教案應(yīng)該包含具體的教學(xué)內(nèi)容和教學(xué)步驟,方便教師掌握教學(xué)進(jìn)度和內(nèi)容。在教案中,教師應(yīng)該注重培養(yǎng)學(xué)生的學(xué)習(xí)興趣和主動性。每個教案都有其獨特之處,你可以從中找到適合自己的教學(xué)方法和策略。
正反比例教案篇一
2.利用反比例函數(shù)的圖象解決有關(guān)問題.
1.經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);。
2.探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題.
一、創(chuàng)設(shè)情境。
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質(zhì).
二、探究歸納。
1.畫出函數(shù)的圖象.
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x0.
解1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應(yīng)值:
2.描點:用表里各組對應(yīng)值作為點的坐標(biāo),在直角坐標(biāo)系中描出在京各點點(-6,-1)、(-3,-2)、(-2,-3)等.
3.連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支.這兩個分支合起來,就是反比例函數(shù)的圖象.
上述圖象,通常稱為雙曲線(hyperbola).
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟).
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題.
1.這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2.反比例函數(shù)(k0)的圖象在哪兩個象限內(nèi)?由什么確定?
(2)當(dāng)k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加.
注1.雙曲線的兩個分支與x軸和y軸沒有交點;。
2.雙曲線的兩個分支關(guān)于原點成中心對稱.
以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少.
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小.
三、實踐應(yīng)用。
例1若反比例函數(shù)的圖象在第二、四象限,求m的值.
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值.
解由題意,得解得.
例2已知反比例函數(shù)(k0),當(dāng)x0時,y隨x的.增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限.
分析由于反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方.
解因為反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限.
例3已知反比例函數(shù)的圖象過點(1,-2).
(1)求這個函數(shù)的解析式,并畫出圖象;。
(2)由點a在反比例函數(shù)的圖象上,易求出m的值,再驗證點a關(guān)于兩坐標(biāo)軸和原點的對稱點是否在圖象上.
解(1)設(shè):反比例函數(shù)的解析式為:(k0).
而反比例函數(shù)的圖象過點(1,-2),即當(dāng)x=1時,y=-2.
所以,k=-2.
(2)點a(-5,m)在反比例函數(shù)圖象上,所以,
點a的坐標(biāo)為.
點a關(guān)于x軸的對稱點不在這個圖象上;。
點a關(guān)于y軸的對稱點不在這個圖象上;。
點a關(guān)于原點的對稱點在這個圖象上;。
(1)求m的值;。
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當(dāng)-3時,求此函數(shù)的最大值和最小值.
解(1)由反比例函數(shù)的定義可知:解得,m=-2.
(2)因為-20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大.
(3)因為在第個象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時,y最大值=;。
當(dāng)x=-3時,y最小值=.
所以當(dāng)-3時,此函數(shù)的最大值為8,最小值為.
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數(shù)關(guān)系式;。
(2)寫出自變量x的取值范圍;。
(3)畫出函數(shù)的圖象.
解(1)因為100=5xy,所以.
(2)x0.
(3)圖象如下:
說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支.
四、交流反思。
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì).
1.反比例函數(shù)的圖象是雙曲線(hyperbola).
(2)當(dāng)k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加.
五、檢測反饋。
1.在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
(1);(2).
2.已知y是x的反比例函數(shù),且當(dāng)x=3時,y=8,求:
(1)y和x的函數(shù)關(guān)系式;。
(2)當(dāng)時,y的值;。
(3)當(dāng)x取何值時,?
3.若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值.
4.已知反比例函數(shù)經(jīng)過點a(2,-m)和b(n,2n),求:
(1)m和n的值;。
(2)若圖象上有兩點p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小.
正反比例教案篇二
知識與技能目標(biāo):使學(xué)生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
能力目標(biāo):經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。
情感與態(tài)度目標(biāo):體會反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點。
正反比例教案篇三
教科書第64~65頁的例3和“試一試”,“練一練”和練習(xí)十三的第6~8題。
1.使學(xué)生經(jīng)歷從具體實例中認(rèn)識成反比例的量的過程,初步理解反比例的意義,學(xué)會根據(jù)反比例的意義判斷兩種相關(guān)聯(lián)的量是不是成反比例。
2.使學(xué)生在認(rèn)識成反比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型,進(jìn)一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。
3.使學(xué)生進(jìn)一步體會數(shù)學(xué)與日常生活的密切聯(lián)系,增強(qiáng)從生活現(xiàn)象中探索數(shù)學(xué)知識和規(guī)律的意識。
掌握成反比例量的.變化規(guī)律及其特征。
教學(xué)準(zhǔn)備:多媒體。
一、復(fù)習(xí)鋪墊。
1、怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系?
2、判斷下面兩種量是否成正比例?為什么?
時間一定,行駛的路程和速度。
除數(shù)一定,被除數(shù)和商。
3、單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例?
4、導(dǎo)入新課:
如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量又存在什么關(guān)系?今天,我們就來研究和認(rèn)識這種變化規(guī)律。
二、探究新知。
1、出示例3的表格。
學(xué)生填表。
2、小組討論:
(1)表中列出的是哪兩種相關(guān)聯(lián)的量?它們分別是怎樣變化的?
(2)你能找出它們變化的規(guī)律嗎?
(3)猜一猜,這兩種量成什么關(guān)系?
3、全班交流。
學(xué)生初步概括反比例的意義(根據(jù)學(xué)生回答,板書)。
4、完成“試一試”
學(xué)生獨立填表。
思考題中所提出的問題。
組織交流,再次感知成反比例的量。
根據(jù)學(xué)生的回答,板書:x×y=k(一定)揭示板書課題。
三、鞏固應(yīng)用。
1、練一練。
每袋糖果的粒數(shù)和裝的袋數(shù)成反比例嗎?為什么?
2、練習(xí)十三第6題。
先算一算、想一想,再組織討論和交流。
要求學(xué)生完整地說出判斷的思考過程。
3、練習(xí)十三第7題。
先獨立思考作出判斷,再有條理地說明判斷的理由。
4、練習(xí)十三第8題。
先填表,根據(jù)表中數(shù)據(jù)進(jìn)行判斷,明確:長方形的面積一定,長和寬成反比例;長方形的周長一定,長和寬不成反比例。
5、思考:
100÷x=y,那么x和y成什么比例?為什么?
6、同桌學(xué)生相互出題,進(jìn)行判斷并說明理由。
四、反思。
學(xué)生交流。
五、作業(yè)。
完成《練習(xí)與測試》相關(guān)作業(yè)。
板書設(shè)計:
正反比例教案篇四
反比例的意義》是新課標(biāo)人教版小學(xué)數(shù)學(xué)六年級下冊第47-48頁的內(nèi)容。本節(jié)課的內(nèi)容是在教學(xué)了成正比例的量的`基礎(chǔ)上進(jìn)行教學(xué)的,是前面“比例”知識的深化,是后面學(xué)習(xí)“用它解決一些簡單正、反比例的實際問題”的基礎(chǔ),它起著承前啟后的作用,是小學(xué)階段比例初步知識教學(xué)中的一項重要內(nèi)容。為此,教學(xué)時先引導(dǎo)學(xué)生回憶已學(xué)過的數(shù)量關(guān)系,通過舉例、交流,知識遷移,體會生活中存在著大量的反比例的關(guān)系,在此基礎(chǔ)上探求新知,最后深化新知。
正反比例教案篇五
1.從現(xiàn)實情境和已有的知識經(jīng)驗出發(fā),討論兩個變量之間的相似關(guān)系,加深對函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
(二)能力訓(xùn)練要求。
結(jié)合具體情境體會反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達(dá)式.
(三)情感與價值觀要求。
結(jié)合實例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,是從感性認(rèn)識到理性認(rèn)識的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維;同時體驗數(shù)學(xué)活動與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用.
正反比例教案篇六
教學(xué)目標(biāo):1、使學(xué)生結(jié)合具體實例初步理解中位數(shù)的意義,會求一組簡單數(shù)據(jù)的中位數(shù),能具體問題選擇合適的統(tǒng)計量表示一組數(shù)據(jù)的整體特征。
2、使學(xué)生在初步理解中位數(shù)的過程中,進(jìn)一步體會數(shù)據(jù)對于分析問題、解決問題的作用,感受與同學(xué)交流的意義和樂趣,發(fā)展統(tǒng)計觀念。
教學(xué)重點:初步理解中位數(shù)的意義。
教學(xué)難點:選擇適當(dāng)?shù)慕y(tǒng)計量表示一組數(shù)據(jù)的特征。
設(shè)計理念:努力創(chuàng)設(shè)生活情境,促進(jìn)學(xué)生思考數(shù)學(xué)問題。注重從學(xué)生實際生活中的例子出發(fā),讓學(xué)生體會中位數(shù)的統(tǒng)計意義,體會描述數(shù)據(jù)的方式的多樣性,通過比較分析、討論交流,進(jìn)一步明確中位數(shù)與平均數(shù)、眾數(shù)三者之間的區(qū)別與聯(lián)系。
教學(xué)步驟教師活動學(xué)生活動。
一、創(chuàng)設(shè)情境。
促進(jìn)思考1、出示例3:四年級一班9個男生1分鐘跳繩成績記錄單。
觀察數(shù)據(jù),說說你對這組數(shù)據(jù)的看法。
小結(jié):可以先算出這組數(shù)據(jù)的平均數(shù),用7號男生的成績與平均數(shù)進(jìn)行比較;也可以按一定的順序把這組男生的成績重新排一排,看7號男生的成績排在第幾名。
4、師:為了更好地表示這組數(shù)據(jù)的整體特征,我們需要認(rèn)識一種新的統(tǒng)計量--中位數(shù)。(板書課題)。
學(xué)生回答。
交流討論。
交流討論。
二、自主探究合作交流1、你能把這組數(shù)據(jù)按從小到大或從大到小的順序重新排一排嗎?
指出:這組數(shù)據(jù)中,正中間的一個數(shù)是102,102是這組數(shù)據(jù)的中位數(shù)。
師:把7號男生的成績與中位數(shù)比較,你覺得該生的成績怎么樣?
2、你認(rèn)為是用中位數(shù)表示這組數(shù)據(jù)的整體特征合適,還是用平均數(shù)表示合適?說說你的理由。
學(xué)生交流。
你知道這組數(shù)據(jù)的平均數(shù)為什么會比中位數(shù)高得多嗎?
3、出示例4:四年級一班10個女生1分鐘跳繩成績記錄單。
你會求這組數(shù)據(jù)的中位數(shù)嗎?試一試。
討論:同中位數(shù)比,10號女生的成績怎么樣?其他女生呢?
學(xué)生按要求排一排。
小組交流。
大組匯報。
學(xué)生試做。
交流、匯報。
三、鞏固練習(xí)。
拓展提高1、指導(dǎo)完成“練一練”
各自求出這組數(shù)據(jù)的平均數(shù)和中位數(shù)。
討論:用哪個統(tǒng)計量代表這組同學(xué)家庭住房的整體水平比較合適?為什么?
思考:這組數(shù)據(jù)的平均數(shù)為什么會比中位數(shù)低得多?
明確:因為這組數(shù)據(jù)中有兩個數(shù)遠(yuǎn)遠(yuǎn)小于其他的數(shù),所以造成平均數(shù)比中位數(shù)低得多。
2、指導(dǎo)完成練習(xí)十六第2題。
分別算出八架飛機(jī)飛行時間的平均數(shù)和中位數(shù)。
討論:用哪個數(shù)據(jù)代表這八架飛機(jī)飛行時間比較合適?
小組合作完成(3),組織評價。
3、練習(xí)十六第3題。
分別算出這組數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù)。
討論:你認(rèn)為用哪個數(shù)據(jù)代表這個公司員工3月工資的實際情況比較合適?
學(xué)生練習(xí)。
思考討論。
新課標(biāo)第一網(wǎng)。
討論交流。
互相評價。
大組討論交流。
四、自主評價。
評價總結(jié)。
正反比例教案篇七
這節(jié)課是在學(xué)生學(xué)習(xí)正比例的基礎(chǔ)上進(jìn)行教學(xué)的。教學(xué)時充分相信學(xué)生、尊重學(xué)生,改變傳統(tǒng)的教學(xué)模式,學(xué)生由被動學(xué)習(xí)轉(zhuǎn)化為主動學(xué)習(xí),放手讓他們主動去探索出新知識,最大限度地充分發(fā)揮學(xué)生的主觀主動性。從而使學(xué)生學(xué)到探究新知的方法,體驗到成功的喜悅,激起學(xué)生學(xué)習(xí)的興趣。同時采用引探法,引導(dǎo)學(xué)生自主探究,培養(yǎng)他們利用已有知識解決新問題的能力。
正反比例教案篇八
本課時教學(xué)設(shè)計特點:一是情景設(shè)置和幾個表格的設(shè)計,都注重從現(xiàn)實題材出發(fā),讓學(xué)生感受到反比例在現(xiàn)實生活中的廣泛應(yīng)用。二是通過讓學(xué)生自己去分類整理、自主探究、合作交流得出反比例的意義,有利于發(fā)展學(xué)生的數(shù)學(xué)思維。
正反比例教案篇九
(一)復(fù)習(xí)猜想導(dǎo)入,引出問題。
1、成正比例的量有什么特征?什么叫正比例關(guān)系?
2、在生活中兩個相關(guān)聯(lián)的量有的成正比例關(guān)系,還可能成什么關(guān)系?學(xué)生很自然想到反比例,激發(fā)學(xué)生的學(xué)習(xí)欲望,問學(xué)生想學(xué)反比例的哪些知識,學(xué)生大膽猜測,對反比例的意義展開合理的猜想。由此導(dǎo)入新課。
達(dá)成目標(biāo):猜想導(dǎo)課,激發(fā)探究愿望。
(二)共同探索,總結(jié)方法。
1、明確這節(jié)課的學(xué)習(xí)目標(biāo):(1)理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。(2)經(jīng)歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學(xué)習(xí)方法。
2、情境導(dǎo)入,學(xué)習(xí)探究。
(1)我們先來看一個實驗。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)。
提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?
(2)學(xué)生討論交流。
(3)引導(dǎo)學(xué)生回答:表中的兩個量是高度和底面積。
高度擴(kuò)大,底面積反而縮小;高度縮小,底面積反而擴(kuò)大。
每兩個相對應(yīng)的數(shù)的乘積都是300.
(4)計算后你又發(fā)現(xiàn)了什么?
每兩個相對應(yīng)的數(shù)的乘積都是300,乘積一定。
教師小結(jié):我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。
教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?板書:高×底面積=水的體積(一定)。
(5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個什么樣的式子表示?板書:x×y=k(一定)。
小結(jié):通過上面的學(xué)習(xí),你認(rèn)為判斷兩種相關(guān)聯(lián)的量是否成反比例,關(guān)鍵是什么?
(6)歸納總結(jié)反比例的意義。
達(dá)成目標(biāo):比較思想是在小學(xué)數(shù)學(xué)教學(xué)中應(yīng)用十分普遍的數(shù)學(xué)思想方法,《成反比例的量》是繼《成正比例的量》一課后學(xué)習(xí)的內(nèi)容,兩節(jié)課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)方法有相似之處,學(xué)生從知識的差別中找到同一,也可以從同一中找出差別,學(xué)生學(xué)習(xí)新知識,進(jìn)行深化拓展,歸納總結(jié)。
(三)運(yùn)用方法,解決問題。
1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。
2、課后做一做每天運(yùn)的噸數(shù)和運(yùn)貨的天數(shù)成反比例關(guān)系嗎?為什么?
3、出示反比例圖像,與正比例圖像進(jìn)行比較學(xué)習(xí)。
達(dá)成目標(biāo):學(xué)生利用對反比例概念的理解,判斷相關(guān)聯(lián)的量是否成反比例,學(xué)會分析并進(jìn)行判斷。
(四)反饋鞏固,分層練習(xí)。
判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學(xué)校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
達(dá)成目標(biāo):使學(xué)生體會到數(shù)學(xué)來源于現(xiàn)實生活,又服務(wù)于現(xiàn)實生活的特點,體現(xiàn)數(shù)學(xué)的應(yīng)用性。
(五)課堂總結(jié),提升認(rèn)識。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)300300300300300。
高度擴(kuò)大,底面積反而縮小;高度縮小,底面積反而擴(kuò)大。
高×底面積=水的體積(一定)。
反比例關(guān)系式:x×y=k(一定)。
正反比例教案篇十
在教學(xué)過程的設(shè)計上,首先通過對正比例的復(fù)習(xí),直接導(dǎo)入新課教學(xué),揭示課題“反比例”,例題學(xué)習(xí),引導(dǎo)學(xué)生觀察表中的三種量中的變化規(guī)律,通過學(xué)生討論交流、自主探究,在教師的引導(dǎo)概括出反比例的意義,然后進(jìn)一步抽象概括反比例關(guān)系式:xy=k(一定),接著運(yùn)用反比例的知識,判斷兩種量是不是成反比例的量,然后讓學(xué)生自己舉例說說生活中的反比例,進(jìn)一步加深對反比例關(guān)系的認(rèn)識。
正反比例教案篇十一
教材第106、107頁例1,例2。
1.使學(xué)生認(rèn)識正、反比例應(yīng)用題的特點,理解、掌握用比例知識解答應(yīng)用題的解題思路和解題方法,學(xué)會正確地解答基本的正、反比例應(yīng)用題。
2.進(jìn)一步培養(yǎng)學(xué)生應(yīng)用知識進(jìn)行分析、推理的能力,發(fā)展學(xué)生思維。
認(rèn)識正、反比例應(yīng)用題的特點。
掌握用比例知識解答應(yīng)用題的解題思路。
1.判斷下面的量各成什么比例。
(1)工作效率一定,工作總量和工作時間。
(2)路程一定,行駛的速度和時間。
讓學(xué)生先分別說出數(shù)量關(guān)系式,再判斷。
2.根據(jù)條件說出數(shù)量關(guān)系式,再說出兩種相關(guān)聯(lián)的量成什么比例,并列出相應(yīng)的等式。
(1)一臺機(jī)床5小時加工40個零件,照這樣計算,8小時加工64個。
(2)一列火車行駛360千米。每小時行90千米,要行4小時;每小時行80千米,要行x小時。
指名學(xué)生口答,老師板書。
3.引入新課。
從上面可以看出,生產(chǎn)、生活中的一些實際問題,應(yīng)用比例的知識,也可以根據(jù)題意列一個等式。所以,我們以前學(xué)過的一些應(yīng)用題,還可以應(yīng)用比例的知識來解答。這節(jié)課,就學(xué)習(xí)正、反比例應(yīng)用題。(板書課題)。
1.教學(xué)例1。
(1)出示例1,讓學(xué)生讀題。
(2)說明:這道題還可以用比例知識解答。
(3)小結(jié):
提問:誰來說一說,用正比例知識解答這道應(yīng)用題要怎樣想?怎樣做?指出:先按題意列關(guān)系式判斷成正比例,再找出兩種相關(guān)聯(lián)量里相對應(yīng)的數(shù)值,然后根據(jù)正比例關(guān)系里比值一定,也就是兩次籃球個數(shù)與總價對應(yīng)數(shù)值比的比值相等,列等式解答。
2.教學(xué)改編題。
出示改變的問題,讓學(xué)生說一說題意。請同學(xué)們按照例1的方法自己在練習(xí)本上解答。同時指名一人板演,然后集體訂正。指名說一說是怎樣想的,列等式的依據(jù)是什么。
3.教學(xué)例2。
(1)出示例2,學(xué)生讀題。
(2)誰能仿照例l的解題過程,用比例知識來解答例2?請同學(xué)們自己來試一試。指名板演,其余學(xué)生做在練習(xí)本上。學(xué)生練習(xí)后提問是怎樣想的。效率和時間的對應(yīng)關(guān)系怎樣,檢查列式解答過程,結(jié)合提問弄清為什么列成積相等的等式解答。
(3)提問:按過去的方法是先求什么再解答的?先求總量的應(yīng)用題現(xiàn)在用什么比例關(guān)系解答的?誰來說一說,用反比例關(guān)系解答這道應(yīng)用題是怎樣想,怎樣做的?指出;解答例2要先按題意列出關(guān)系式,判斷成反比例,再找出兩種相關(guān)聯(lián)量里相對應(yīng)的數(shù)值,然后根據(jù)反比例關(guān)系里積一定,也就是兩次修地下管道相對應(yīng)數(shù)值的乘積相等,列等式解答。
4.小結(jié)解題思路。
請同學(xué)們看一下黑板上例1、例2的解題過程,想一想,應(yīng)用比例知識解答應(yīng)用題,是怎樣想怎樣做的?同學(xué)們可以相互討論一下,然后告訴大家。指名學(xué)生說解題思路。指出:應(yīng)用比例知識解答應(yīng)用題,先要判斷兩種相關(guān)聯(lián)的量成什么比例關(guān)系,(板書:判斷比例關(guān)系)再找出相關(guān)聯(lián)量的對應(yīng)數(shù)值,(板書:找出對應(yīng)數(shù)值)再根據(jù)正、反比例的意義列出等式解答。(板書:列出等式解答)追問:你認(rèn)為解題時關(guān)鍵是什么?(正確判斷成什么比例)怎樣來列出等式?(正比例比值相等,反比例乘積相等)。
1.做練一練。
指名兩人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說說為什么列出的等式不一樣。指出:只有先正確判斷成什么比例關(guān)系,才能根據(jù)正比例或反比例的意義正確列式。
2.做練習(xí)十三第1題。
先自己判斷,小組交流,再集體訂正。
這節(jié)課學(xué)習(xí)了什么內(nèi)容?正、反比例應(yīng)用題要怎樣解答?你還認(rèn)識了些什么?
完成練習(xí)十三第2~6題的解答。
正反比例教案篇十二
《成反比例的量》是在學(xué)習(xí)《成正比例的量》之后學(xué)習(xí)的。為了吸取上次課的教學(xué)經(jīng)驗,我改變了教學(xué)方法,目是調(diào)動學(xué)生學(xué)習(xí)的興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
一、復(fù)習(xí)舊知,引入新知。
二、自主探究,學(xué)習(xí)新知。
有了一些疑問,相信學(xué)生們會急著想要解決呢!我就順勢提出讓學(xué)生們自己看書來尋找這些答案,然后再進(jìn)行交流。在交流的過程中,讓學(xué)生對別人的發(fā)言及時補(bǔ)充和發(fā)表自己看法,這樣既學(xué)會了思考,又培養(yǎng)了學(xué)生學(xué)會傾聽的學(xué)習(xí)習(xí)慣。接著對成正比例的量和成反比例的量進(jìn)行比較,找到新舊知識之間的聯(lián)系與區(qū)別。
在整個自主學(xué)習(xí)的過程中,學(xué)生們很好地利用已有知識和經(jīng)驗的遷移,理解了反比例的意義,不僅讓學(xué)生獲得了數(shù)學(xué)知識,還增強(qiáng)了自主學(xué)習(xí)數(shù)學(xué)的信心,同時還培養(yǎng)了學(xué)生自主獲取新知識的能力。
這課學(xué)生自主學(xué)習(xí)的積極性都很高,學(xué)習(xí)效果較好,為了鼓勵學(xué)生學(xué)習(xí)的積極和主動性:
一是人人能自主積極參加新知的探索與學(xué)習(xí);
二是大家能充分合作,發(fā)揮出了各自的能力;
三是大家學(xué)會了如何利用舊知識來學(xué)習(xí)新知識的方法;四是很多同學(xué)通過自主學(xué)習(xí)獲得知識后,有一種快樂感和成就感。
正反比例教案篇十三
蘇霍姆林斯基說過:“在人的心靈深處,總有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者、探索者?!边@種需要在兒童的身上表現(xiàn)得更為突出。一旦學(xué)生的學(xué)習(xí)興趣被激發(fā)起來,他們就希望通過自己的努力來獲取知識,從而體驗成功的喜悅。
考慮到學(xué)生學(xué)習(xí)基礎(chǔ)、能力的差異,練習(xí)設(shè)計為學(xué)生提供多層次、多種類的選擇,以滿足不同層次學(xué)生發(fā)展的需要。以上的幾個練習(xí)分成三個層次,設(shè)置了三個智力臺階(基礎(chǔ)性練習(xí)、綜合性練習(xí)、拓展性練習(xí)),適合不同層次學(xué)生的需要,為不同層次的學(xué)生提供取得成功機(jī)會,使他們在練習(xí)中獲得成功的體驗,樹立積極自信的信心。
現(xiàn)在數(shù)學(xué)與實際生活聯(lián)系越來越密切,應(yīng)用性越來越強(qiáng),我在這節(jié)課的練習(xí)設(shè)計也反映這一特點,其中有許多與現(xiàn)實生活及各行各業(yè)密切聯(lián)系的習(xí)題,既有學(xué)生做練習(xí),騎車上學(xué),又有學(xué)校燒煤、買課桌,農(nóng)民播種,工廠運(yùn)貨物等問題。使學(xué)生體會到數(shù)學(xué)來源于現(xiàn)實生活,又服務(wù)于現(xiàn)實生活的特點,體現(xiàn)數(shù)學(xué)的應(yīng)用性。
正反比例教案篇十四
正反比例應(yīng)用題從教參上看主要是分三個層次:1、正比例應(yīng)用題的教學(xué),2、反比例應(yīng)用題的教學(xué),3、正反比例應(yīng)用題解答方法的。重點應(yīng)放在如何判斷每題中的兩個量是否成比例,成什么比例上。下面我結(jié)合自己本節(jié)課的教學(xué)談一談我自己的體會。成功之處:
1、開頭的復(fù)習(xí)比較的設(shè)計比較到位,層次分明,時間分配得當(dāng)。
2、總結(jié)解比例的方法時能鼓勵學(xué)生去體驗,通過小組的方式去總結(jié)解正反比例應(yīng)用題的方法。
不足之處:
1、例題教學(xué)時應(yīng)讓學(xué)生討論分析,多花時間研究數(shù)量關(guān)系式。
2、教師在教學(xué)時不能按步就搬,學(xué)生的閃光點,及進(jìn)表揚(yáng),充分讓學(xué)生表現(xiàn)自己。
3、改造例1時讓學(xué)生宏觀上思考與例1的區(qū)別,這樣可讓學(xué)生更深層次地理解比例應(yīng)用題的解題步驟。
4、練習(xí)題中的表述要清,練習(xí)的亮點沒有得到很好的拓展。
只不過是比例的兩種形式而已。
好不容易有這樣熱烈的氣氛,我趁熱打鐵,把練習(xí)十的第8題繼續(xù)讓學(xué)生分組討論列式,結(jié)果又有兩種列式(1)解:設(shè)如果每分鐘整修8平方米x分鐘可以整修完成。列方程為6.4×30=x×8。(2)解:設(shè)如果每小時整修8平方米x小時可以整修完成。列式為6.4×0.5=x×8。按例每分鐘整修6.4平方米乘0.5小時不能表示什么,也就是這個式子根本沒意義,但是用反比例的意義來理解這題,也就不難理解了。
通過這樣的教學(xué),把“正反比例應(yīng)用題”這課上活了,而且把正反比例的意義挖的更深,學(xué)生的興趣更濃,積極性更高,掌握的知識更牢。
正反比例教案篇十五
1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
教學(xué)重點:反比例的意義。
教學(xué)難點:正確判斷兩種量是否成反比例。
一導(dǎo)入新課。
1.讓學(xué)生說一說成正比例的兩種量的變化規(guī)律。
回答要點:
(1)兩種相關(guān)聯(lián)的量;
(2)一個量增加,另一個量也相應(yīng)增加;一個量減少,另一個量也相應(yīng)減少;
(3)兩個量的比值一定。
2.舉例說明。
如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。
理由:
(1)每袋大米質(zhì)量一定,大米的.總質(zhì)量隨著袋數(shù)的變化而變化;
(2)大米的袋數(shù)增加,大米的總質(zhì)量也相應(yīng)增加,大米的袋數(shù)。
減少,大米的總質(zhì)量也相應(yīng)減少;
(3)總質(zhì)量與袋數(shù)的比值一定。
所以,大米的袋數(shù)與總質(zhì)量成正比例。
板書:
3.揭示課題。
今天,我們一起來學(xué)習(xí)反比例。兩種量是什么樣的關(guān)系時,這兩種量成反比例呢?
板書課題:成反比例的量。
正反比例教案篇十六
教學(xué)目標(biāo):
知識與技能:
1.結(jié)合豐富的實例,認(rèn)識反比例。
2.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。
過程與方法:
通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認(rèn)識反比例。
情感態(tài)度價值觀:
培養(yǎng)學(xué)生自主、合作學(xué)習(xí)、探索新知的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。感受反比例關(guān)系在生活中的廣泛應(yīng)用。初步滲透函數(shù)思想。
認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。
認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。
電腦課件。
一、復(fù)習(xí)引入。
1、計算。
2、判斷下面各題中的兩種量是否成正比例?為什么?
(1)文具盒的單價一定,買文具盒的個數(shù)和總價。
(2)一堆貨物一定,運(yùn)走的量和剩下的量。
(3)汽車行駛的速度一定,行駛的路程和時間。
3、說說什么是正比例。
師:大家對正比例知識理解掌握得非常好,接下來我們就該學(xué)習(xí)什么了?
二、出示學(xué)習(xí)目標(biāo)。
1.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。
2.通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認(rèn)識反比例。
3.培養(yǎng)學(xué)生探索研究的能力,感受反比例關(guān)系在生活中的廣泛應(yīng)用。
三、指導(dǎo)自學(xué)。
師:給你們講個小故事:
過了幾天,財主到了裁縫店取帽子,結(jié)果一看,頓時傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!
學(xué)習(xí)提示:獨立思考?
1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”
合作學(xué)習(xí)小組討論上述的問題。看書合作學(xué)習(xí)。
1、把25頁例。
2、例3的表格補(bǔ)充完整。
4、你知道什么是反比例嗎?
四、學(xué)生自學(xué)。
五、檢查自學(xué)效果。
讓學(xué)生說說自學(xué)要求中的內(nèi)容。
師歸納:兩種相關(guān)聯(lián)的量,一種量隨著另一種量的變化而變化,在變化過程中兩種量的積一定,那么這兩種量成反比例。
六、引導(dǎo)更正,指導(dǎo)運(yùn)用。
你們還找出類似這樣關(guān)系的量來嗎?”
學(xué)生:要走一段路,速度越慢(快),用的時間就越多(少)運(yùn)一堆貨物,每次運(yùn)的越多(少),運(yùn)的次數(shù)就越?。ǘ啵┌倜踪惻?,路程100米不變,速度和時間是反比例;排隊做操,總?cè)藬?shù)不變,排隊的行數(shù)和每行的人數(shù)是反比例;長方體的體積一定,底面積和高是反比例。
七、當(dāng)堂訓(xùn)練基礎(chǔ)練習(xí)。
1、填空。
兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對應(yīng)的兩個數(shù)的______,這兩種量叫做成反比例的量,它們的關(guān)系叫做_______關(guān)系。
2、判斷下面每題中的兩種量是不是成反比例,并說明理由。
(1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。
(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。
(3)生產(chǎn)電視機(jī)的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。
(4)圓柱體的體積一定,底面積和高。
(5)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(6)長方形的長一定,面積和寬。
(7)平行四邊形面積一定,底和高。提高練習(xí)。
四、小結(jié)。
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
相關(guān)聯(lián),一個量變化,另一個量也隨著變化積一定。
xy=k(一定)。
正反比例教案篇十七
1. 本節(jié) 課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》 的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例 函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。
2. 對教材的分析
(1) 教學(xué)目標(biāo):進(jìn) 一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對 函數(shù)進(jìn)行認(rèn)識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2) 重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3) 難點:探索并掌握反比例函數(shù)的主要性質(zhì)。
1、提問:
(1)=4/x 是什么函數(shù)?你會作反比例函數(shù)的圖象嗎?
(2)作圖的步驟是 怎樣的(3)填寫電腦上的表格,開始在坐標(biāo)紙上描點連線。
2、按照上述方法作 =―4/x 的圖象3、 對照你所作的兩個函數(shù)圖象,找一下它們的相同點和不同點。
1、讓學(xué)生觀察函 數(shù) =/x 的圖象 ,按下動畫按鈕,在運(yùn)動中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
2、演示反比例函數(shù)中心 對稱的性質(zhì)以及軸對稱性質(zhì),顯示反比例函數(shù)的兩條對稱軸。
3、讓學(xué)生觀察函數(shù) =/x 的圖象,觀察過反比例函數(shù)上任意一 點作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
(1) 拖動,使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出 結(jié)論。
(2) 拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。
1、給出兩個反比例函數(shù)的圖象,判斷哪一個是 =2/x 和 =―2/x 的圖象。
2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。
3、下列函數(shù)中,其圖象位于第一、三象限
的有哪幾個?在其圖象所在象限內(nèi),的值隨x的增大而增
大的有哪幾個?
:課本137頁第1題、141頁第2題
正反比例教案篇一
2.利用反比例函數(shù)的圖象解決有關(guān)問題.
1.經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);。
2.探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題.
一、創(chuàng)設(shè)情境。
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線.那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k0)的圖象,探究它有什么性質(zhì).
二、探究歸納。
1.畫出函數(shù)的圖象.
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x0.
解1.列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應(yīng)值:
2.描點:用表里各組對應(yīng)值作為點的坐標(biāo),在直角坐標(biāo)系中描出在京各點點(-6,-1)、(-3,-2)、(-2,-3)等.
3.連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支.這兩個分支合起來,就是反比例函數(shù)的圖象.
上述圖象,通常稱為雙曲線(hyperbola).
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟).
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題.
1.這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2.反比例函數(shù)(k0)的圖象在哪兩個象限內(nèi)?由什么確定?
(2)當(dāng)k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加.
注1.雙曲線的兩個分支與x軸和y軸沒有交點;。
2.雙曲線的兩個分支關(guān)于原點成中心對稱.
以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少.
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小.
三、實踐應(yīng)用。
例1若反比例函數(shù)的圖象在第二、四象限,求m的值.
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+10,由這兩個條件可解出m的值.
解由題意,得解得.
例2已知反比例函數(shù)(k0),當(dāng)x0時,y隨x的.增大而增大,求一次函數(shù)y=kx-k的圖象經(jīng)過的象限.
分析由于反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,因此k0,而一次函數(shù)y=kx-k中,k0,可知,圖象過二、四象限,又-k0,所以直線與y軸的交點在x軸的上方.
解因為反比例函數(shù)(k0),當(dāng)x0時,y隨x的增大而增大,所以k0,所以一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限.
例3已知反比例函數(shù)的圖象過點(1,-2).
(1)求這個函數(shù)的解析式,并畫出圖象;。
(2)由點a在反比例函數(shù)的圖象上,易求出m的值,再驗證點a關(guān)于兩坐標(biāo)軸和原點的對稱點是否在圖象上.
解(1)設(shè):反比例函數(shù)的解析式為:(k0).
而反比例函數(shù)的圖象過點(1,-2),即當(dāng)x=1時,y=-2.
所以,k=-2.
(2)點a(-5,m)在反比例函數(shù)圖象上,所以,
點a的坐標(biāo)為.
點a關(guān)于x軸的對稱點不在這個圖象上;。
點a關(guān)于y軸的對稱點不在這個圖象上;。
點a關(guān)于原點的對稱點在這個圖象上;。
(1)求m的值;。
(2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
(3)當(dāng)-3時,求此函數(shù)的最大值和最小值.
解(1)由反比例函數(shù)的定義可知:解得,m=-2.
(2)因為-20,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大.
(3)因為在第個象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時,y最大值=;。
當(dāng)x=-3時,y最小值=.
所以當(dāng)-3時,此函數(shù)的最大值為8,最小值為.
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米.
(1)寫出用高表示長的函數(shù)關(guān)系式;。
(2)寫出自變量x的取值范圍;。
(3)畫出函數(shù)的圖象.
解(1)因為100=5xy,所以.
(2)x0.
(3)圖象如下:
說明由于自變量x0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支.
四、交流反思。
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì).
1.反比例函數(shù)的圖象是雙曲線(hyperbola).
(2)當(dāng)k0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加.
五、檢測反饋。
1.在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
(1);(2).
2.已知y是x的反比例函數(shù),且當(dāng)x=3時,y=8,求:
(1)y和x的函數(shù)關(guān)系式;。
(2)當(dāng)時,y的值;。
(3)當(dāng)x取何值時,?
3.若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值.
4.已知反比例函數(shù)經(jīng)過點a(2,-m)和b(n,2n),求:
(1)m和n的值;。
(2)若圖象上有兩點p1(x1,y1)和p2(x2,y2),且x1x2,試比較y1和y2的大小.
正反比例教案篇二
知識與技能目標(biāo):使學(xué)生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
能力目標(biāo):經(jīng)歷反比例意義的構(gòu)建過程,培養(yǎng)發(fā)現(xiàn)的能力和歸納概括的能力。
情感與態(tài)度目標(biāo):體會反比例與生活之間的聯(lián)系,感悟到事物之間相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點。
正反比例教案篇三
教科書第64~65頁的例3和“試一試”,“練一練”和練習(xí)十三的第6~8題。
1.使學(xué)生經(jīng)歷從具體實例中認(rèn)識成反比例的量的過程,初步理解反比例的意義,學(xué)會根據(jù)反比例的意義判斷兩種相關(guān)聯(lián)的量是不是成反比例。
2.使學(xué)生在認(rèn)識成反比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學(xué)模型,進(jìn)一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。
3.使學(xué)生進(jìn)一步體會數(shù)學(xué)與日常生活的密切聯(lián)系,增強(qiáng)從生活現(xiàn)象中探索數(shù)學(xué)知識和規(guī)律的意識。
掌握成反比例量的.變化規(guī)律及其特征。
教學(xué)準(zhǔn)備:多媒體。
一、復(fù)習(xí)鋪墊。
1、怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系?
2、判斷下面兩種量是否成正比例?為什么?
時間一定,行駛的路程和速度。
除數(shù)一定,被除數(shù)和商。
3、單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例?
4、導(dǎo)入新課:
如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量又存在什么關(guān)系?今天,我們就來研究和認(rèn)識這種變化規(guī)律。
二、探究新知。
1、出示例3的表格。
學(xué)生填表。
2、小組討論:
(1)表中列出的是哪兩種相關(guān)聯(lián)的量?它們分別是怎樣變化的?
(2)你能找出它們變化的規(guī)律嗎?
(3)猜一猜,這兩種量成什么關(guān)系?
3、全班交流。
學(xué)生初步概括反比例的意義(根據(jù)學(xué)生回答,板書)。
4、完成“試一試”
學(xué)生獨立填表。
思考題中所提出的問題。
組織交流,再次感知成反比例的量。
根據(jù)學(xué)生的回答,板書:x×y=k(一定)揭示板書課題。
三、鞏固應(yīng)用。
1、練一練。
每袋糖果的粒數(shù)和裝的袋數(shù)成反比例嗎?為什么?
2、練習(xí)十三第6題。
先算一算、想一想,再組織討論和交流。
要求學(xué)生完整地說出判斷的思考過程。
3、練習(xí)十三第7題。
先獨立思考作出判斷,再有條理地說明判斷的理由。
4、練習(xí)十三第8題。
先填表,根據(jù)表中數(shù)據(jù)進(jìn)行判斷,明確:長方形的面積一定,長和寬成反比例;長方形的周長一定,長和寬不成反比例。
5、思考:
100÷x=y,那么x和y成什么比例?為什么?
6、同桌學(xué)生相互出題,進(jìn)行判斷并說明理由。
四、反思。
學(xué)生交流。
五、作業(yè)。
完成《練習(xí)與測試》相關(guān)作業(yè)。
板書設(shè)計:
正反比例教案篇四
反比例的意義》是新課標(biāo)人教版小學(xué)數(shù)學(xué)六年級下冊第47-48頁的內(nèi)容。本節(jié)課的內(nèi)容是在教學(xué)了成正比例的量的`基礎(chǔ)上進(jìn)行教學(xué)的,是前面“比例”知識的深化,是后面學(xué)習(xí)“用它解決一些簡單正、反比例的實際問題”的基礎(chǔ),它起著承前啟后的作用,是小學(xué)階段比例初步知識教學(xué)中的一項重要內(nèi)容。為此,教學(xué)時先引導(dǎo)學(xué)生回憶已學(xué)過的數(shù)量關(guān)系,通過舉例、交流,知識遷移,體會生活中存在著大量的反比例的關(guān)系,在此基礎(chǔ)上探求新知,最后深化新知。
正反比例教案篇五
1.從現(xiàn)實情境和已有的知識經(jīng)驗出發(fā),討論兩個變量之間的相似關(guān)系,加深對函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會反比例函數(shù)的意義,理解反比例函數(shù)的概念.
(二)能力訓(xùn)練要求。
結(jié)合具體情境體會反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達(dá)式.
(三)情感與價值觀要求。
結(jié)合實例引導(dǎo)學(xué)生了解所討論的函數(shù)的表達(dá)形式,形成反比例函數(shù)概念的具體形象,是從感性認(rèn)識到理性認(rèn)識的轉(zhuǎn)化過程,發(fā)展學(xué)生的思維;同時體驗數(shù)學(xué)活動與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用.
正反比例教案篇六
教學(xué)目標(biāo):1、使學(xué)生結(jié)合具體實例初步理解中位數(shù)的意義,會求一組簡單數(shù)據(jù)的中位數(shù),能具體問題選擇合適的統(tǒng)計量表示一組數(shù)據(jù)的整體特征。
2、使學(xué)生在初步理解中位數(shù)的過程中,進(jìn)一步體會數(shù)據(jù)對于分析問題、解決問題的作用,感受與同學(xué)交流的意義和樂趣,發(fā)展統(tǒng)計觀念。
教學(xué)重點:初步理解中位數(shù)的意義。
教學(xué)難點:選擇適當(dāng)?shù)慕y(tǒng)計量表示一組數(shù)據(jù)的特征。
設(shè)計理念:努力創(chuàng)設(shè)生活情境,促進(jìn)學(xué)生思考數(shù)學(xué)問題。注重從學(xué)生實際生活中的例子出發(fā),讓學(xué)生體會中位數(shù)的統(tǒng)計意義,體會描述數(shù)據(jù)的方式的多樣性,通過比較分析、討論交流,進(jìn)一步明確中位數(shù)與平均數(shù)、眾數(shù)三者之間的區(qū)別與聯(lián)系。
教學(xué)步驟教師活動學(xué)生活動。
一、創(chuàng)設(shè)情境。
促進(jìn)思考1、出示例3:四年級一班9個男生1分鐘跳繩成績記錄單。
觀察數(shù)據(jù),說說你對這組數(shù)據(jù)的看法。
小結(jié):可以先算出這組數(shù)據(jù)的平均數(shù),用7號男生的成績與平均數(shù)進(jìn)行比較;也可以按一定的順序把這組男生的成績重新排一排,看7號男生的成績排在第幾名。
4、師:為了更好地表示這組數(shù)據(jù)的整體特征,我們需要認(rèn)識一種新的統(tǒng)計量--中位數(shù)。(板書課題)。
學(xué)生回答。
交流討論。
交流討論。
二、自主探究合作交流1、你能把這組數(shù)據(jù)按從小到大或從大到小的順序重新排一排嗎?
指出:這組數(shù)據(jù)中,正中間的一個數(shù)是102,102是這組數(shù)據(jù)的中位數(shù)。
師:把7號男生的成績與中位數(shù)比較,你覺得該生的成績怎么樣?
2、你認(rèn)為是用中位數(shù)表示這組數(shù)據(jù)的整體特征合適,還是用平均數(shù)表示合適?說說你的理由。
學(xué)生交流。
你知道這組數(shù)據(jù)的平均數(shù)為什么會比中位數(shù)高得多嗎?
3、出示例4:四年級一班10個女生1分鐘跳繩成績記錄單。
你會求這組數(shù)據(jù)的中位數(shù)嗎?試一試。
討論:同中位數(shù)比,10號女生的成績怎么樣?其他女生呢?
學(xué)生按要求排一排。
小組交流。
大組匯報。
學(xué)生試做。
交流、匯報。
三、鞏固練習(xí)。
拓展提高1、指導(dǎo)完成“練一練”
各自求出這組數(shù)據(jù)的平均數(shù)和中位數(shù)。
討論:用哪個統(tǒng)計量代表這組同學(xué)家庭住房的整體水平比較合適?為什么?
思考:這組數(shù)據(jù)的平均數(shù)為什么會比中位數(shù)低得多?
明確:因為這組數(shù)據(jù)中有兩個數(shù)遠(yuǎn)遠(yuǎn)小于其他的數(shù),所以造成平均數(shù)比中位數(shù)低得多。
2、指導(dǎo)完成練習(xí)十六第2題。
分別算出八架飛機(jī)飛行時間的平均數(shù)和中位數(shù)。
討論:用哪個數(shù)據(jù)代表這八架飛機(jī)飛行時間比較合適?
小組合作完成(3),組織評價。
3、練習(xí)十六第3題。
分別算出這組數(shù)據(jù)的平均數(shù)、中位數(shù)和眾數(shù)。
討論:你認(rèn)為用哪個數(shù)據(jù)代表這個公司員工3月工資的實際情況比較合適?
學(xué)生練習(xí)。
思考討論。
新課標(biāo)第一網(wǎng)。
討論交流。
互相評價。
大組討論交流。
四、自主評價。
評價總結(jié)。
正反比例教案篇七
這節(jié)課是在學(xué)生學(xué)習(xí)正比例的基礎(chǔ)上進(jìn)行教學(xué)的。教學(xué)時充分相信學(xué)生、尊重學(xué)生,改變傳統(tǒng)的教學(xué)模式,學(xué)生由被動學(xué)習(xí)轉(zhuǎn)化為主動學(xué)習(xí),放手讓他們主動去探索出新知識,最大限度地充分發(fā)揮學(xué)生的主觀主動性。從而使學(xué)生學(xué)到探究新知的方法,體驗到成功的喜悅,激起學(xué)生學(xué)習(xí)的興趣。同時采用引探法,引導(dǎo)學(xué)生自主探究,培養(yǎng)他們利用已有知識解決新問題的能力。
正反比例教案篇八
本課時教學(xué)設(shè)計特點:一是情景設(shè)置和幾個表格的設(shè)計,都注重從現(xiàn)實題材出發(fā),讓學(xué)生感受到反比例在現(xiàn)實生活中的廣泛應(yīng)用。二是通過讓學(xué)生自己去分類整理、自主探究、合作交流得出反比例的意義,有利于發(fā)展學(xué)生的數(shù)學(xué)思維。
正反比例教案篇九
(一)復(fù)習(xí)猜想導(dǎo)入,引出問題。
1、成正比例的量有什么特征?什么叫正比例關(guān)系?
2、在生活中兩個相關(guān)聯(lián)的量有的成正比例關(guān)系,還可能成什么關(guān)系?學(xué)生很自然想到反比例,激發(fā)學(xué)生的學(xué)習(xí)欲望,問學(xué)生想學(xué)反比例的哪些知識,學(xué)生大膽猜測,對反比例的意義展開合理的猜想。由此導(dǎo)入新課。
達(dá)成目標(biāo):猜想導(dǎo)課,激發(fā)探究愿望。
(二)共同探索,總結(jié)方法。
1、明確這節(jié)課的學(xué)習(xí)目標(biāo):(1)理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。(2)經(jīng)歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學(xué)習(xí)方法。
2、情境導(dǎo)入,學(xué)習(xí)探究。
(1)我們先來看一個實驗。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)。
提問:根據(jù)列表,你從中你發(fā)現(xiàn)了什么?
(2)學(xué)生討論交流。
(3)引導(dǎo)學(xué)生回答:表中的兩個量是高度和底面積。
高度擴(kuò)大,底面積反而縮小;高度縮小,底面積反而擴(kuò)大。
每兩個相對應(yīng)的數(shù)的乘積都是300.
(4)計算后你又發(fā)現(xiàn)了什么?
每兩個相對應(yīng)的數(shù)的乘積都是300,乘積一定。
教師小結(jié):我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。
教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?板書:高×底面積=水的體積(一定)。
(5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個什么樣的式子表示?板書:x×y=k(一定)。
小結(jié):通過上面的學(xué)習(xí),你認(rèn)為判斷兩種相關(guān)聯(lián)的量是否成反比例,關(guān)鍵是什么?
(6)歸納總結(jié)反比例的意義。
達(dá)成目標(biāo):比較思想是在小學(xué)數(shù)學(xué)教學(xué)中應(yīng)用十分普遍的數(shù)學(xué)思想方法,《成反比例的量》是繼《成正比例的量》一課后學(xué)習(xí)的內(nèi)容,兩節(jié)課的學(xué)習(xí)內(nèi)容和學(xué)習(xí)方法有相似之處,學(xué)生從知識的差別中找到同一,也可以從同一中找出差別,學(xué)生學(xué)習(xí)新知識,進(jìn)行深化拓展,歸納總結(jié)。
(三)運(yùn)用方法,解決問題。
1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。
2、課后做一做每天運(yùn)的噸數(shù)和運(yùn)貨的天數(shù)成反比例關(guān)系嗎?為什么?
3、出示反比例圖像,與正比例圖像進(jìn)行比較學(xué)習(xí)。
達(dá)成目標(biāo):學(xué)生利用對反比例概念的理解,判斷相關(guān)聯(lián)的量是否成反比例,學(xué)會分析并進(jìn)行判斷。
(四)反饋鞏固,分層練習(xí)。
判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學(xué)校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
達(dá)成目標(biāo):使學(xué)生體會到數(shù)學(xué)來源于現(xiàn)實生活,又服務(wù)于現(xiàn)實生活的特點,體現(xiàn)數(shù)學(xué)的應(yīng)用性。
(五)課堂總結(jié),提升認(rèn)識。
高度(厘米)302015105。
底面積(平方厘米)1015203060。
體積(立方厘米)300300300300300。
高度擴(kuò)大,底面積反而縮小;高度縮小,底面積反而擴(kuò)大。
高×底面積=水的體積(一定)。
反比例關(guān)系式:x×y=k(一定)。
正反比例教案篇十
在教學(xué)過程的設(shè)計上,首先通過對正比例的復(fù)習(xí),直接導(dǎo)入新課教學(xué),揭示課題“反比例”,例題學(xué)習(xí),引導(dǎo)學(xué)生觀察表中的三種量中的變化規(guī)律,通過學(xué)生討論交流、自主探究,在教師的引導(dǎo)概括出反比例的意義,然后進(jìn)一步抽象概括反比例關(guān)系式:xy=k(一定),接著運(yùn)用反比例的知識,判斷兩種量是不是成反比例的量,然后讓學(xué)生自己舉例說說生活中的反比例,進(jìn)一步加深對反比例關(guān)系的認(rèn)識。
正反比例教案篇十一
教材第106、107頁例1,例2。
1.使學(xué)生認(rèn)識正、反比例應(yīng)用題的特點,理解、掌握用比例知識解答應(yīng)用題的解題思路和解題方法,學(xué)會正確地解答基本的正、反比例應(yīng)用題。
2.進(jìn)一步培養(yǎng)學(xué)生應(yīng)用知識進(jìn)行分析、推理的能力,發(fā)展學(xué)生思維。
認(rèn)識正、反比例應(yīng)用題的特點。
掌握用比例知識解答應(yīng)用題的解題思路。
1.判斷下面的量各成什么比例。
(1)工作效率一定,工作總量和工作時間。
(2)路程一定,行駛的速度和時間。
讓學(xué)生先分別說出數(shù)量關(guān)系式,再判斷。
2.根據(jù)條件說出數(shù)量關(guān)系式,再說出兩種相關(guān)聯(lián)的量成什么比例,并列出相應(yīng)的等式。
(1)一臺機(jī)床5小時加工40個零件,照這樣計算,8小時加工64個。
(2)一列火車行駛360千米。每小時行90千米,要行4小時;每小時行80千米,要行x小時。
指名學(xué)生口答,老師板書。
3.引入新課。
從上面可以看出,生產(chǎn)、生活中的一些實際問題,應(yīng)用比例的知識,也可以根據(jù)題意列一個等式。所以,我們以前學(xué)過的一些應(yīng)用題,還可以應(yīng)用比例的知識來解答。這節(jié)課,就學(xué)習(xí)正、反比例應(yīng)用題。(板書課題)。
1.教學(xué)例1。
(1)出示例1,讓學(xué)生讀題。
(2)說明:這道題還可以用比例知識解答。
(3)小結(jié):
提問:誰來說一說,用正比例知識解答這道應(yīng)用題要怎樣想?怎樣做?指出:先按題意列關(guān)系式判斷成正比例,再找出兩種相關(guān)聯(lián)量里相對應(yīng)的數(shù)值,然后根據(jù)正比例關(guān)系里比值一定,也就是兩次籃球個數(shù)與總價對應(yīng)數(shù)值比的比值相等,列等式解答。
2.教學(xué)改編題。
出示改變的問題,讓學(xué)生說一說題意。請同學(xué)們按照例1的方法自己在練習(xí)本上解答。同時指名一人板演,然后集體訂正。指名說一說是怎樣想的,列等式的依據(jù)是什么。
3.教學(xué)例2。
(1)出示例2,學(xué)生讀題。
(2)誰能仿照例l的解題過程,用比例知識來解答例2?請同學(xué)們自己來試一試。指名板演,其余學(xué)生做在練習(xí)本上。學(xué)生練習(xí)后提問是怎樣想的。效率和時間的對應(yīng)關(guān)系怎樣,檢查列式解答過程,結(jié)合提問弄清為什么列成積相等的等式解答。
(3)提問:按過去的方法是先求什么再解答的?先求總量的應(yīng)用題現(xiàn)在用什么比例關(guān)系解答的?誰來說一說,用反比例關(guān)系解答這道應(yīng)用題是怎樣想,怎樣做的?指出;解答例2要先按題意列出關(guān)系式,判斷成反比例,再找出兩種相關(guān)聯(lián)量里相對應(yīng)的數(shù)值,然后根據(jù)反比例關(guān)系里積一定,也就是兩次修地下管道相對應(yīng)數(shù)值的乘積相等,列等式解答。
4.小結(jié)解題思路。
請同學(xué)們看一下黑板上例1、例2的解題過程,想一想,應(yīng)用比例知識解答應(yīng)用題,是怎樣想怎樣做的?同學(xué)們可以相互討論一下,然后告訴大家。指名學(xué)生說解題思路。指出:應(yīng)用比例知識解答應(yīng)用題,先要判斷兩種相關(guān)聯(lián)的量成什么比例關(guān)系,(板書:判斷比例關(guān)系)再找出相關(guān)聯(lián)量的對應(yīng)數(shù)值,(板書:找出對應(yīng)數(shù)值)再根據(jù)正、反比例的意義列出等式解答。(板書:列出等式解答)追問:你認(rèn)為解題時關(guān)鍵是什么?(正確判斷成什么比例)怎樣來列出等式?(正比例比值相等,反比例乘積相等)。
1.做練一練。
指名兩人板演,其余學(xué)生做在練習(xí)本上。集體訂正,讓學(xué)生說說為什么列出的等式不一樣。指出:只有先正確判斷成什么比例關(guān)系,才能根據(jù)正比例或反比例的意義正確列式。
2.做練習(xí)十三第1題。
先自己判斷,小組交流,再集體訂正。
這節(jié)課學(xué)習(xí)了什么內(nèi)容?正、反比例應(yīng)用題要怎樣解答?你還認(rèn)識了些什么?
完成練習(xí)十三第2~6題的解答。
正反比例教案篇十二
《成反比例的量》是在學(xué)習(xí)《成正比例的量》之后學(xué)習(xí)的。為了吸取上次課的教學(xué)經(jīng)驗,我改變了教學(xué)方法,目是調(diào)動學(xué)生學(xué)習(xí)的興趣,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
一、復(fù)習(xí)舊知,引入新知。
二、自主探究,學(xué)習(xí)新知。
有了一些疑問,相信學(xué)生們會急著想要解決呢!我就順勢提出讓學(xué)生們自己看書來尋找這些答案,然后再進(jìn)行交流。在交流的過程中,讓學(xué)生對別人的發(fā)言及時補(bǔ)充和發(fā)表自己看法,這樣既學(xué)會了思考,又培養(yǎng)了學(xué)生學(xué)會傾聽的學(xué)習(xí)習(xí)慣。接著對成正比例的量和成反比例的量進(jìn)行比較,找到新舊知識之間的聯(lián)系與區(qū)別。
在整個自主學(xué)習(xí)的過程中,學(xué)生們很好地利用已有知識和經(jīng)驗的遷移,理解了反比例的意義,不僅讓學(xué)生獲得了數(shù)學(xué)知識,還增強(qiáng)了自主學(xué)習(xí)數(shù)學(xué)的信心,同時還培養(yǎng)了學(xué)生自主獲取新知識的能力。
這課學(xué)生自主學(xué)習(xí)的積極性都很高,學(xué)習(xí)效果較好,為了鼓勵學(xué)生學(xué)習(xí)的積極和主動性:
一是人人能自主積極參加新知的探索與學(xué)習(xí);
二是大家能充分合作,發(fā)揮出了各自的能力;
三是大家學(xué)會了如何利用舊知識來學(xué)習(xí)新知識的方法;四是很多同學(xué)通過自主學(xué)習(xí)獲得知識后,有一種快樂感和成就感。
正反比例教案篇十三
蘇霍姆林斯基說過:“在人的心靈深處,總有一種根深蒂固的需要,這就是希望自己是一個發(fā)現(xiàn)者、研究者、探索者?!边@種需要在兒童的身上表現(xiàn)得更為突出。一旦學(xué)生的學(xué)習(xí)興趣被激發(fā)起來,他們就希望通過自己的努力來獲取知識,從而體驗成功的喜悅。
考慮到學(xué)生學(xué)習(xí)基礎(chǔ)、能力的差異,練習(xí)設(shè)計為學(xué)生提供多層次、多種類的選擇,以滿足不同層次學(xué)生發(fā)展的需要。以上的幾個練習(xí)分成三個層次,設(shè)置了三個智力臺階(基礎(chǔ)性練習(xí)、綜合性練習(xí)、拓展性練習(xí)),適合不同層次學(xué)生的需要,為不同層次的學(xué)生提供取得成功機(jī)會,使他們在練習(xí)中獲得成功的體驗,樹立積極自信的信心。
現(xiàn)在數(shù)學(xué)與實際生活聯(lián)系越來越密切,應(yīng)用性越來越強(qiáng),我在這節(jié)課的練習(xí)設(shè)計也反映這一特點,其中有許多與現(xiàn)實生活及各行各業(yè)密切聯(lián)系的習(xí)題,既有學(xué)生做練習(xí),騎車上學(xué),又有學(xué)校燒煤、買課桌,農(nóng)民播種,工廠運(yùn)貨物等問題。使學(xué)生體會到數(shù)學(xué)來源于現(xiàn)實生活,又服務(wù)于現(xiàn)實生活的特點,體現(xiàn)數(shù)學(xué)的應(yīng)用性。
正反比例教案篇十四
正反比例應(yīng)用題從教參上看主要是分三個層次:1、正比例應(yīng)用題的教學(xué),2、反比例應(yīng)用題的教學(xué),3、正反比例應(yīng)用題解答方法的。重點應(yīng)放在如何判斷每題中的兩個量是否成比例,成什么比例上。下面我結(jié)合自己本節(jié)課的教學(xué)談一談我自己的體會。成功之處:
1、開頭的復(fù)習(xí)比較的設(shè)計比較到位,層次分明,時間分配得當(dāng)。
2、總結(jié)解比例的方法時能鼓勵學(xué)生去體驗,通過小組的方式去總結(jié)解正反比例應(yīng)用題的方法。
不足之處:
1、例題教學(xué)時應(yīng)讓學(xué)生討論分析,多花時間研究數(shù)量關(guān)系式。
2、教師在教學(xué)時不能按步就搬,學(xué)生的閃光點,及進(jìn)表揚(yáng),充分讓學(xué)生表現(xiàn)自己。
3、改造例1時讓學(xué)生宏觀上思考與例1的區(qū)別,這樣可讓學(xué)生更深層次地理解比例應(yīng)用題的解題步驟。
4、練習(xí)題中的表述要清,練習(xí)的亮點沒有得到很好的拓展。
只不過是比例的兩種形式而已。
好不容易有這樣熱烈的氣氛,我趁熱打鐵,把練習(xí)十的第8題繼續(xù)讓學(xué)生分組討論列式,結(jié)果又有兩種列式(1)解:設(shè)如果每分鐘整修8平方米x分鐘可以整修完成。列方程為6.4×30=x×8。(2)解:設(shè)如果每小時整修8平方米x小時可以整修完成。列式為6.4×0.5=x×8。按例每分鐘整修6.4平方米乘0.5小時不能表示什么,也就是這個式子根本沒意義,但是用反比例的意義來理解這題,也就不難理解了。
通過這樣的教學(xué),把“正反比例應(yīng)用題”這課上活了,而且把正反比例的意義挖的更深,學(xué)生的興趣更濃,積極性更高,掌握的知識更牢。
正反比例教案篇十五
1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
教學(xué)重點:反比例的意義。
教學(xué)難點:正確判斷兩種量是否成反比例。
一導(dǎo)入新課。
1.讓學(xué)生說一說成正比例的兩種量的變化規(guī)律。
回答要點:
(1)兩種相關(guān)聯(lián)的量;
(2)一個量增加,另一個量也相應(yīng)增加;一個量減少,另一個量也相應(yīng)減少;
(3)兩個量的比值一定。
2.舉例說明。
如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。
理由:
(1)每袋大米質(zhì)量一定,大米的.總質(zhì)量隨著袋數(shù)的變化而變化;
(2)大米的袋數(shù)增加,大米的總質(zhì)量也相應(yīng)增加,大米的袋數(shù)。
減少,大米的總質(zhì)量也相應(yīng)減少;
(3)總質(zhì)量與袋數(shù)的比值一定。
所以,大米的袋數(shù)與總質(zhì)量成正比例。
板書:
3.揭示課題。
今天,我們一起來學(xué)習(xí)反比例。兩種量是什么樣的關(guān)系時,這兩種量成反比例呢?
板書課題:成反比例的量。
正反比例教案篇十六
教學(xué)目標(biāo):
知識與技能:
1.結(jié)合豐富的實例,認(rèn)識反比例。
2.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。
過程與方法:
通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認(rèn)識反比例。
情感態(tài)度價值觀:
培養(yǎng)學(xué)生自主、合作學(xué)習(xí)、探索新知的能力,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。感受反比例關(guān)系在生活中的廣泛應(yīng)用。初步滲透函數(shù)思想。
認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。
認(rèn)識反比例,根據(jù)反比例意義判斷兩個相關(guān)聯(lián)的量是否成反比例。
電腦課件。
一、復(fù)習(xí)引入。
1、計算。
2、判斷下面各題中的兩種量是否成正比例?為什么?
(1)文具盒的單價一定,買文具盒的個數(shù)和總價。
(2)一堆貨物一定,運(yùn)走的量和剩下的量。
(3)汽車行駛的速度一定,行駛的路程和時間。
3、說說什么是正比例。
師:大家對正比例知識理解掌握得非常好,接下來我們就該學(xué)習(xí)什么了?
二、出示學(xué)習(xí)目標(biāo)。
1.能根據(jù)反比例的意義,判斷兩個相關(guān)聯(lián)的量是不是反比例。
2.通過猜想、分析、對比、概括、舉例、判斷等活動,結(jié)合實例,理解反比例的意義,認(rèn)識反比例。
3.培養(yǎng)學(xué)生探索研究的能力,感受反比例關(guān)系在生活中的廣泛應(yīng)用。
三、指導(dǎo)自學(xué)。
師:給你們講個小故事:
過了幾天,財主到了裁縫店取帽子,結(jié)果一看,頓時傻了眼:10頂?shù)拿弊有〉弥荒艽髟谑种割^上了!
學(xué)習(xí)提示:獨立思考?
1、“為什么同一匹布,裁縫說做1頂帽子,2頂帽子,10頂都可以呢?”
合作學(xué)習(xí)小組討論上述的問題。看書合作學(xué)習(xí)。
1、把25頁例。
2、例3的表格補(bǔ)充完整。
4、你知道什么是反比例嗎?
四、學(xué)生自學(xué)。
五、檢查自學(xué)效果。
讓學(xué)生說說自學(xué)要求中的內(nèi)容。
師歸納:兩種相關(guān)聯(lián)的量,一種量隨著另一種量的變化而變化,在變化過程中兩種量的積一定,那么這兩種量成反比例。
六、引導(dǎo)更正,指導(dǎo)運(yùn)用。
你們還找出類似這樣關(guān)系的量來嗎?”
學(xué)生:要走一段路,速度越慢(快),用的時間就越多(少)運(yùn)一堆貨物,每次運(yùn)的越多(少),運(yùn)的次數(shù)就越?。ǘ啵┌倜踪惻?,路程100米不變,速度和時間是反比例;排隊做操,總?cè)藬?shù)不變,排隊的行數(shù)和每行的人數(shù)是反比例;長方體的體積一定,底面積和高是反比例。
七、當(dāng)堂訓(xùn)練基礎(chǔ)練習(xí)。
1、填空。
兩種_____的量,一種量隨著另一種量變化,如果這兩種量中相對應(yīng)的兩個數(shù)的______,這兩種量叫做成反比例的量,它們的關(guān)系叫做_______關(guān)系。
2、判斷下面每題中的兩種量是不是成反比例,并說明理由。
(1)煤的總量一定,每天的燒煤量和能夠燒的天數(shù)。
(2)張伯伯騎自行車從家到縣城,騎自行車的速度和所需的時間。
(3)生產(chǎn)電視機(jī)的總臺數(shù)一定,每天生產(chǎn)的臺數(shù)和所用的天數(shù)。
(4)圓柱體的體積一定,底面積和高。
(5)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(6)長方形的長一定,面積和寬。
(7)平行四邊形面積一定,底和高。提高練習(xí)。
四、小結(jié)。
通過這節(jié)課的學(xué)習(xí),你有什么收獲?
相關(guān)聯(lián),一個量變化,另一個量也隨著變化積一定。
xy=k(一定)。
正反比例教案篇十七
1. 本節(jié) 課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》 的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例 函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。
2. 對教材的分析
(1) 教學(xué)目標(biāo):進(jìn) 一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對 函數(shù)進(jìn)行認(rèn)識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2) 重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3) 難點:探索并掌握反比例函數(shù)的主要性質(zhì)。
1、提問:
(1)=4/x 是什么函數(shù)?你會作反比例函數(shù)的圖象嗎?
(2)作圖的步驟是 怎樣的(3)填寫電腦上的表格,開始在坐標(biāo)紙上描點連線。
2、按照上述方法作 =―4/x 的圖象3、 對照你所作的兩個函數(shù)圖象,找一下它們的相同點和不同點。
1、讓學(xué)生觀察函 數(shù) =/x 的圖象 ,按下動畫按鈕,在運(yùn)動中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
2、演示反比例函數(shù)中心 對稱的性質(zhì)以及軸對稱性質(zhì),顯示反比例函數(shù)的兩條對稱軸。
3、讓學(xué)生觀察函數(shù) =/x 的圖象,觀察過反比例函數(shù)上任意一 點作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
(1) 拖動,使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出 結(jié)論。
(2) 拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。
1、給出兩個反比例函數(shù)的圖象,判斷哪一個是 =2/x 和 =―2/x 的圖象。
2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。
3、下列函數(shù)中,其圖象位于第一、三象限
的有哪幾個?在其圖象所在象限內(nèi),的值隨x的增大而增
大的有哪幾個?
:課本137頁第1題、141頁第2題