二次根式數(shù)學(xué)教案(通用19篇)

字號(hào):

    教案不僅是一份教學(xué)計(jì)劃,更是一份對(duì)教學(xué)內(nèi)容和方法的思考和總結(jié)。教案的編寫(xiě)要考慮學(xué)生的思維方式和學(xué)習(xí)習(xí)慣,引導(dǎo)他們主動(dòng)參與學(xué)習(xí)。請(qǐng)大家仔細(xì)觀察以下教案,希望能夠?qū)Υ蠹业慕虒W(xué)設(shè)計(jì)起到一定的啟發(fā)作用。
    二次根式數(shù)學(xué)教案篇一
    1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問(wèn)題。
    2、過(guò)程與方法:進(jìn)一步體會(huì)分類(lèi)討論的數(shù)學(xué)思想。
    3、情感、態(tài)度與價(jià)值觀:通過(guò)小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
    1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。
    2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。
    課本第2—3頁(yè)。
    一、課前準(zhǔn)備(預(yù)習(xí)學(xué)案見(jiàn)附件1)。
    學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
    二、課堂教學(xué)。
    (一)合作學(xué)習(xí)階段。
    教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問(wèn)題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各白話(huà)文…小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問(wèn)題做好記錄。
    (二)集體講授階段。(15分鐘左右)。
    1.各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問(wèn)題進(jìn)行解答,不足的本組成員可以補(bǔ)充。
    2.教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的問(wèn)題進(jìn)行集體講解。
    3.各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。
    (三)當(dāng)堂檢測(cè)階段。
    為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。
    (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)。
    三、課后作業(yè)(課后作業(yè)見(jiàn)附件2)。
    教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
    四、板書(shū)設(shè)計(jì)。
    二次根式數(shù)學(xué)教案篇二
    新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過(guò)四個(gè)實(shí)際問(wèn)題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過(guò)二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過(guò)學(xué)生所熟悉的實(shí)際問(wèn)題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程中,進(jìn)一步體會(huì)二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。
    二次根式數(shù)學(xué)教案篇三
    1.知識(shí)技能:
    (1).會(huì)進(jìn)行簡(jiǎn)單的二次根式的除法運(yùn)算.
    (2).使學(xué)生能利用商的算術(shù)平方根的性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算.
    2.數(shù)學(xué)思考:在學(xué)習(xí)了二次根式乘法的基礎(chǔ)上進(jìn)行總結(jié)對(duì)比,得出除法的運(yùn)算法則.
    3.解決問(wèn)題:引導(dǎo)學(xué)生從特殊到一般總結(jié)歸納的方法以及類(lèi)比的方法,解決數(shù)學(xué)問(wèn)題.
    4.情感態(tài)度:通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生認(rèn)識(shí)到事物之間是相互聯(lián)系的,相互作用的.
    二次根式數(shù)學(xué)教案篇四
    知識(shí)與技能目標(biāo):理解和掌握二次根式加減的方法.
    過(guò)程與方法目標(biāo):先提出問(wèn)題,分析問(wèn)題,在分析問(wèn)題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解.再總結(jié)經(jīng)驗(yàn),用它來(lái)指導(dǎo)根式的計(jì)算和化簡(jiǎn).
    情感與價(jià)值目標(biāo):通過(guò)本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問(wèn)題的能力.
    重難點(diǎn)關(guān)鍵
    1.重點(diǎn):二次根式化簡(jiǎn)為最簡(jiǎn)根式.
    2.難點(diǎn)關(guān)鍵:會(huì)判定是否是最簡(jiǎn)二次根式.
    教法:
    2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類(lèi)項(xiàng)進(jìn)行類(lèi)比,獲得解決問(wèn)題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
    學(xué)法:
    1、類(lèi)比的方法通過(guò)觀察、類(lèi)比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。
    2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
    3、分組討論法將自己的意見(jiàn)在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。
    4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
    自主檢測(cè)、同伴互查
    1、師生共同解決“學(xué)法”問(wèn)題與13頁(yè)“練習(xí)1”;
    2、學(xué)生演板13頁(yè)“練習(xí)2、3”。
    四、知識(shí)梳理、師生共議
    1、談收獲:
    (1)二次根式的加減法則是什么?有哪些運(yùn)算步驟?
    (2)怎樣合并被開(kāi)方數(shù)相同的二次根式呢?
    (3)二次根式進(jìn)行加減運(yùn)算時(shí)應(yīng)注意什么問(wèn)題?
    2、說(shuō)不足:。
    五、作業(yè)訓(xùn)練、鞏固提高
    1、必做題:課本15頁(yè)的“習(xí)題2、3”;
    1.揭示學(xué)法、自主學(xué)習(xí)
    認(rèn)真閱讀課本14頁(yè)內(nèi)容,完成下列任務(wù):
    1、完成14頁(yè)“例3、4”,先做再對(duì)照:
    (1)平方差公式__________,完全平方公式__________.
    (2)每步的運(yùn)算依據(jù)是什么?應(yīng)注意什么問(wèn)題?
    (時(shí)間7分鐘若有困難,與同伴討論)
    三、自主檢測(cè)、同伴互查
    1、師生共同解決“學(xué)法”問(wèn)題;
    2、學(xué)生演板14頁(yè)“練習(xí)1、2”。
    四、知識(shí)梳理、師生共議
    1、談收獲:
    (1)二次根式進(jìn)行混合運(yùn)算時(shí)運(yùn)用了哪些知識(shí)?
    (2)二次根式進(jìn)行混合運(yùn)算時(shí)應(yīng)注意哪些問(wèn)題?
    二次根式數(shù)學(xué)教案篇五
    重難點(diǎn)分析。
    本節(jié)的重點(diǎn)是的化簡(jiǎn).本章自始至終圍繞著二次根式的化簡(jiǎn)與計(jì)算進(jìn)行,而的化簡(jiǎn)不但涉及到前面學(xué)習(xí)過(guò)的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對(duì)值以及各種非負(fù)數(shù)、因式分解等知識(shí),在應(yīng)用中常常需要對(duì)字母進(jìn)行分類(lèi)討論.
    本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式。
    這個(gè)公式的表達(dá)形式對(duì)學(xué)生來(lái)說(shuō),比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對(duì)字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
    教法建議。
    1.性質(zhì)的引入方法很多,以下2種比較常用:
    (1)設(shè)計(jì)問(wèn)題引導(dǎo)啟發(fā):由設(shè)計(jì)的問(wèn)題。
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導(dǎo)學(xué)生猜想出。
    (2)從算術(shù)平方根的意義引入.。
    2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
    (1)注意與性質(zhì)進(jìn)行對(duì)比,可出幾道類(lèi)型不同的題進(jìn)行比較;
    (第1課時(shí))。
    一、教學(xué)目標(biāo)。
    3.通過(guò)本節(jié)的學(xué)習(xí)滲透分類(lèi)討論的數(shù)學(xué)思想和方法。
    二、教學(xué)設(shè)計(jì)。
    對(duì)比、歸納、總結(jié)。
    三、重點(diǎn)和難點(diǎn)。
    四、課時(shí)安排。
    1課時(shí)。
    五、教具學(xué)具準(zhǔn)備。
    投影儀、膠片、多媒體。
    六、師生互動(dòng)活動(dòng)設(shè)計(jì)。
    復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主。
    七、教學(xué)過(guò)程。
    一、導(dǎo)入新課。
    我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.。
    問(wèn):式子的意義是什么?被開(kāi)方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).。
    二、新課。
    計(jì)算下列各題,并回答以下問(wèn)題:
    (1);(2);(3);
    (4);(5);(6)。
    (7);(8)。
    1.各小題中被開(kāi)方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結(jié)果和相應(yīng)的被開(kāi)方數(shù)的冪的底數(shù)有什么關(guān)系?
    3.用字母表示被開(kāi)方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語(yǔ)言敘述你的結(jié)論.。
    答:
    (1);(2);(3);
    (4);(5);(6)。
    (7);(8).。
    3.用字母表示(1),(2),(3),(8)各題中被開(kāi)方數(shù)的冪的底數(shù),有。
    (),
    用字母表示(4),(5),(6),(7)各題中被開(kāi)方數(shù)的冪的底數(shù),有。
    ().。
    問(wèn):請(qǐng)把上述討論結(jié)論,用一個(gè)式子表示.(注意表示條件和結(jié)論)。
    答:
    請(qǐng)同學(xué)回憶實(shí)數(shù)的絕對(duì)值的代數(shù)意義,它和上述二次根式的性質(zhì)有什么聯(lián)系?
    答:
    填空:
    1.當(dāng)_________時(shí),;
    2.當(dāng)時(shí),,當(dāng)時(shí),;
    3.若,則________;
    4.當(dāng)時(shí),.。
    答:
    1.當(dāng)時(shí),;
    2.當(dāng)時(shí),,
    當(dāng)時(shí),;
    3.若,則;
    4.當(dāng)時(shí),.。
    例1化簡(jiǎn)().。
    分析:可以利用積的算術(shù)平方根的性質(zhì)及二次根式的性質(zhì)化簡(jiǎn).。
    解,因?yàn)?,所以,所以?BR>    .
    指出:在化簡(jiǎn)和運(yùn)算過(guò)程中,把先寫(xiě)成,再根據(jù)已知條件中的取值范圍,確定其結(jié)果.。
    例2化簡(jiǎn)().。
    解.。
    例3化簡(jiǎn):(1)();(2)().。
    解(1).。
    (2).。
    注意:(1)題中的被開(kāi)方數(shù),因?yàn)?,所以.?BR>    (2)題中的被開(kāi)方數(shù),因?yàn)?,所以.?BR>    這里的取值范圍,在已知條件中沒(méi)有直接給出,但可以由已知條件分析而得出.。
    例4化簡(jiǎn).。
    .
    所以要比較與3及1與的大小以確定及的符號(hào),然后再進(jìn)行化簡(jiǎn).。
    解因?yàn)?,,所以?BR>    .
    所以。
    .
    三、課堂練習(xí)。
    1.求下列各式的值:
    (1);(2).。
    2.化簡(jiǎn):
    (1);(2);
    (3)();(4)().。
    3.化簡(jiǎn):
    (1);(2);
    (3);(4);
    (5);(6)().。
    答案:
    1.(1)0.1;(2).。
    2.(1);(2);(3);(4).。
    3.(1)4;(2)1.5;(3)0.09;(4)-1;(5)4;(6)-1.。
    四、小結(jié)。
    1.二次根式的意義是,所以,因此,其中可以取任意實(shí)數(shù).。
    五、作業(yè)。
    1.化簡(jiǎn):
    (1);(2);
    (3)();(4)();
    (5);(6)(,);
    (7)().。
    2.化簡(jiǎn):
    (1);
    (2)();
    (3)(,).。
    答案:
    1.(1)-30;(2);(3);
    (4);(5);(6);(7).。
    2.(1)2;(2)0;(3).。
    二次根式數(shù)學(xué)教案篇六
    重難點(diǎn)分析。
    本節(jié)課的重點(diǎn)是二次根式的加、減、乘、除、乘方、開(kāi)方的混合運(yùn)算及分母有理化。它是以二次根式的概念和性質(zhì)為基礎(chǔ),同時(shí)又緊密地聯(lián)系著整式、分式的運(yùn)算,也可以說(shuō)它是運(yùn)算問(wèn)題在初中階段一次總結(jié)性,提高性綜合學(xué)習(xí);二次根式的運(yùn)算和有理化的方法與技巧,能夠進(jìn)一步開(kāi)拓學(xué)生的解題思路,提高學(xué)生的解題能力。
    本節(jié)課的難點(diǎn)是把分母中含有兩個(gè)二次根式的式子進(jìn)行分母有理化。分母有理化,實(shí)際上二次根式的除法與混合運(yùn)算的綜合運(yùn)用。分母有理化的過(guò)程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個(gè)有理化因式,就可使分母有理化。所以對(duì)初學(xué)者來(lái)說(shuō),這一過(guò)程容易出現(xiàn)找錯(cuò)有理化因式和計(jì)算出錯(cuò)的問(wèn)題。
    教法建議。
    1.在知識(shí)的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運(yùn)算或整式的運(yùn)算。
    2.在二次根式的加減、乘法混合運(yùn)算中,要注意由淺入深的層次安排,從單項(xiàng)式與多項(xiàng)式相乘、多項(xiàng)式與多項(xiàng)式到乘法公式的應(yīng)用,逐漸從數(shù)過(guò)渡到帶有字母的式。
    3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時(shí)總結(jié)。
    學(xué)生特點(diǎn):實(shí)驗(yàn)班的a層學(xué)生(數(shù)學(xué)實(shí)施分層教學(xué)),主動(dòng)學(xué)習(xí)積極性高,基礎(chǔ)扎實(shí),思維活躍,,并具有一定的獨(dú)立分析問(wèn)題,探索問(wèn)題,歸納概括問(wèn)題的能力,有較好的思考、質(zhì)疑的習(xí)慣。
    教材特點(diǎn):本節(jié)課是在學(xué)習(xí)了二次根式的三個(gè)重要概念(最簡(jiǎn)二次根式、同類(lèi)二次根式、分母有理化)和二次根式的有關(guān)運(yùn)算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開(kāi)方運(yùn)算綜合在一起的混合運(yùn)算的學(xué)習(xí)。
    鑒于學(xué)生的特點(diǎn)及教材的特點(diǎn),本節(jié)課主要采用“互動(dòng)式”的課堂教學(xué)模式及“談話(huà)式”的教學(xué)方法,以此實(shí)現(xiàn)生生互動(dòng)、師生互動(dòng)、學(xué)生與教材之間的互動(dòng)。具體說(shuō)明如下:
    (一)在師生互動(dòng)方面,教師注重問(wèn)題設(shè)計(jì),注重引導(dǎo)、點(diǎn)撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開(kāi)始,出示書(shū)中例題1:
    強(qiáng)調(diào):運(yùn)算順序及運(yùn)算律和有理數(shù)相同。
    (二)在學(xué)生與學(xué)生的互動(dòng)上,教師注重活動(dòng)設(shè)計(jì),使學(xué)生學(xué)中有樂(lè),樂(lè)中悟道。教師設(shè)計(jì)一組題目,讓學(xué)生以競(jìng)賽的形式解答,然后以記成績(jī)的方法讓其它同學(xué)說(shuō)出優(yōu)點(diǎn)(簡(jiǎn)便方法及靈活之處)與錯(cuò)誤。由于本節(jié)課主要以計(jì)算為主,對(duì)運(yùn)算法則及規(guī)律性的基礎(chǔ)知識(shí),學(xué)生很容易掌握而且從意識(shí)上認(rèn)為本節(jié)課太簡(jiǎn)單,不會(huì)很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運(yùn)算能力,如此這般設(shè)計(jì)。
    (三)在個(gè)體與群體的互動(dòng)方式上,教師注重合作設(shè)計(jì),使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對(duì)重點(diǎn)問(wèn)題:“分母有理化”的教學(xué),出示一個(gè)題目,讓學(xué)生思考,找個(gè)別學(xué)生說(shuō)出自己的想法,然后其它同學(xué)補(bǔ)充完成。
    學(xué)生的主體意識(shí)和自主能力不是生來(lái)就有的,主要靠教師的激勵(lì)和主導(dǎo),才能達(dá)到彼此互動(dòng)。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認(rèn)知活動(dòng)與情感活動(dòng)的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識(shí),在和諧、愉快的情境中達(dá)到師生互動(dòng),生生互動(dòng)?;?dòng)式教學(xué)模式的目的是讓教師樂(lè)教、會(huì)教、善教,促使學(xué)生樂(lè)學(xué)、會(huì)學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實(shí)現(xiàn)教與學(xué)的共振。
    二次根式數(shù)學(xué)教案篇七
    教學(xué)目標(biāo)。
    知識(shí)與技能目標(biāo):理解和掌握二次根式加減的方法.
    過(guò)程與方法目標(biāo):先提出問(wèn)題,分析問(wèn)題,在分析問(wèn)題中,滲透對(duì)二次根式進(jìn)行加減的方法的理解.再總結(jié)經(jīng)驗(yàn),用它來(lái)指導(dǎo)根式的計(jì)算和化簡(jiǎn).
    情感與價(jià)值目標(biāo):通過(guò)本節(jié)的學(xué)習(xí)培養(yǎng)學(xué)生:利用規(guī)定準(zhǔn)確計(jì)算和化簡(jiǎn)的嚴(yán)謹(jǐn)?shù)目茖W(xué)精神,發(fā)展學(xué)生觀察、分析、發(fā)現(xiàn)問(wèn)題的能力.
    重難點(diǎn)關(guān)鍵。
    1.重點(diǎn):二次根式化簡(jiǎn)為最簡(jiǎn)根式.
    2.難點(diǎn)關(guān)鍵:會(huì)判定是否是最簡(jiǎn)二次根式.
    教法:
    2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與同類(lèi)項(xiàng)進(jìn)行類(lèi)比,獲得解決問(wèn)題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
    學(xué)法:
    1、類(lèi)比的方法通過(guò)觀察、類(lèi)比,使學(xué)生感悟二次根式加減的模型,形成有效的學(xué)習(xí)策略。
    2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
    3、分組討論法將自己的意見(jiàn)在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。
    4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
    二次根式數(shù)學(xué)教案篇八
    3.通過(guò)利用計(jì)算器求值體驗(yàn)現(xiàn)代科技產(chǎn)品迅速、精確的功能,激發(fā)學(xué)習(xí)知識(shí)的興趣。
    教學(xué)重點(diǎn):用計(jì)算器求一個(gè)正數(shù)的平方根的程序。
    教學(xué)難點(diǎn):準(zhǔn)確用計(jì)算器求解一個(gè)正數(shù)的平方根。
    講練結(jié)合。
    實(shí)物投影儀,計(jì)算器。
    利用計(jì)算器求解既快又精確,操作時(shí)要嚴(yán)格按照步驟執(zhí)行。特別注意要用到第二功能鍵,首先要先按“2f”在按需要的鍵。由于各種計(jì)算器的鍵的功能各不相同,因此要注意操作順序,查看說(shuō)明書(shū)熟悉各鍵的具體功能。
    教材a組1、2、3。
    二次根式數(shù)學(xué)教案篇九
    重難點(diǎn)分析。
    本節(jié)課的重點(diǎn)是二次根式的加、減、乘、除、乘方、開(kāi)方的混合運(yùn)算及分母有理化。它是以二次根式的概念和性質(zhì)為基礎(chǔ),同時(shí)又緊密地聯(lián)系著整式、分式的運(yùn)算,也可以說(shuō)它是運(yùn)算問(wèn)題在初中階段一次總結(jié)性,提高性綜合學(xué)習(xí);二次根式的運(yùn)算和有理化的方法與技巧,能夠進(jìn)一步開(kāi)拓學(xué)生的解題思路,提高學(xué)生的解題能力。
    本節(jié)課的難點(diǎn)是把分母中含有兩個(gè)二次根式的式子進(jìn)行分母有理化。分母有理化,實(shí)際上二次根式的除法與混合運(yùn)算的綜合運(yùn)用。分母有理化的過(guò)程,一般地,先確定分母的有理化因式,然后再根據(jù)分式的基本性質(zhì)把分子、分母都乘以這個(gè)有理化因式,就可使分母有理化。所以對(duì)初學(xué)者來(lái)說(shuō),這一過(guò)程容易出現(xiàn)找錯(cuò)有理化因式和計(jì)算出錯(cuò)的問(wèn)題。
    教法建議。
    1.在知識(shí)的引入上,可采取復(fù)習(xí)引入方式,比如復(fù)習(xí)有理數(shù)的混合運(yùn)算或整式的運(yùn)算。
    2.在二次根式的加減、乘法混合運(yùn)算中,要注意由淺入深的層次安排,從單項(xiàng)式與多項(xiàng)式相乘、多項(xiàng)式與多項(xiàng)式到乘法公式的應(yīng)用,逐漸從數(shù)過(guò)渡到帶有字母的式。
    3.在有理化因式教學(xué)中,要多出幾組題目從不同角度要求學(xué)生辨別,并及時(shí)總結(jié)。
    學(xué)生特點(diǎn):實(shí)驗(yàn)班的a層學(xué)生(數(shù)學(xué)實(shí)施分層教學(xué)),主動(dòng)學(xué)習(xí)積極性高,基礎(chǔ)扎實(shí),思維活躍,,并具有一定的獨(dú)立分析問(wèn)題,探索問(wèn)題,歸納概括問(wèn)題的能力,有較好的思考、質(zhì)疑的習(xí)慣。
    教材特點(diǎn):本節(jié)課是在學(xué)習(xí)了二次根式的三個(gè)重要概念(最簡(jiǎn)二次根式、同類(lèi)二次根式、分母有理化)和二次根式的有關(guān)運(yùn)算(二次根式的乘法、二次根式的除法、二次根式的加減法)基礎(chǔ)上,將加、減、乘、除、乘方、開(kāi)方運(yùn)算綜合在一起的混合運(yùn)算的學(xué)習(xí)。
    鑒于學(xué)生的特點(diǎn)及教材的特點(diǎn),本節(jié)課主要采用“互動(dòng)式”的課堂教學(xué)模式及“談話(huà)式”的教學(xué)方法,以此實(shí)現(xiàn)生生互動(dòng)、師生互動(dòng)、學(xué)生與教材之間的互動(dòng)。具體說(shuō)明如下:
    (一)在師生互動(dòng)方面,教師注重問(wèn)題設(shè)計(jì),注重引導(dǎo)、點(diǎn)撥及提高性總結(jié)。使學(xué)生學(xué)中有思、思中有獲。如本節(jié)課開(kāi)始,出示書(shū)中例題1:
    強(qiáng)調(diào):運(yùn)算順序及運(yùn)算律和有理數(shù)相同。
    (二)在學(xué)生與學(xué)生的互動(dòng)上,教師注重活動(dòng)設(shè)計(jì),使學(xué)生學(xué)中有樂(lè),樂(lè)中悟道。教師設(shè)計(jì)一組題目,讓學(xué)生以競(jìng)賽的形式解答,然后以記成績(jī)的方法讓其它同學(xué)說(shuō)出優(yōu)點(diǎn)(簡(jiǎn)便方法及靈活之處)與錯(cuò)誤。由于本節(jié)課主要以計(jì)算為主,對(duì)運(yùn)算法則及規(guī)律性的基礎(chǔ)知識(shí),學(xué)生很容易掌握而且從意識(shí)上認(rèn)為本節(jié)課太簡(jiǎn)單,不會(huì)很感興趣,所以為了提高學(xué)生的學(xué)習(xí)興趣及更好的抓好基礎(chǔ),提高學(xué)生的運(yùn)算能力,如此這般設(shè)計(jì)。
    (三)在個(gè)體與群體的互動(dòng)方式上,教師注重合作設(shè)計(jì),使學(xué)生學(xué)中有辯,辯中求同。如本節(jié)課中對(duì)重點(diǎn)問(wèn)題:“分母有理化”的教學(xué),出示一個(gè)題目,讓學(xué)生思考,找個(gè)別學(xué)生說(shuō)出自己的想法,然后其它同學(xué)補(bǔ)充完成。
    學(xué)生的主體意識(shí)和自主能力不是生來(lái)就有的,主要靠教師的激勵(lì)和主導(dǎo),才能達(dá)到彼此互動(dòng)。正是在這一教育思想的指導(dǎo)下,追求學(xué)生的認(rèn)知活動(dòng)與情感活動(dòng)的協(xié)調(diào)發(fā)展,有效地喚起學(xué)生的主體意識(shí),在和諧、愉快的情境中達(dá)到師生互動(dòng),生生互動(dòng)?;?dòng)式教學(xué)模式的目的是讓教師樂(lè)教、會(huì)教、善教,促使學(xué)生樂(lè)學(xué)、會(huì)學(xué)、善學(xué),從而優(yōu)化課堂教學(xué)、提高教學(xué)質(zhì)量,在和諧、愉快的情景中實(shí)現(xiàn)教與學(xué)的共振。
    復(fù)習(xí):
    1.計(jì)算:(1);(2).
    解:(1)(2)。
    ==。
    =;=.
    2.在整式乘法中,單項(xiàng)式與多項(xiàng)式相乘的法則是什么?多項(xiàng)式與多項(xiàng)式的乘法法則是什么?什么是完全平方式?分別用式子表示出來(lái)。
    m(a+b+c)=ma+mb+mc。
    (a+b)(m+n)=am+an+bm+bn,。
    其中a,b,m,n都是單項(xiàng)式。
    完全平方式是。
    ;。
    在實(shí)數(shù)范圍內(nèi),整式中的乘法法則及乘法公式仍然適用,運(yùn)用乘法法則及乘法公式可以進(jìn)行二次根式的混合運(yùn)算。引入新課。
    二次根式數(shù)學(xué)教案篇十
    教法:
    2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類(lèi)比,獲得解決問(wèn)題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
    學(xué)法:
    1、類(lèi)比的方法通過(guò)觀察、類(lèi)比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。
    2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
    3、分組討論法將自己的意見(jiàn)在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。
    4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
    二次根式數(shù)學(xué)教案篇十一
    (1)學(xué)生能通過(guò)計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;。
    (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式.
    教學(xué)問(wèn)題診斷分析。
    本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過(guò)的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.
    在教學(xué)時(shí),通過(guò)實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:(1)如果被開(kāi)方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見(jiàn)教科書(shū)例6解法1),也可以先寫(xiě)成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見(jiàn)教科書(shū)例6解法2);(2)如果被開(kāi)方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn).
    本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn).
    教學(xué)過(guò)程設(shè)計(jì)。
    1.復(fù)習(xí)引入,探究新知。
    我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開(kāi)始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.
    問(wèn)題1 什么叫二次根式?二次根式有哪些性質(zhì)?
    師生活動(dòng) 學(xué)生回答。
    【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì).
    問(wèn)題2 教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?
    師生活動(dòng) 學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的.內(nèi)容.
    【設(shè)計(jì)意圖】學(xué)生在自主探究的過(guò)程中發(fā)現(xiàn)規(guī)律,運(yùn)用類(lèi)比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語(yǔ)言和文字分別描述法則,以培養(yǎng)學(xué)生的符號(hào)意識(shí).
    2.觀察比較,理解法則。
    問(wèn)題3 簡(jiǎn)單的根式運(yùn)算.
    師生活動(dòng) 學(xué)生動(dòng)手操作,教師檢驗(yàn).
    問(wèn)題4 二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?
    師生活動(dòng)學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).
    【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況.乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力.
    3.例題示范,學(xué)會(huì)應(yīng)用。
    例1化簡(jiǎn):(1)二次根式的乘除;(2)二次根式的乘除.
    師生活動(dòng) 提問(wèn):你是怎么理解例(1)的?
    師生合作回答上述問(wèn)題.對(duì)于根式運(yùn)算的最后結(jié)果,一般被開(kāi)方數(shù)中有開(kāi)得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外.
    再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?
    【設(shè)計(jì)意圖】通過(guò)運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡(jiǎn)的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn).
    例2計(jì)算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。
    師生活動(dòng) 學(xué)生計(jì)算,教師檢驗(yàn).
    (3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外.
    【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算.讓學(xué)生認(rèn)識(shí)到,二次根式是一類(lèi)特殊的實(shí)數(shù),因此滿(mǎn)足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.
    教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開(kāi)方數(shù)的符號(hào).可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問(wèn)題.
    4.鞏固概念,學(xué)以致用。
    練習(xí):教科書(shū)第7頁(yè)練習(xí)第1題.第10頁(yè)習(xí)題16.2第1題.
    【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況.
    5.歸納小結(jié),反思提高。
    師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:
    (1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?
    (2)你能說(shuō)明乘法法則逆用的意義嗎?
    (3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?
    6.布置作業(yè):教科書(shū)第7頁(yè)第2、3題.習(xí)題16.2第1,6題.
    五、目標(biāo)檢測(cè)設(shè)計(jì)。
    1.下列各式中,一定能成立的是()。
    【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).
    2.化簡(jiǎn)二次根式的乘除______________________________。
    【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.
    3.已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是()。
    a.二次根式的乘除b.二次根式的乘除c.二次根式的乘除d.二次根式的乘除。
    【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式.
    二次根式數(shù)學(xué)教案篇十二
    3、進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價(jià)值。
    本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識(shí)和綜合運(yùn)用,思路比較復(fù)雜。
    1、解決節(jié)前問(wèn)題:
    歸納:
    在日常生活和生產(chǎn)實(shí)際中,我們?cè)诮鉀Q一些問(wèn)題,尤其是涉及直角三角形邊長(zhǎng)計(jì)算的問(wèn)題時(shí)經(jīng)常用到二次根式及其運(yùn)算。
    1、:如圖,扶梯ab的坡比(be與ae的長(zhǎng)度之比)為1:0.8,滑梯cd的坡比為1:1.6,ae=米,bc= cd。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過(guò)了多少路程(結(jié)果要求先化簡(jiǎn),再取近似值,精確到0.01米)
    教學(xué)程序與策略
    完成課本p17、1,組長(zhǎng)檢查反饋;
    1:如圖是一張等腰三角形彩色紙,ac=bc=40cm,將斜邊上的高cd四等分,然后裁出3張寬度相等的長(zhǎng)方形紙條。(1)分別求出3張長(zhǎng)方形紙條的長(zhǎng)度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過(guò)多少cm。
    師生共同分析解題思路,請(qǐng)學(xué)生寫(xiě)出解題過(guò)程。
    1、談一談:本節(jié)課你有什么收獲?
    2、運(yùn)用二次根式解決簡(jiǎn)單的實(shí)際問(wèn)題時(shí)應(yīng)注意的的問(wèn)題
    二次根式數(shù)學(xué)教案篇十三
    本節(jié)是九年級(jí)上學(xué)期數(shù)學(xué)的起始課。二次根式的學(xué)習(xí),是對(duì)代數(shù)式的進(jìn)一步學(xué)習(xí)。本節(jié)主要經(jīng)歷二次根式的發(fā)生過(guò)程及對(duì)二次根式的理解。掌握求二次根式的值和二次根式根號(hào)內(nèi)字母的取值范圍。為以后的運(yùn)用二次根式的運(yùn)算解決實(shí)際問(wèn)題打好基礎(chǔ)。
    1、學(xué)習(xí)任務(wù)分析:
    通過(guò)對(duì)數(shù)和平方根、算術(shù)平方根的復(fù)習(xí),鼓勵(lì)學(xué)生經(jīng)歷觀察、歸納、類(lèi)比等方法理解二次根式的概念。在解決實(shí)際問(wèn)題的時(shí)候,注意轉(zhuǎn)化思想的滲透。體會(huì)分析問(wèn)題、解決問(wèn)題的方法,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。比如求二次根式根號(hào)內(nèi)的字母的取值范圍,就是將問(wèn)題轉(zhuǎn)化為不等式來(lái)解決。注意學(xué)生數(shù)學(xué)書(shū)寫(xiě)格式的規(guī)范,為以后的學(xué)習(xí)打好基礎(chǔ)。為了使學(xué)生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學(xué)原則,用復(fù)習(xí)以前學(xué)過(guò)的知識(shí)導(dǎo)入新課。設(shè)計(jì)合作學(xué)習(xí)活動(dòng),引導(dǎo)學(xué)生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實(shí)際問(wèn)題的過(guò)程,真正把學(xué)生放到主體位置。
    2、學(xué)生的認(rèn)知起點(diǎn)分析:
    學(xué)生已掌握數(shù)的平方根和算術(shù)平方根。這為經(jīng)歷二次根式概念的發(fā)生過(guò)程做好準(zhǔn)備。另外,學(xué)生對(duì)數(shù)的算術(shù)平方根的理解作為基礎(chǔ),經(jīng)歷跟此根式概念的發(fā)生過(guò)程,引導(dǎo)學(xué)生對(duì)二次根式概念的理解。
    案例反思:
    以往對(duì)這類(lèi)問(wèn)題的回答都是全班回答,有些學(xué)生反面信息不能體現(xiàn)出來(lái)。采取的`措施是全班舉手勢(shì)回答,可以做二次根式的被開(kāi)方數(shù)舉“布”,若不能舉“拳頭”。使班級(jí)能夠全面參與,避免集體回答所體現(xiàn)不出的問(wèn)題。
    2、合作活動(dòng):
    第一位同學(xué)——出題者:請(qǐng)你按表中的要求寫(xiě)完后,按順時(shí)針?lè)较蚪唤o下一位同學(xué);
    第二位同學(xué)——解題者:請(qǐng)你按表中的要求解完后,按順時(shí)針?lè)较蚪唤o下一位同學(xué);
    第四位同學(xué)——復(fù)查者:請(qǐng)你一定要把好關(guān)哦!
    出題者姓名:
    解題者姓名:
    1、要使式子的值為實(shí)數(shù),求x的取值范圍。
    2、寫(xiě)出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。
    3、寫(xiě)出x的一個(gè)值,使式子的值為無(wú)理數(shù),并求出這個(gè)無(wú)理數(shù)。
    1、要使式子的值為實(shí)數(shù),求x的取值范圍。
    2、寫(xiě)出x的一個(gè)值,使式子的值為有理數(shù),并求出這個(gè)有理數(shù)。
    3、寫(xiě)出x的一個(gè)值,使式子的值為無(wú)理數(shù),并求出這個(gè)無(wú)理數(shù)。
    批改者姓名:
    復(fù)查者姓名:
    《課程標(biāo)準(zhǔn)》突出了學(xué)生在學(xué)習(xí)中的地位--學(xué)生是學(xué)習(xí)的主人,同時(shí),教師的地位、角色發(fā)生了變化,從“主導(dǎo)”變成了“學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者和合作者”。合作活動(dòng)的安排就是對(duì)這一課程標(biāo)準(zhǔn)的體現(xiàn)。
    二次根式數(shù)學(xué)教案篇十四
    (2)會(huì)用公式化簡(jiǎn)二次根式。
    (1)學(xué)生能通過(guò)計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;
    (2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式。
    教學(xué)問(wèn)題診斷分析
    本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難。運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過(guò)的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣。,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣。
    在教學(xué)時(shí),通過(guò)實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:
    (2)如果被開(kāi)方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn)。
    本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn)。
    教學(xué)過(guò)程設(shè)計(jì)
    1、復(fù)習(xí)引入,探究新知
    我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開(kāi)始我們要學(xué)習(xí)二次根式的乘除。本節(jié)課先學(xué)習(xí)二次根式的乘法。
    問(wèn)題1什么叫二次根式?二次根式有哪些性質(zhì)?
    師生活動(dòng)學(xué)生回答。
    【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì)。
    問(wèn)題2教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?
    師生活動(dòng)學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的內(nèi)容。
    【設(shè)計(jì)意圖】學(xué)生在自主探究的過(guò)程中發(fā)現(xiàn)規(guī)律,運(yùn)用類(lèi)比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則。要求學(xué)生用數(shù)學(xué)語(yǔ)言和文字分別描述法則,以培養(yǎng)學(xué)生的符號(hào)意識(shí)。
    2、觀察比較,理解法則
    問(wèn)題3簡(jiǎn)單的根式運(yùn)算。
    師生活動(dòng)學(xué)生動(dòng)手操作,教師檢驗(yàn)。
    問(wèn)題4二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?
    師生活動(dòng)學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì)。
    【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況。乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的'算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的運(yùn)算能力。
    3、例題示范,學(xué)會(huì)應(yīng)用
    例1化簡(jiǎn):(1)二次根式的乘除;(2)二次根式的乘除。
    師生活動(dòng)提問(wèn):你是怎么理解例(1)的?
    師生合作回答上述問(wèn)題。對(duì)于根式運(yùn)算的最后結(jié)果,一般被開(kāi)方數(shù)中有開(kāi)得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外。
    再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?
    【設(shè)計(jì)意圖】通過(guò)運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡(jiǎn)的方向。積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn)。
    例2計(jì)算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除
    師生活動(dòng)學(xué)生計(jì)算,教師檢驗(yàn)。
    (3)例(3)的運(yùn)算是選學(xué)內(nèi)容。讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算。本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外。
    【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算。讓學(xué)生認(rèn)識(shí)到,二次根式是一類(lèi)特殊的實(shí)數(shù),因此滿(mǎn)足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用。
    教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開(kāi)方數(shù)的符號(hào)??梢愿鶕?jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問(wèn)題。
    4、鞏固概念,學(xué)以致用
    練習(xí):教科書(shū)第7頁(yè)練習(xí)第1題。第10頁(yè)習(xí)題16.2第1題。
    【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況。
    5、歸納小結(jié),反思提高
    師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:
    (1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?
    (2)你能說(shuō)明乘法法則逆用的意義嗎?
    (3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?
    6、布置作業(yè):教科書(shū)第7頁(yè)第2、3題。習(xí)題16.2第1,6題。
    五、目標(biāo)檢測(cè)設(shè)計(jì)
    1、下列各式中,一定能成立的是( )
    a.二次根式的乘除b.二次根式的乘除
    c.二次根式的乘除d.二次根式的乘除
    【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ)。
    2、化簡(jiǎn)二次根式的乘除______________________________。
    【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式。
    3、已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是()
    a.二次根式的乘除b.二次根式的乘除c.二次根式的乘除d.二次根式的乘除
    【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式。
    二次根式數(shù)學(xué)教案篇十五
    2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
    最簡(jiǎn)二次根式的定義。
    一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
    1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
    2.引導(dǎo)學(xué)生觀察考慮:
    化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?
    化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。
    3.啟發(fā)學(xué)生回答:
    二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
    1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
    滿(mǎn)足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
    (1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;
    (2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。
    最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。
    2.練習(xí):
    下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
    3.例題:
    例1 把下列各式化成最簡(jiǎn)二次根式:
    例2 把下列各式化成最簡(jiǎn)二次根式:
    4.總結(jié)
    把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
    當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
    當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
    此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
    1.把下列各式化成最簡(jiǎn)二次根式:
    2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
    本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。
    下列各式化成最簡(jiǎn)二次根式:
    二次根式數(shù)學(xué)教案篇十六
    2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
    一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
    1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
    2.引導(dǎo)學(xué)生觀察考慮:
    化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?
    化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。
    3.啟發(fā)學(xué)生回答:
    二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
    1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
    滿(mǎn)足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
    (1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;。
    (2)被開(kāi)方數(shù)中不含能開(kāi)得盡的.因數(shù)或因式。
    最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。
    2.練習(xí):
    下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
    3.例題:
    例1把下列各式化成最簡(jiǎn)二次根式:
    例2把下列各式化成最簡(jiǎn)二次根式:
    4.總結(jié)。
    把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
    當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
    當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
    此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
    1.把下列各式化成最簡(jiǎn)二次根式:
    2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
    本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。
    二次根式數(shù)學(xué)教案篇十七
    新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過(guò)四個(gè)實(shí)際問(wèn)題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過(guò)二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過(guò)學(xué)生所熟悉的實(shí)際問(wèn)題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程中,進(jìn)一步體會(huì)二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。
    1.知道什么是二次根式,并會(huì)用二次根式的意義解題;
    2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;
    通過(guò)二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;
    1.經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程,發(fā)展應(yīng)用的意識(shí);
    2.通過(guò)二次根式性質(zhì)的介紹滲透對(duì)稱(chēng)性、規(guī)律性的數(shù)學(xué)美。
    重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;
    難點(diǎn):確定二次根式中字母的取值范圍。
    啟發(fā)式、講練結(jié)合
    多媒體
    1課時(shí)
    二次根式數(shù)學(xué)教案篇十八
    5、通過(guò)二次根式性質(zhì)和的介紹滲透對(duì)稱(chēng)性、規(guī)律性的數(shù)學(xué)美。
    重點(diǎn):(1)二次根的意義;
    難點(diǎn):確定二次根式中字母的取值范圍。
    啟發(fā)式、講練結(jié)合。
    (一)復(fù)習(xí)提問(wèn)。
    1、什么叫平方根、算術(shù)平方根?
    2、說(shuō)出下列各式的意義,并計(jì)算:
    通過(guò)練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的`概念。
    觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中,表示的是算術(shù)平方根。
    (二)引入新課。
    我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:
    對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):
    (1)式子只有在條件a0時(shí)才叫二次根式,是二次根式嗎?呢?
    若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
    (2)是二次根式,而,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次。
    根式指的是某種式子的外在形態(tài)。請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
    例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?
    例2x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?
    解:略。
    說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x-3是非負(fù)數(shù),式子有意義。
    例3當(dāng)字母取何值時(shí),下列各式為二次根式:
    分析:由二次根式的定義,被開(kāi)方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式。
    解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b20,當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。
    (2)-3x0,x0,即x0時(shí),是二次根式。
    (3),且x0,x0,當(dāng)x0時(shí),是二次根式。
    (4),即,故x-20且x-20,x2、當(dāng)x2時(shí),是二次根式。
    例4下列各式是二次根式,求式子中的字母所滿(mǎn)足的條件:
    分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿(mǎn)足的條件,進(jìn)一步鞏固二次根式的定義,、即:只有在條件a0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開(kāi)方數(shù)都大于等于零。
    解:(1)由2a+30,得、
    (2)由,得3a-10,解得、
    (3)由于x取任何實(shí)數(shù)時(shí)都有|x|0,因此,|x|+0、10,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
    (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))。
    1、式子叫做二次根式,實(shí)際上是一個(gè)非負(fù)的實(shí)數(shù)a的算術(shù)平方根的表達(dá)式。
    2、式子中,被開(kāi)方數(shù)(式)必須大于等于零。
    (四)練習(xí)和作業(yè)。
    1、判斷下列各式是否是二次根式。
    分析:(2)中,,是二次根式;(5)是二次根式。因?yàn)閤是實(shí)數(shù)時(shí),x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時(shí),又如當(dāng)x-1時(shí)=,因此(1)(3)(4)不是二次根式,(6)無(wú)意義。
    2、a是怎樣的實(shí)數(shù)時(shí),下列各式在實(shí)數(shù)范圍內(nèi)有意義?
    二次根式數(shù)學(xué)教案篇十九
    1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問(wèn)題。
    2、過(guò)程與方法:進(jìn)一步體會(huì)分類(lèi)討論的數(shù)學(xué)思想。
    3、情感、態(tài)度與價(jià)值觀:通過(guò)小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
    1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。
    2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。
    課本第2― 3頁(yè)
    一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見(jiàn)附件1)
    學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。
    二、 課堂教學(xué)
    (一)合作學(xué)習(xí)階段。
    教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問(wèn)題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問(wèn)題做好記錄。
    (二)集體講授階段。(15分鐘左右)
    1. 各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問(wèn)題進(jìn)行解答,不足的本組成員可以補(bǔ)充。
    2. 教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的問(wèn)題進(jìn)行集體講解。
    3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。
    (三)當(dāng)堂檢測(cè)階段
    為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。
    (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)
    三、 課后作業(yè)(課后作業(yè)見(jiàn)附件2)
    教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。
    四、板書(shū)設(shè)計(jì)
    課題:二次根式(1)
    二次根式概念 例題 例題
    二次根式性質(zhì)
    反思: