足輕重的地位,數學可以為經濟學中的很多問題提供思想和方法的支持。經管類專業(yè)數學的學習有如下特點。
    1.經管專業(yè)的數學和經濟學問題緊密相關。
    經管專業(yè)要學習和解決經濟相關內容,因此,經濟類的數學教育要圍繞著經濟問題展開討論,例如簡單的經濟問題有價格函數、需求函數、供給函數以及邊際成本的分析,復雜一些的還有競爭性市場分析、壟斷競爭和寡頭壟斷、博弈論和競爭策略、生產和交換的帕累托最優(yōu)條件、信息不對稱的市場,這些都需要用微積分的知識理解。把數學知識融入經濟學,能夠給解決經濟學問題提供有效的技術支持。例如通過畫出各種函數的圖像,可以讓學生更直觀地了解價格、需求、供給的關系,可以更形象地看出它們之間的依賴關系。微積分中導數的學習應用到經濟中為經濟利益最大化提供了分析方法,例如需求理論可以轉化成一個約束最優(yōu)化問題,用拉格朗日乘數法進行求導計算,從而求出目標函數的最優(yōu)值。另外,消費者剩余可以轉化成定積分進行計算,人口阻滯增長模型可以用微分方程解釋。
    2.經管專業(yè)的數學學習注重經濟直覺培養(yǎng)。
    數學的學習可以訓練和培養(yǎng)學生的邏輯思維能力,一般自然科學專業(yè)的數學學習注重于各種問題的來源以及證明。然而經管專業(yè)的數學主要為學生培養(yǎng)經濟直覺并引導其進行有效計算,因此需要著重培養(yǎng)經管專業(yè)學生的數學計算能力。例如,在講最值問題時可以讓學生計算利潤最大化的例子,利用微積分的知識計算出最大利潤,這樣既培養(yǎng)了學生的數學計算能力,又讓學生理解了經濟學概念。
    二、經管類專業(yè)學習數學的過程中出現的問題。
    近年來,大學數學教育改革取得了一定效果,但是還存在很多問題。例如,有些學校不重視大學數學課程的學習,只注重專業(yè)課的學習。實際上數學學習的效果直接影響后續(xù)專業(yè)課的學習。還有部分院校教師教授經管課程時還停留在純粹的數學理論上,雖然有的高校在高等數學教育中很大程度上融入了經濟中的各類問題,但是由于高校教師都是數學專業(yè)出身,對經濟類專業(yè)中的數學問題不甚了解,因此不能很好地解釋相應的經濟現象。另外,經管類招生一般同時招收了文科和理科生,從而學生的數學基礎大相徑庭,使得大學數學的教學存在一定困難。還有大學的學習任務重而老師授課時間有限,對于基礎較差的學生,教師又不能非常詳細地復習學生高中學過的知識,因而造成基礎好的學生學起來輕松自如,學習效果較好,而基礎差的學生學起來吃力,學習的效果也不盡如人意。
    三、改革措施。
    培養(yǎng)學生經濟直覺和數學建模能力。
    1.優(yōu)化教學內容,根據專業(yè)特點選取相關實例來理解數學定義。
    由于大學課程任務重,使得大學數學的學習課時相對變少,這就要求教師上課時要優(yōu)化教學內容,適當刪減純數學理論的學習,在不影響后續(xù)課程的條件下,可以刪除一些難度較大的純理論性的內容,擴充一些和經管專業(yè)知識相關的內容。教師在上課時,要根據學生所學專業(yè)的特點,選取相關概念、相關實例,讓學生更直觀、更形象地學習數學知識,從而培養(yǎng)學生的經濟直覺。例如,在學習微積分中導數的相關概念時,可選取有關成本函數、收入函數和利潤函數的例題來求邊際成本、邊際收入和邊際利潤,從而讓學生了解導數在本專業(yè)中的應用。在講線性代數的矩陣概念時,可以給學生講解經濟學中投入產出模型。在講股票投資的時候可以和概率論聯系在一起,通過概率論的理論解釋可以說明股票投資是具有隨機性的,在股票市場沒有絕對的贏家。在講拉格朗日方法的時候可以引入影子價格的概念,從而理解影子價格的經濟現象解釋。只有讓數學和學生所學專業(yè)掛鉤,才能讓學生輕松地學習數學定義,并了解一些經濟學專業(yè)名詞,達到讓數學更好的為專業(yè)知識服務的目的。
    2.教學過程中要注重學生數學建模思想的培養(yǎng)。
    經管類專業(yè)學生學習數學課程,一方面是為了解決專業(yè)內容中的問題,另一方面是還需要培養(yǎng)學生的邏輯思維能力和分析問題、解決問題的能力。因此,在講授經濟中的數學問題時,還要教會學生根據經濟問題建立相應的數學模型。建模就是把經濟學中一些現象或者問題用數學語言表述出來,然后進行模型求解,從而解釋經濟現象或者解決相應的經濟問題。通過建立數學模型把經管專業(yè)中的經濟學問題轉化成數學問題,然后通過求解數學模型得出相應答案,從而解決該經濟問題。因此,建立數學模型非常重要。例如求解最大利潤問題、最小成本問題可以引導學生通過建立利潤和成本函數,從而轉化成一個最優(yōu)化問題,并且在求解該問題時,需要用到導數(偏導數)的知識,這樣既加深了學生對數學知識的理解,又體會到數學知識在經濟學中的重要作用。在學習統計學的f檢驗和t檢驗時,可以引導學生建立計量經濟學中要學習的回歸模型,一開始可以引入一元線性回歸模型,再過渡到二元線性回歸模型,對于二元線性回歸模型可以形象地借助二維圖像進行說明,最后分析多元線性回歸模型,特別地,還可以指出,在回歸模型的建立中本質上用到了微積分中學習的最小二乘法。在線性回歸模型學習完以后,還要進一步學習更加復雜的非線性模型,以便讓學生掌握由簡單到復雜的數學建模過程??傊谡麄€數學的學習過程中,要經常讓學習練習如何正確地建立模型,以提高學生分析問題和解決問題的能力。
    3.教師要不斷了解經管專業(yè)知識,以適應學生學習的需要。
    教授經管類專業(yè)的任課教師要不斷閱讀經管類專業(yè)相關書籍,充分了解經管類專業(yè)知識要用到的數學知識和數學思想,把經濟學和數學融會貫通。只有這樣,教師在上課時才能做到有的放矢,才能時刻圍繞學生所學所需的專業(yè)知識來講授數學知識,真正做到數學為專業(yè)服務。整個教學過程中,教師要對經管類專業(yè)知識有深入的理解,才能結合數學給學生解釋清楚經濟學概念和經濟學原理,才不至于讓所學內容與專業(yè)知識脫軌。教師要了解經濟學的前沿進展,從而可以在上課過程中引入生動而形象的經濟實例,做到學教結合,真正成為學生學習的引路人。
    4.教學方法要多元化,以提高學生學習興趣。
    目前,經濟數學的教學依然是傳統的教學模式,即教師講授、學生被動接受的模式。這種教學方法嚴重挫傷了學生學習的積極性和主動性。因此,教學方法的選擇至關重要。這就要求教師要根據學生的特點,做到因材施教。講課過程中也不能一味羅列一些數學定義和數學定理,而要注重與學生的互動,以提高學生學習的積極性。教師在上課過程中還要注重學生興趣的培養(yǎng),可以講一些獲得諾貝爾獎的經濟學家的事跡,很多獲得諾貝爾獎的經濟學家都有很好的數學基礎,在這些基礎上他們進一步在學習的過程中加強了自己的經濟直覺培養(yǎng),最后取得學術的成功。通過經濟學家的故事可以啟發(fā)引導學生去接觸最新的經濟學理念,從而逐步探索新知識,然后啟發(fā)學生學習數學和經濟學的興趣。同時要讓學生多獨立思考,布置一些有趣的課后習題,特別是可布置一些結合生活中的經濟實例的數學習題,通過解答這些習題,學生不但可以學習數學知識,還可以讓學生體會數學和經濟學的生動結合,最后引導學生思考一些更加復雜的經濟問題并用數學知識解決問題。只有老師生動講解、引導和學生快樂、輕松學習的完美結合,才能激發(fā)學生的學習興趣,起到事半功倍的學習效果。
    四、結語。
    在高校數學教學中,應根據經管專業(yè)特點采取有效的教學方法教授數學知識,特別要注意學生經濟直覺的培養(yǎng),這就要求在教學過程中可以適當減少數學的嚴格證明,注重數學概念在經濟學中的應用,從而讓學生形象生動的理解數學知識在經濟學中的重要作用。另外,教學過程中還需要培養(yǎng)學生的數學建模能力,并培養(yǎng)學生學習數學的興趣,引導學生將所學數學知識應用到實際工作中,真正做到學有所用,從而培養(yǎng)優(yōu)秀的經濟類人才。
    數學竟賽建模論文篇十二
    計算數學建模是用數學的思考方式,采用數學的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數學手段。數學建模所解決的問題不止現實的,還包括對未來的一種預見。數學建??梢哉f和我們的生活息息相關,尤其是如今科技發(fā)達的今天。數學建模應用領域超乎我們的想象,甚至達到無所不及的程度,隨著數學建模在大學教學中的廣泛使用,使數學建模不止成為一種學科,更重要的是指導新生代更好的利用現代科學技術,成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
    1.1數學建模引進大學數學教學的必要。教學過程,是教師根據社會發(fā)展要求和當代學生身心發(fā)展的特點,借助教學條件,指導學生通過認識教學內容從而認識客觀世界,并在此基礎之上發(fā)展自身的過程,即教學活動的展開過程。以往高工專的數學教學存在著知識單一,內容陳舊,脫離實際等缺陷,已經不能滿足時代的發(fā)展,如今的數學教學過程不是單純的傳授數學學科知識,而是通過數學教學過程引導學生認識科學,理解科學,從而指導實踐,促進學生的德智體美勞全面的進步和發(fā)展。因此數學建模成為一門學科,被各大高等院校廣泛引用和推廣,其實數學建模不止應用在大學數學教學中,其他一切教學過程多可引進數學建模。1.2數學建模在大學數學教學中的運用。大學數學教師通過這個數學建模過程來引導學生解決問題和指導實踐的能力。再次建模結果對現實生活的指導,這是大學數學教學中數學建模所需要達到的效果和要求。不再停留在理論學習,而是通過理論指導實踐,從而為科學的進步和人才綜合水平的提高提供可能。
    2.數學建模對當代大學生的作用。
    2.1數學建模對數學學科和其他學科學生的巨大影響力學習數學建模,能夠使一個單獨的數學家變成經濟學家,物理學家還有金融學家,甚至是藝術家,只要正握數學建模就能指導學生通過掌握數學建模的思維和方法向其他領域學習和進步。數學建模成為連接數學和其他領域的紐帶,是當今數學科學在其他領導應用的橋梁,是數學技術轉化為其他技術的途徑,數學建模在學生中越來越受到關注和歡迎,越來越多的學生開始學習數學建模,尤其是數學界和工程界的學生,這成為當今學生成為現代科技工作者必須掌握的只是能力之一。
    2.2數學建模對學生綜合能力的提高數學建模是大學數學教師運用數學科學去分析和解決實際問題,在數學建模學習的過程中,大學生的數學能力得到提高,其分析問題、解決問題的能力得到提高,這對大學生畢業(yè)走向社會具有著重大意義。通過數學建模的學習和應用,激發(fā)大學生學習數學和應用數學的能力,運用數學的思維和方法,利用現代計算機科學,來解決數學及其他領域的問題。
    3.數學建模對大學數學及其他學科教師的作用。
    數學建模引入大學數學教學,這是時代的進步,是時代對當代大學教師提出的新要求,尤其是大學數學教師,其不再停留在以往的單純的數學知識講授方向,而是將數學科學作為基礎,引導當代大學生發(fā)散思維,發(fā)揮主觀能動性,從而學習數學科學,并運用數學科學解決現實問題。在這個過程中大學教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學數學教師不止完成數學教學,更重要的是培養(yǎng)了高科技的人才,這對大學數學教師的社會地位也有了相應的改變,在尊重人才,尊重科學的氛圍中,大學數學教師及其他學科的教師得到了鼓舞,得到了進步,得到了認可。數學建模越來越重要,關于數學建模的各種國內國際大賽頻頻舉辦,這對大學數學教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數學建模比賽,大學數學教師投入更多的時間和經歷在學生教育和數學建模中,他們成為真正的臺前和幕后的指揮者。
    隨著現代大學學科的豐富,尤其是計算機科學的廣泛應用,大學數學教學的跨時代發(fā)展,數學建模成為各個高校數學教學的重點內容,數學建模教學吸納數學家,計算機學家等多個學科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準備??梢哉f數學建模教學是當今大學數學教學的主旋律,是數學科學和其他科學進步發(fā)展的方向和原動力。
    參考文獻:
    [1]李進華.教育教學改革與教育創(chuàng)新探索.安徽:安徽大學出版社,20xx.8.
    [2]于駿.現代數學思想方法.山東:石油大學出版社,.
    數學竟賽建模論文篇十三
    信息化時代,數學科學與其他學科交叉融合,使得數學技術變成了一種普適性的關鍵技術。大學加強數學課程的應用功能,不但可以為學生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學生應用數學科學進行定量化、精確化思維的意識,學會創(chuàng)造性地解決問題的應用能力。數學建模課程將數學的基本原理、現代優(yōu)化算法以及程序設計知識很好地融合在一起,有助于培養(yǎng)學生綜合應用數學知識將現實問題化為數學問題,并進行求解運算的能力,激發(fā)學生對解決現實問題的探索欲望,強化數學課程本身的應用功能,凸顯數學課程的教育價值,適應大學數學課程以培養(yǎng)學生創(chuàng)新意識為宗旨的教育改革需要。
    大學傳統的數學主干課程,如高等數學、線性代數、概率論與數理統計在奠定學生的數學基礎、培養(yǎng)自學能力以及為后續(xù)課程的學習在基礎方面發(fā)揮奠基作用。但是,這種原有的教學模式重在突出培養(yǎng)學生嚴格的邏輯思維能力,而對數學的應用重視不夠,這使得學生即使掌握了較為高深的數學理論,卻并不能將其靈活應用于現實生活解決實際問題,更是缺乏將數學應用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠。教育轉型要求數學教學模式從傳統的傳授知識為主向以培養(yǎng)能力素質為主轉變,特別是將數學建模的思想方法融入到數學主干課程之中,在教學過程中引導學生將數學知識內化為學生的應用能力,充分發(fā)揮數學建模思想在數學教學過程中的引領作用。數學課程教學改革要適應這一教學模式轉型需要,深入探究融入式教學模式的理論與方式,是推進數學教育改革的重要舉措。
    2.1理清數學建模思想方法與數學主干課程的關系。數學主干課程提供了大學數學的基礎理論與基本原理,將數學建模的思想方法有機地融入到數學主干課程中,不但可以有效地提升數學課程的應用功能,而且有利于深化學生對數學本原知識的理解,培養(yǎng)學生的綜合應用能力。深入研究數學主干課程的功能定位,主要從課程目標上的一致性、課程內容上的互補性、學習形式上的互促性、功能上的整體優(yōu)化性等方面,研究數學建模本身所承載的思想、方法與數學主干課程的內容與邏輯關系,闡述數學建模思想方法對提高學生創(chuàng)新能力和對數學教育改革的重要意義,探索開展融入式教學及創(chuàng)新數學課程教學模式的有效途徑。
    2.2探索融入式教學模式提升數學主干課程應用功能的方式。融入式教學主要有輕度融入、中度融入和完全融入三種方式。根據主干課程的基本特點,對課程體系進行調整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數學建模的思想與方法。以學生能力訓練為主導,在培養(yǎng)深厚的數學基礎和嚴格的邏輯思維能力的基礎上,充分發(fā)揮數學建模思想方法對學生思維方式的培養(yǎng)功能和引導作用,培養(yǎng)學生敏銳的分析能力、深刻的'歸納演繹能力以及將數學知識應用于工程問題的創(chuàng)新能力。
    2.3建立數學建模思想方法融入數學主干課程的評價方式。融入式教學是處于探索中的教學模式,教學成效有待于實踐檢驗。選取開展融入式教學的實驗班級,對數學建模思想方法融入主干課程進行教學效果實踐驗證。設計相應的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數量關系、大膽嘗試進行建模求解等多方面對實驗課程的教學效果進行檢驗,深入分析融入式教學模式的成效與不足,為探索有效的教學模式提出改進的對策。
    3.1改革課程教學內容,滲透數學建模的思想方法。傳統的數學主干課程教學內容,將數學看作嚴謹的演繹體系,教學過程中著力于對學生傳授大學數學的基礎知識,而對應用能力的培養(yǎng)卻重視不夠。使得本應能夠發(fā)揮應用功能的數學知識則淪為僵死的教條性數學原理,這失去了教學的活力。學生即使掌握了再高深的數學知識,仍難以學會用數學的基本方法解決現實問題?,F行的大學數學課程教學內容中,適當地滲透一些應用性比較廣泛的數學方法,如微元法、迭代法及最佳逼近等方法,有利于促進學生對數學基礎知識的掌握,同時理解數學原理所蘊涵的思想與方法。
    這樣,在解決實際問題的時候,學生就會有意識地從數學的角度進行思考,嘗試建立相應的數學模型并進行求解,拓展了數學知識的深度與廣度,提升了學生的數學應用能力四、結語數學建模是數學科學在科技、經濟、軍事等領域廣泛應用的接口,是數學科學轉化成科學技術的重要途徑。在數學主干課程中融入數學建模的思想與方法,可以推動大學數學教育改革的深入發(fā)展,加深學生對相關知識的理解和掌握,有助于從思維方式上培養(yǎng)學生的創(chuàng)新意識與創(chuàng)新能力。
    此外,數學建模思想方法融入教學主干課程還涉及到許多問題,比如數學建模與計算技術如何有效結合以進行模擬仿真、融入式教學模式的基本理論、構建新的課程體系等問題,仍將有待于更深入的研究。
    數學竟賽建模論文篇十四
    運籌學與數學建模2門課程聯系密切,在運籌學教學中,適當融入數學建模思想,能大幅度提高學生應用數學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環(huán)節(jié)的設計等方面進行了探索與實踐.教學實踐表明,將數學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
    數學竟賽建模論文篇十五
    將建模的思想有效的滲透到應用數學的教學過程中去,是我們當前開展應用數學教育的未來發(fā)展趨勢,怎樣才能夠使應用數學更好的服務社會經濟的發(fā)展,充分發(fā)揮數學工具在實際問題解決中的重要作用,是我們當前進行應用數學研究的核心問題,而建模思想在應用數學中的運用則能夠很好的解決這一問題。
    數學教育至少應該涵蓋純粹數學和應用數學兩方面內容,目前我國數學教育內容以純粹數學為主,極少包括應用數學內容,這割裂了數學與外部世界的血肉聯系,使數學變成了多數學生眼中的抽象、枯燥、無用的思維游戲,而厭學成風。因此,大家對現行的數學教育不滿意,期望改革,期望找到方法激發(fā)學生的學習興趣、培養(yǎng)學生利用數學解決各種實際問題的能力。在不改變傳統的教學體系的前提下,有機地融入應用數學內容,應是解決現存問題的有效方法。事實上,數學發(fā)展的根本原動力,它的最初的根源,是來自客觀實際的需要,數學教學中理應突出數學思想的來龍去脈,揭示數學概念和公式的實際來源和應用,恢復并暢通數學與外部世界的血肉聯系。伴隨著社會生產力的不斷發(fā)展,多個學科交叉發(fā)展,使得應用數學逐漸發(fā)展成擁有眾多發(fā)展方向的學科,應用數學所運用的領域不斷延伸,已經不再局限于傳統的、而是想著更為寬闊的、新興的學科以及高新技術領域發(fā)展,應用數學目前已經滲透到社會經濟發(fā)展的各個行業(yè),在這一大背景下,應用數學的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺,也迎來了應用數學發(fā)展的新機遇。
    數學這一學科不僅具有概念抽象性、邏輯嚴密性、體系完整性以及結論確定性,而且還具備非常明顯的應用廣泛性,伴隨著計算機網絡在社會生活中的廣泛運用,人們對于實踐問題的解決要求越來越精確,這就給應用數學的廣泛運用帶來了前所未有的機遇。應用數學在這一背景下也已經成為當前高科技水平的一個重要內容,應用數學建模思想的引入與使用能夠極大的提升自身應用數學的綜合水平以及思維意識,開展應用數學建模不僅能夠有效的提升自己的學習熱情與探究意識,而且還能夠將專業(yè)知識同建模密切結合在一起,對于專業(yè)知識的有效掌握是非常有益的。
    3.1充分重視建模的橋梁作用。
    建模是實現數學知識與現實問題相聯系的橋梁與紐帶,通過進行建模能夠有效的`將實際問題進行簡化。在這一轉化的過程中,應當深入實際進行調查、收集相關數據信息,認真分析對象的獨特特征及規(guī)律,構建起反映實際問題的數學關系,運用數學理論進行問題的解決。這正是各個學科之間進行有效聯系的結合點,通過引進建模思想,不僅能夠使我們有效掌握數學理論之外的實踐問題,還能夠推動創(chuàng)新意識的提升,因此,我們應當充分重視建模的作用。
    3.2將建模的方法以及相關理論引入到數學教學中來。
    我國當前數學課程教學體系的現狀包括高等數學、線性代數、概率論與數理統計等幾個部分。當前應用數學的發(fā)展,滿足這一學科的建設以及其他學科對這一學科的需要,教師在教學中應當將問題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學生進行討論并構建數學模型。學生們在課堂上就能夠獲得更多的思考和討論的機會,能夠充分調動學生們的積極性,使其能夠立足實際進行思考,這樣一來就形成了以實際問題為基礎的數學建模教學特色。
    3.3積極參加數學模型課等相關課程與活動。
    數學應用綜合性的實驗,要求我們掌握數學知識的綜合性運用,做法是老師先講一些數學建模的一些應用實例,然后學生上機實踐,強調學生的動手實踐。數學實驗課應該說是數學模型的輔助課程,主要培養(yǎng)我們的數學思維和創(chuàng)新能力,還應當組織一些建模比賽,不斷提升數學建模的綜合水平。
    上述幾個部分的論述與分析,我們看到,在應用數學中加強建模思想具有非常重要的意義,不僅需要在課堂學習過程中認真掌握數學理論知識,還應當深入了解數學理論在實際生活中的可用之處,盡可能的使應用數學與自身所學專業(yè)相聯系,這樣,才能夠使應用數學的能力與水平在日常實踐過程中得到提升。就當前高等數學的現狀來看,加強創(chuàng)新意識以及將實際問題轉化為數學問題能力的培養(yǎng),提升綜合運用本專業(yè)知識以來解決實踐問題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
    [1]余荷香,趙益民.數學建模在高職數學教學中的應用研究[j].出國與就業(yè)(就業(yè)版),20xx(10).
    [2]關淮海.培養(yǎng)數學建模思想與方法高職高專數學教改之趨勢[j].職大學報,20xx(02).
    [3]李傳欣.數學建模在工程類專業(yè)數學教學中的應用研究[j].中國科教創(chuàng)新導刊,20xx(35).
    [4]李秀林.高等數學教學中滲透數學建模的探討[j].吉林省教育學院學報(學科版),20xx(08).
    [5]吳健輝,黃志堅,汪龍虎.對數學建模思想融入高等數學教.學中的探討[j].景德鎮(zhèn)高專學報,20xx(04).
    數學竟賽建模論文篇十六
    第一條,論文用白色a4紙打印(單面、雙面均可);上下左右各留出至少2.5厘米的頁邊距;從左側裝訂。
    第二條,論文第一頁為承諾書,第二頁為編號專用頁,具體內容見本規(guī)范第3、4頁。
    第三條,論文第三頁為摘要專用頁(含標題和關鍵詞,但不需要翻譯成英文),從此頁開始編寫頁碼;頁碼必須位于每頁頁腳中部,用阿拉伯數字從“1”開始連續(xù)編號。摘要專用頁必須單獨一頁,且篇幅不能超過一頁。
    第四條,從第四頁開始是論文正文(不要目錄,盡量控制在20頁以內);正文之后是論文附錄(頁數不限)。
    第五條,論文附錄至少應包括參賽論文的所有源程序代碼,如實際使用的軟件名稱、命令和編寫的全部可運行的源程序(含excel、spss等軟件的交互命令);通常還應包括自主查閱使用的數據等資料。賽題中提供的數據不要放在附錄。如果缺少必要的源程序或程序不能運行,可能會被取消評獎資格。論文附錄必須打印裝訂在論文紙質版中。如果確實沒有需要以附錄形式提供的信息,論文可以沒有附錄。
    第六條,論文正文和附錄不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。
    第七條,引用別人的成果或其他公開的資料(包括網上資料)必須按照科技論文寫作的規(guī)范格式列出參考文獻,并在正文引用處予以標注。
    第八條,本規(guī)范中未作規(guī)定的,如排版格式(字號、字體、行距、顏色等)不做統一要求,可由賽區(qū)自行決定。在不違反本規(guī)范的前提下,各賽區(qū)可以對論文增加其他要求。
    第九條,參賽隊應按照《全國大學生數學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應于參賽論文和相關的支撐材料。
    第十條,參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內容及格式必須與紙質版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為pdf或者word格式之一(建議使用pdf格式),不要壓縮,文件大小不要超過20mb。
    第十一條,支撐材料(不超過20mb)包括用于支撐論文模型、結果、結論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的`數據(賽題中提供的原始數據除外)、較大篇幅的中間結果的圖形或表格、難以從公開渠道找到的相關資料等。所有支撐材料使用winrar軟件壓縮在一個文件中(后綴為rar);如果支撐材料與論文內容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區(qū)的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。
    第十二條,不符合本格式規(guī)范的論文將被視為違反競賽規(guī)則,可能被取消評獎資格。
    第十三條,本規(guī)范的解釋權屬于全國大學生數學建模競賽組委會。
    說明:
    (1)本科組參賽隊從a、b題中任選一題,??平M參賽隊從c、d題中任選一題。
    (2)賽區(qū)可自行決定是否在競賽結束時收集參賽論文的紙質版,但對于送全國評閱的論文,賽區(qū)必須提供符合本規(guī)范要求的紙質版論文(承諾書由賽區(qū)組委會保存,不必提交給全國組委會)。
    (3)賽區(qū)評閱前將紙質版論文第一頁(承諾書)取下保存,同時在第一頁和第二頁建立“賽區(qū)評閱編號”(由各賽區(qū)規(guī)定編號方式),“賽區(qū)評閱紀錄”表格可供賽區(qū)評閱時使用(由各賽區(qū)自行決定是否使用)。評閱后,賽區(qū)對送全國評閱的論文在第二頁建立“送全國評閱統一編號”(編號方式由全國組委會規(guī)定),然后送全國評閱。
    數學竟賽建模論文篇十七
    對于高職院校的學生來講,數學在其教學過程中起著基礎性的作用,對于學生后續(xù)的學習相當關鍵。但是從現階段高職院校數學教學的基本情況來看,數學教師的教學方法以及教學策略都相當落后,對于學生數學興趣的提升造成了不同程度的影響。在這樣的背景下,相關專家提出了數學建模的方式,希望以此提升高職院校高等數學的教學效率。本文結合數學建模在高職高專人才培養(yǎng)當中的意義和作用入手,對于其中的應用策略進行全面的分析,希望為相關單位提供一個全面的參考。
    隨著我國社會的發(fā)展,經濟產業(yè)結構日益升級,因此高等院校的人才需求日益擴大,對于高職教育的發(fā)展提供了前所未有的契機。在這樣的背景下,從數學建模入手,將其思想融入到高等教育的數學教學當中,對于其中的策略和方法進行全面的研究應該是一項具有普遍現實意義的工作。
    從近些年的發(fā)展來看,參加過數學競賽的學生在科研能力等方面都具有比其他同學更強的優(yōu)勢,因此數學建模在提升學生創(chuàng)新能力、提高學生知識水平以及調動學生的.學習興趣都具有十分重要的意義。比如在解決實際問題的時候,數學建模通過利用各種技巧,可以使得學生分析問題、創(chuàng)造能力得以全面的提升,進而使得學生在摒棄原始思考問題方式的基礎上,敢于向傳統的知識發(fā)出挑戰(zhàn),對于學生的綜合能力的全面提升相當關鍵。其次,數學知識本就源于生活,因此在建模的基礎上學生就可以帶著問題去思考,這對于數學知識整體性的發(fā)揮以及解決問題能力的提升都具有十分重要的意義。最后,面對傳統數學的解決方式,很多學生望而生畏,因此主動分析問題的欲望就會受到遏制。在這樣的背景下,通過數學建模方式,學生會發(fā)現數學方法的靈活性,進而使得他們解決問題的能力得以全面的提升。
    3.1制定切實可行的教學大綱,從而使得教學進度得以保障。教學大綱在高職教學當中起著十分重要的作用,這對于教學內容的合理性以及提升學生學習的針對性都具有十分重要的意義[1]。比如在教學高等數學(一)的選修模塊時,教學大綱的制定應該結合學生的專業(yè),從而使得學生的數學學習真正取得實效。比如可以為理工類的學生選擇無窮級數以及傅里葉變換的內容;機械類的學生選擇線性代數以及解析幾何作為教學內容,從而使得學生的綜合能力得以全面的提升。3.2開展“三段式”的教學模式。數學建模在以解決實際問題為核心的過程中,使得學生分析問題以及組織問題的能力得以全面的提升,這種方式的本質為素質教育,因此不能和現行的其他教學模式分割開來,這就需要相關部門開展“三段式”的教學模式,使得學生的數學興趣得以全面的提升。其中,第一段需要還原數學知識的原創(chuàng)過程,使得學生明確數學知識的產生過程,進而讓學生從生活案例當中發(fā)現數學的價值,比如知道極限是由人影的長度變化引起的,導數是由于駕車的速度引入的,使得學生發(fā)現知識的價值,進而就會大大提升自己的學習興趣和探究意識。第二段:講解數學知識。數學建模是在實際問題當中引入的,因此要通過具體數學知識的講解使得學生明確數學建模的真正價值,比如在講解微積分的過程中,可以以“極限-微分-積分”為主線,使得學生對于數學的分析能力真正得以提升[2]。然后在為學生積極引入大量數學圖表的基礎上,為增強學生的感性認識,進而提升學生的綜合能力奠定堅實的基礎。第三段:數學知識的運用。隨著社會的發(fā)展,數學的應用在各行各業(yè)都發(fā)揮出巨大的作用,因此對于高等數學在實際生活當中發(fā)揮出來的作用進行全面的探究是實現這種知識價值的真正途徑。在這樣的背景下,高等數學教師要將每個知識點的運用真正灌輸給學生,比如指數增長在銀行計息當中的應用、定積分在學習曲線當中的應用、再生資源在數學開發(fā)以及管理當中的應用等等。從而使得學生數學學習中的創(chuàng)新意識以及應用能力得以全面的提升。3.3開設數學實驗,提升學生的綜合素質。數學建模為學生提供了一種真正的“數學實驗”,在這種實驗的過程中,學生對于數學知識的發(fā)展以及由來過程都會得到進行全面的考慮,這對于他們數學探索意識的提升具有十分重要的意義。另外,在計算機輔助實驗的過程中,學生的動腦能力也會得到全面的提升,這對于學生主動的學習數學相當關鍵。因此在教學過程中,教師要積極利用這種方式對于學生進行全面的培養(yǎng)。
    總之,隨著我國經濟水平的不斷提升,社會對于高職院校的重視力度日益提升,因此對于高職院校當中數學建模思想在高等數學教學當中的應用進行全面的分析是實現學生綜合素質得以全面提升的關鍵措施,這對于學生的長遠發(fā)展也相當關鍵,相關教育工作者要加大在這方面的研究力度,力求將高職院校的學生培養(yǎng)成為新時代所需要的人才。
    [1]吳健輝,黃志堅,汪龍虎.對數學建模思想融入高等數學教學中的探討[j].景德鎮(zhèn)高專學報,20xx,(4).
    [2]張卓飛.將數學建模思想融入大學數學教學的探討[j].湘潭師范學院學報(自然科學版),20xx,(1).
    數學竟賽建模論文篇十八
    在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學質量,新時期對大學數學教學提出了更高的要求。大學數學作為課堂教學的主體,教師在傳授知識的同時,要注重學生學習能力和解決問題能力的培養(yǎng)。
    數學知識來源于生活,應用于生活,如微積分作為高等數學知識中的典型代表,在各個行業(yè)中具有不可或缺的作用。為此,任課教師在大學數學教學中培養(yǎng)學生發(fā)現問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學生利用所學知識來解決實際問題。一般情況下,教師著重介紹相關數學概念和原理,推導常用公式,促使學生能夠記住公式,學會公式的應用過程,逐漸掌握解題技巧。
    因此,如何能夠在傳授知識的同時,促使學生掌握數學學習方法,將所學知識應用到實踐中來解決數學問題是一個首要問題。從大量教學實踐中可以了解到,在大學數學教學中滲透數學建模思想十分重要,有助于激發(fā)學生的學習興趣,促使學生積極投入其中,切實提升學生的數學專業(yè)水平。
    在大學數學教學中滲透數學建模思想,應該結合實際情況,深入挖掘數學知識。在教學中,教師應該充分發(fā)揮自身引導作用,聯系學生數學知識實際學習情況,有針對性地整合數學知識,了解相關數學內容,這樣不僅可以豐富教學內容,還可以為課堂教學注入新的活力,有效激發(fā)學生的學習興趣,提升學習成效。具體表現在以下方面:
    (一)閉區(qū)間連續(xù)函數的性質。
    閉區(qū)間連續(xù)函數的性質內容是大學數學教學中的重要組成部分,由于知識理論性較強,知識較為抽象,學習難度較大,在講解完相關理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數學模型,提問學生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學生可以了解到這一問題同所學知識相關聯,閉區(qū)間連續(xù)函數的性質可以解決這一問題。學生整合所學知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數學模型,學生更加充分地掌握了閉區(qū)間連續(xù)函數的`性質,提升了學習成效,為后續(xù)知識學習打下了堅實的基礎。
    (二)定積分。
    定積分是高等數學教學中的重要組成部分,在解決幾何問題時均有所應用,并且被廣泛應用在實際生活中。如,在一道全國大學生數學建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據上級主管部門的年產量計劃和經費如何堆放煤矸石?題目中的關鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內容涉及定積分中的變力做功知識點。學生掌握這些內容后就可以建立數學模型,更加高效地了解如何根據預期開采量來堆放煤矸石。通過數學模型,學生也可以了解到定積分內容同實際生活之間的聯系,學習積極性就會大大提升。
    (三)最值問題。
    在高等數學中,最值問題占比比較大,同時在實際生活中應用較為普遍,導數知識可以解決實際生活中的最值問題,這就需要提高對導數知識實際應用的重視程度。教師在為學生講解完導數的相關概念知識后,通過建立關于天空的采空模型,提問學生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現出什么樣的景色?學生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學生的興趣較為濃厚,可以分為若干個小組進行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結合光線的反射和折射定律,借助所學的導數知識來計算得出太陽光偏轉角度的最值,有效解決實際學習的問題,加深對知識的理解和記憶,提升數學知識學習成效。
    (四)微分方程。
    微分方程知識同實際生活之間息息相關,建立微分方程可以有效解決實際生活中的問題。這就需要學生在了解微分方程知識的基礎上,進一步建立數學模型來解決問題。如,在當前社會進步和發(fā)展下,人均物質生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關注和重視。通過問題精簡化和假設,可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
    (五)矩陣。
    在高等數學教學中,矩陣的概念較為抽象和復雜,在講解問題之前,應該根據知識點來創(chuàng)設教學情境,輔助教學活動。通過引入企業(yè)工廠生產總成本模型,充分描述工廠生產中需要的原材料和勞動力,并且詳細記錄管理費用。這有助于加深人們對矩陣概念的認知和理解,提升學習成效,同時幫助學生深入理解和記憶,鍛煉學生的數學解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學生的數學建模意識。
    綜上所述,在大學數學教學中,可以通過數學建模思想來引導學生養(yǎng)成良好的自主學習能力,發(fā)揮自身的主體能動性和創(chuàng)新能力,提升學生解決問題的能力,將所學知識靈活運用到實際生活中,養(yǎng)成良好的數學素養(yǎng)。