初二數(shù)學教案勾股定理(通用19篇)

字號:

    教案可以幫助教師更好地組織課堂教學活動,提高學生的學習效果。編寫教案時,教師需要先明確教學目標,確保教學活動的目的明確通過閱讀下面的教案范文,你可以了解更多關于教案的寫作和應用。
    初二數(shù)學教案勾股定理篇一
    教學方法葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引導學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。
    學法指導為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。
    初二數(shù)學教案勾股定理篇二
    從知識結構上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關系,為后續(xù)學習解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應用。
    從學生認知結構上看,它把形的特征轉化成數(shù)量關系,架起了幾何與代數(shù)之間的橋梁;
    勾股定理又是對學生進行愛國主義教育的良好素材,因此具有相當重要的地位和作用。
    根據(jù)數(shù)學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數(shù)學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。
    (二)重點與難點。
    為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導學生動手實驗突出重點,合作交流突破難點。
    初二數(shù)學教案勾股定理篇三
    教材分析:勾股定理是直角三角形的重要性質,它把三角形有一個直角的"形"的特點,轉化為三邊之間的"數(shù)"的關系,它是數(shù)形結合的典范。它可以解決許多直角三角形中的計算問題,它是直角三角形特有的性質,是初中數(shù)學教學內容重點之一。本節(jié)課的重點是發(fā)現(xiàn)勾股定理,難點是說明勾股定理的正確性。
    學生分析:
    1、考慮到三角尺學生天天在用,較為熟悉,但真正能仔細研究過三角尺的同學并不多,通過這樣的情景設計,能非常簡單地將學生的注意力引向本節(jié)課的本質。
    2、以與勾股定理有關的人文歷史知識為背景展開對直角三角形三邊關系的討論,能激發(fā)學生的學習興趣。
    設計理念:本教案以學生手中舞動的三角尺為知識背景展開,以勾股定理在古今中外的發(fā)展史為主線貫穿課堂始終,讓學生對勾股定理的發(fā)展過程有所了解,讓他們感受勾股定理的豐富文化內涵,體驗勾股定理的探索和運用過程,激發(fā)學生學習數(shù)學的興趣,特別是通過向學生介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和探究創(chuàng)新的精神。
    教學目標:
    1、經歷用面積割、補法探索勾股定理的過程,培養(yǎng)學生主動探究意識,發(fā)展合理推理能力,體現(xiàn)數(shù)形結合思想。
    2、經歷用多種割、補圖形的方法驗證勾股定理的過程,發(fā)展用數(shù)學的眼光觀察現(xiàn)實世界和有條理地思考能力以及語言表達能力等,感受勾股定理的文化價值。
    3、培養(yǎng)學生學習數(shù)學的興趣和愛國熱情。
    4、欣賞設計圖形美。
    教學準備階段:
    學生準備:正方形網格紙若干,全等的直角三角形紙片若干,彩筆、直角三角尺、鉛筆等。
    老師準備:畢達哥拉斯、趙爽、劉徽等證明勾股定理的圖片以及其它有關人物歷史資料等投影圖片。
    (一)引入。
    同學們,當你每天手握三角尺繪制自己的宏偉藍圖時,你是否想過:他們的邊有什么關系呢?今天我們來探索這一小秘密。(板書課題:探索直角三角形三邊關系)。
    (二)實驗探究。
    設網格正方形的邊長為1,直角三角形的直角邊分別為a、b,斜邊為c,觀察并計算每個正方形的面積,以四人小組為單位填寫下表:
    (討論難點:以斜邊為邊的正方形的面積找法)。
    交流后得出一般結論:(用關于a、b、c的式子表示)。
    (三)探索所得結論的正確性。
    當直角三角形的直角邊分別為a、b,斜邊為c時,是否一定成立?
    1、指導學生運用拼圖、或正方形網格紙構造或設計合理分割(或補全)圖形,去探索本結論的正確性:(以四人小組為單位進行)。
    在學生所創(chuàng)作圖形中選擇有代表性的割、補圖,展示出來交流講解,并引導學生進行說理:
    如圖2(用補的方法說明)。
    師介紹:(出示圖片)畢達哥拉斯,公元前約500年左右,古西臘一位哲學家、數(shù)學家。一天,他應邀到一位朋友家做客,他一進朋友家門就被朋友家的豪華的方形大理石地磚的形狀深深吸引住了,于是他立刻找來尺子和筆又量又畫,他發(fā)現(xiàn)以每塊大理石地磚的相鄰兩直角邊向三角形外作正方形,它們的面積和等于以這塊大理石地磚的對角線為邊向形外作正方形的面積。于是他回到家里立刻對他的這一發(fā)現(xiàn)進行了探究證明……,終獲成功。后來西方人們?yōu)榱思o念他的這一發(fā)現(xiàn),將這一定理命名為"畢達哥拉斯定理"。1952年,希臘政府為了紀念這位偉大的數(shù)學家,特別選用他設計的這種圖形為主圖發(fā)行了一枚紀念郵票。(見課本52頁彩圖2—1,欣賞圖片)。
    如圖3(用割的方法去探索)。
    師介紹:(出示圖片)中國古代數(shù)學家們很早就發(fā)現(xiàn)并運用這個結論。早在公元前2000年左右,大禹治水時期,就曾經用過此方法測量土地的`等高差,公元前1100年左右,西周的數(shù)學家商高就曾用"勾三、股四、弦五"測量土地,他們對這一結論的運用至少比古希臘人早500多年。公元200年左右,三國時期吳國數(shù)學家趙爽曾構造此圖驗證了這一結論的正確性。他的這個證明,可謂別具匠心,極富創(chuàng)新意識,他用幾何圖形的割、來證明代數(shù)式之間的相等關系,既嚴密,又直觀,為中國古代以"形"證"數(shù)",形、數(shù)統(tǒng)一的獨特風格樹立了一個典范。他是我國有記載以來第一個證明這一結論的數(shù)學家。我國數(shù)學家們?yōu)榱思o念我國在這方面的數(shù)學成就,將這一結論命名為"勾股定理"。(點題)。
    20xx年,世界數(shù)學家大會在中國北京召開,當時選用這個圖案作為會場主圖,它標志著我國古代數(shù)學的輝煌成就。(見課本50頁彩圖,欣賞圖片)。
    如圖4(構造新圖形的方法去探索)。
    1、繼續(xù)收集、整理有關勾股定理的證明方的探索問題并交流。
    初二數(shù)學教案勾股定理篇四
    1、知識與技能目標:探索并理解直角三角形的三邊之間的數(shù)量關系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。
    2、過程與方法目標:經歷用測量和數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推理能力。
    3、情感態(tài)度與價值觀目標:通過本節(jié)課的學習,培養(yǎng)主動探究的習慣,并進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。
    初二數(shù)學教案勾股定理篇五
    理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。
    【過程與方法】。
    經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。
    【情感、態(tài)度與價值觀】。
    體會事物之間的聯(lián)系,感受幾何的魅力。
    【重點】勾股定理的逆定理及其證明。
    【難點】勾股定理的逆定理的證明。
    (一)導入新課。
    復習勾股定理,分清其題設和結論。
    提問學生畫直角三角形的方法(可用尺類工具),然后要求不能用繩子以外的工具。
    出示古埃及人利用等長的3、4、5個繩結間距畫直角三角形的方法,以其中蘊含何道理為切入點引出課題。
    (二)講解新知。
    請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確。
    出示數(shù)據(jù)2.5cm,6cm,6.5cm,請學生計算驗證數(shù)據(jù)滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。
    學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。
    初二數(shù)學教案勾股定理篇六
    本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。
    采用“七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學文化為主線這一設計理念,展現(xiàn)了我國古代數(shù)學璀璨的歷史,激發(fā)學生再創(chuàng)數(shù)學輝煌的愿望。
    初二數(shù)學教案勾股定理篇七
    本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動.學生在學習七年級上第一章時對生活中的立體圖形已經有了一定的認識,并從事過相應的實踐活動,因而學生已經具備解決本課問題所需的知識基礎和活動經驗基礎.
    二、教學任務分析。
    本節(jié)是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié).具體內容是運用勾股定理及其逆定理解決簡單的實際問題.當然,在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力.
    本節(jié)課的教學目標是:
    1.通過觀察圖形,探索圖形間的關系,發(fā)展學生的空間觀念.
    2.在將實際問題抽象成數(shù)學問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.
    3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學學習的實用性.
    利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.
    四、教法學法。
    1.教學方法。
    引導—探究—歸納。
    本節(jié)課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學目標,我力求以下三個方面對學生進行引導:
    (1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;。
    (2)從學生活動出發(fā),順勢教學過程;。
    (3)利用探索研究手段,通過思維深入,領悟教學過程.
    2.課前準備。
    教具:教材、電腦、多媒體課件.
    學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具.
    五、教學過程分析。
    本節(jié)課設計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè).
    初二數(shù)學教案勾股定理篇八
    1、了解什么是比例,能夠正確地表示比例關系。
    2、掌握比例的性質,能夠靈活地運用比例的性質進行解題。
    3、通過練習,提高解決實際問題的能力。
    1、比例的概念及表示方法。
    2、比例的性質。
    3、比例的應用。
    1、比例的應用。
    2、解決實際問題的能力。
    一、引入(5分鐘)。
    1、教師出示一張比例圖,讓學生猜測比例的'含義。
    2、學生回答后,教師講解比例的概念及表示方法。
    二、講解(15分鐘)。
    1、教師講解比例的性質。
    2、教師通過例題讓學生掌握比例的應用。
    三、練習(30分鐘)。
    1、教師出示一些比例題目,讓學生在課堂上完成。
    2、學生完成后,教師講解答案及解題方法。
    四、鞏固(10分鐘)。
    1、教師出示一些實際問題,讓學生運用比例的知識進行解決。
    2、學生完成后,教師講解答案及解題方法。
    五、作業(yè)(5分鐘)。
    1、教師布置相關作業(yè)。
    2、學生完成后,交給教師批改。
    通過本節(jié)課的教學,學生們對比例的概念及表示方法有了更深入的了解,掌握了比例的性質,并通過練習提高了解決實際問題的能力。但是,教學過程中還存在一些問題,比如有些學生對比例的應用還不夠熟練,需要加強練習。因此,下一節(jié)課需要針對這些問題進行更加深入的講解和練習。
    初二數(shù)學教案勾股定理篇九
    例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、
    (首先,用算術方法解,由學生回答,教師板書)
    解法1:(4+2)÷(3-1)=3、
    答:某數(shù)為3、
    (其次,用代數(shù)方法來解,教師引導,學生口述完成)
    解法2:設某數(shù)為x,則有3x-2=x+4、
    解之,得x=3、
    答:某數(shù)為3、
    師生共同分析:
    1、本題中給出的已知量和未知量各是什么?
    2、已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)
    上述分析過程可列表如下:
    解:設原來有x千克面粉,那么運出了15%x千克,由題意,得
    x-15%x=42 500,
    所以 x=50 000、
    答:原來有 50 000千克面粉、
    (還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)
    教師應指出:
    (2)例2的解方程過程較為簡捷,同學應注意模仿、
    依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結的情況,教師總結如下:
    (2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系、(這是關鍵一步);
    (4)求出所列方程的解;
    (仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥、解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤、并嚴格規(guī)范書寫格式)
    解:設第一小組有x個學生,依題意,得
    3x+9=5x-(5-4),
    解這個方程: 2x=10,
    所以 x=5、
    其蘋果數(shù)為 3× 5+9=24、
    答:第一小組有5名同學,共摘蘋果24個、
    學生板演后,引導學生探討此題是否可有其他解法,并列出方程、
    (設第一小組共摘了x個蘋果,則依題意,得 )
    3、某工廠女工人占全廠總人數(shù)的 35%,男工比女工多 252人,求全廠總人數(shù)、
    首先,讓學生回答如下問題:
    1、本節(jié)課學習了哪些內容?
    2、列一元一次方程解應用題的方法和步驟是什么?
    3、在運用上述方法和步驟時應注意什么?
    依據(jù)學生的回答情況,教師總結如下:
    (2)以上步驟同學應在理解的基礎上記憶、
    1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?
    2、用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
    初二數(shù)學教案勾股定理篇十
    隨著社會的發(fā)展,新課程改革的不斷深入,數(shù)學課已不僅是一些數(shù)學知識的學習,更重要的是體現(xiàn)知識的認知發(fā)展過程。教育的目的是培養(yǎng)具有獨立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應該是學生最大限度參與的課?!稊?shù)學課程標準》中指出學生的數(shù)學學習應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,內容要有利與學生主動進行觀察、實驗、猜想、驗證、推理與交流。內容的呈現(xiàn)應采取不同的表達方式,以滿足多樣化的學習需求。數(shù)學活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。
    本節(jié)知識是在學生掌握了直角三角形的三個性質:直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎上展開的。勾股定理是直角三角形的一個非常重要的性質,它揭示了一個直角三角形三邊的數(shù)量關系,可解決直角三角形的許多有關的計算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經常出現(xiàn)。貫穿了整個幾何學習,更是數(shù)形結合的重要典范。更重要的是學生在探索定理的過程中,無論是課前準備和課上交流以及課下活動都讓學生充分感受到學習、思考的重要性,與人合作的重要性以及數(shù)學在實際生活中的重要作用,是進行愛國教育的重要題材!
    本節(jié)課的教育對象是初二下的學生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數(shù)學學習習慣。
    初二數(shù)學教案勾股定理篇十一
    教學目標:
    1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
    教學重點:
    引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學難點:
    課前準備:
    多媒體ppt,相關圖片。
    教學過程:
    (一)情境導入。
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
    已知一直角三角形的兩邊,如何求第三邊?
    學習了今天的這節(jié)課后,同學們就會有辦法解決了。
    (二)學習新課。
    初二數(shù)學教案勾股定理篇十二
    勾股定理的逆定理能幫助我們通過三角形三邊之間的數(shù)量關系判斷一個三角形是否是直角三角形,在具體推算過程中,應用兩短邊的平方和與最長邊的平方進行比較,切不可不加思考的用兩邊的平方和與第三邊的平方比較而得到錯誤的結論。
    初二數(shù)學教案勾股定理篇十三
    教學目標:
    1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
    教學重點:
    引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學難點:
    課前準備:
    多媒體ppt,相關圖片。
    教學過程:
    (一)情境導入。
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,20國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
    初二數(shù)學教案勾股定理篇十四
    1.勾股定理內容:如果直角三角形的兩直角邊長分別為a,斜邊長為c,那么a2+b2=c2,即直角三角形兩直角邊的平方和等于斜邊的平方。
    勾股定理的'證明方法很多,常見的是拼圖的方法。
    (1)圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變;
    (2)根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導出勾股定理。
    勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征。
    初二數(shù)學教案勾股定理篇十五
    教學目標:
    1、知識與技能目標:理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。
    2、過程與方法目標:通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。
    3、情感、態(tài)度與價值觀目標:了解中國古代的數(shù)學成就,激發(fā)學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學的美感,從而了解數(shù)學,喜歡幾何。
    教學重點:
    引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題。
    教學難點:
    課前準備:
    多媒體ppt,相關圖片。
    教學過程:
    (一)情境導入。
    1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀念郵票,美麗的勾股樹,國際數(shù)學大會會標等。通過圖形欣賞,感受數(shù)學之美,感受勾股定理的文化價值。
    初二數(shù)學教案勾股定理篇十六
    知識與技能:
    1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。
    2、了解勾股定理的內容。
    3、能利用已知兩邊求直角三角形另一邊的長。
    過程與方法:
    1、通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。
    2、在探索活動中,學會與人合作,并能與他人交流思維的過程和探索的結果。
    情感與態(tài)度:
    1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數(shù)學家關于勾股定理的研究,激發(fā)學生熱愛祖國悠久文化的情感,激勵學生奮發(fā)學習。
    2、在探索勾股定理的過程中,體驗獲得結論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。
    二教學重、難點。
    重點:探索和證明勾股定理難點:用拼圖方法證明勾股定理。
    三、學情分析。
    學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。
    四、教學策略。
    本節(jié)課采用探究發(fā)現(xiàn)式教學,由淺入深,由特殊到一般地提出問題,鼓勵學生采用觀察分析、自主探索、合作交流的學習方法,讓學生經歷數(shù)學知識的形成與應用過程。
    五、教學過程。
    教學環(huán)節(jié)。
    教學內容。
    活動和意圖。
    創(chuàng)設情境導入新課。
    以“航天員在太空中遇到外星人時,用什么語言進行溝通”導入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進行和外星人溝通,為什么呢?通過一段vcr說明原因。
    [設計意圖]激發(fā)學生對勾股定理的興趣,從而較自然的引入課題。
    新知探究。
    畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數(shù)量關系。
    (1)同學們,請你也來觀察下圖中的地面,看看能發(fā)現(xiàn)些什么?
    (2)你能找出圖18.1-1中正方形1、2、3面積之間的關系嗎?
    通過講述故事來進一步激發(fā)學生學習興趣,使學生在不知不覺中進入學習的最佳狀態(tài)。
    如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
    回答以下內容:
    (1)想一想,怎樣利用小方格計算正方形a、b、c面積?
    (2)怎樣求出正方形面積c?
    (3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
    (4)將正方形a,b,c分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關系?
    引導學生將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.
    問題是思維的起點”,通過層層設問,引導學生發(fā)現(xiàn)新知。
    探究交流歸納。
    拼圖驗證加深理解。
    如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
    回答以下內容:
    (1)想一想,怎樣利用小方格計算正方形p、q、r的面積?
    (2)怎樣求出正方形面積r?
    (3)觀察所得的各組數(shù)據(jù),你有什么發(fā)現(xiàn)?
    (4)將正方形p,q,r分別移開,你能發(fā)現(xiàn)直角三角形邊長a,b,c有何數(shù)量關系?
    由以上兩問題可得猜想:
    直角三角形兩直角邊的平方和等于斜邊的平方。
    而猜想要通過證明才能成為定理。
    活動探究:
    (1)讓學生利用學具進行拼圖。
    (2)多媒體課件展示拼圖過程及證明過程理解數(shù)學的嚴密性。
    從特殊的等腰直角三角形過渡到一般的直角三角形。
    滲透從特殊到一般的數(shù)學思想.為學生提供參與數(shù)學活動的時間和空間,發(fā)揮學生的主體作用;培養(yǎng)學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。
    通過這些實際操作,學生進行一步加深對數(shù)形結合的理解,拼圖也會產生感性認識,也為論證勾股定理做好準備。
    利用分組討論,加強合作意識。
    1、經歷所拼圖形與多媒體展示圖形的聯(lián)系與區(qū)別。
    2、加強數(shù)學嚴密教育,從而更好地理解代數(shù)與圖形相結合。
    應用新知解決問題。
    在應用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。
    把生活中的實物抽象成幾何圖形,讓學生了解豐富變幻的圖形世界,培養(yǎng)了學生抽象思維能力,特別注重培養(yǎng)學生認識事物,探索問題,解決實際的能力。
    回顧小結整體感知。
    在最后的小結中,不但對知識進行小結更對方法要進行小節(jié),還可向學生介紹了美麗的圖案畢達哥拉斯樹,讓學生切身感受到其實數(shù)學與生活是緊密聯(lián)系的,進一步發(fā)現(xiàn)數(shù)學的另一種美。
    學生通過對學習過程的小結,領會其中的數(shù)學思想方法;通過梳理所學內容,形成完整知識結構,培養(yǎng)歸納概括能力。。
    布置作業(yè)鞏固加深。
    必做題:
    1.完成課本習題1,2,3題。
    選做題:
    針對學生認知的差異設計了有層次的作業(yè)題,既使學生鞏固知識,形成技能,讓感興趣的學生課后探索,感受數(shù)學證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
    初二數(shù)學教案勾股定理篇十七
    1.逆定理的內容:如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
    (2)定理中a,b,c及a2+b2=c2只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b.
    2.利用勾股定理的逆定理判斷一個三角形是否為直角三角形的一般步驟:
    (1)確定最大邊;
    (2)算出最大邊的平方與另兩邊的平方和;
    (3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
    初二數(shù)學教案勾股定理篇十八
    1.經歷平行四邊形判別條件的探索過程,發(fā)現(xiàn)平行四邊形的常用判別條件。
    2.掌握平行四邊形的判別條件;對角線互相平分的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形。
    3.逐步掌握說理的基本方法。
    1.在探索平行四邊形的判別條件的過程中,發(fā)展學生的合情推理意識,主動探索的習慣。
    2.鼓勵學生用多種方法進行說理。
    1.培養(yǎng)學生探索創(chuàng)新的能力,開拓學生思路,發(fā)展學生的思維能力。
    2.培養(yǎng)學生合作學習,增強學生的自我評價意識。
    教材通過創(chuàng)設“釘制平行四邊形框架”這一情境,便于學生發(fā)現(xiàn)和探索平行四邊形的常用判別方法。如有條件可要求學生自己準備,由學生自我操作。也可由教師演示。
    教學重點:平行四邊形的判別方法。
    教學難點:利用平行四邊形的判別方法進行正確的說理。
    初二學生對平面圖形的認識能力正在形成,抽象思維還不夠,學習幾何知識處于現(xiàn)象描述和說理的過渡時期。因此,對這部分內容的學習,要引導學生學會正確的說理,理清楚四邊形在什么條件下用判定定理,在什么條件下用性質定理。
    一、創(chuàng)設情境,引入新課
    師:請同學們拿出課前準備的小木條,幫助小明的爸爸釘制平行四邊形的框架。
    學生活動:學生按小組進行探索。
    初二數(shù)學教案勾股定理篇十九
    師生行為學生分組討論,交流總結;教師引導學生回憶.。
    師:那么,一個三角形滿足什么條件,才能是直角三角形呢?
    生:有一個內角是90°,那么這個三角形就為直角三角形.。
    生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形.。
    二、講授新課。
    是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?
    活動3下面的三組數(shù)分別是一個三角形的三邊長?