2023年高中數(shù)學(xué)冪函數(shù)教學(xué)教案(通用13篇)

字號(hào):

    教案應(yīng)注重培養(yǎng)學(xué)生的學(xué)習(xí)興趣和主動(dòng)探索的能力,激發(fā)他們的學(xué)習(xí)動(dòng)力。教案編寫(xiě)應(yīng)注意語(yǔ)言簡(jiǎn)明、清晰明了,便于教師的理解和學(xué)生的接受。針對(duì)不同年級(jí)和學(xué)科,我們?yōu)榇蠹艺砹艘恍﹥?yōu)秀的教案案例。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇一
    教學(xué)目標(biāo):
    通過(guò)實(shí)例,理解冪函數(shù)的概念;能區(qū)分指數(shù)函數(shù)與冪函數(shù);會(huì)用待定系數(shù)法求冪函數(shù)的解析式。
    教學(xué)重難點(diǎn):
    重點(diǎn)從五個(gè)具體冪函數(shù)中認(rèn)識(shí)冪函數(shù)的一些特征。
    難點(diǎn)指數(shù)函數(shù)與冪函數(shù)的區(qū)別和冪函數(shù)解析式的求解。
    教學(xué)方法與手段:
    1、采用師生互動(dòng)的方式,在教師的引導(dǎo)下,學(xué)生通過(guò)思考、交流、討論,理解冪函數(shù)的定義,體驗(yàn)自主探索、合作交流的學(xué)習(xí)方式,充分發(fā)揮學(xué)生的積極性與主動(dòng)性。
    2、利用投影儀及計(jì)算機(jī)輔助教學(xué)。
    教學(xué)過(guò)程:
    函數(shù)的完美追求:對(duì)于式子,
    如果一定,n隨的變化而變化,我們建立了指數(shù)函數(shù);
    如果一定,隨n的變化而變化,我們建立了對(duì)數(shù)函數(shù)。
    設(shè)想:如果一定,n隨的變化而變化,是不是也應(yīng)該確定一個(gè)函數(shù)呢?
    創(chuàng)設(shè)情境。
    請(qǐng)大家看以下問(wèn)題:
    思考:以上問(wèn)題中的函數(shù)有什么共同特征?
    引導(dǎo)學(xué)生分析歸納概括得出:(1)都是以自變量x為底數(shù);(2)指數(shù)為常數(shù);(3)自變量x前的系數(shù)為1;(4)只有一項(xiàng)。上述問(wèn)題中涉及的函數(shù),都是形如的函數(shù)。
    探究新知。
    一、冪函數(shù)的定義。
    一般地,形如的函數(shù)稱為冪函數(shù),其中是自變量,是常數(shù)。
    中前面的系數(shù)是1,后面沒(méi)有其它項(xiàng)。
    小試牛刀。
    (1),
    思考:冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇二
    會(huì)運(yùn)用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡(jiǎn)單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。
    重點(diǎn)。
    難點(diǎn)。
    一、復(fù)習(xí)引入。
    1、函數(shù)的定義域、值域、圖象、表示方法。
    (1)單調(diào)增函數(shù)。
    (2)單調(diào)減函數(shù)。
    (3)單調(diào)區(qū)間。
    二、例題分析。
    例
    1、畫(huà)出下列函數(shù)圖象,并寫(xiě)出單調(diào)區(qū)間:
    (1)(2)(2)。
    例
    2、求證:函數(shù)在區(qū)間上是單調(diào)增函數(shù)。
    例
    3、討論函數(shù)的單調(diào)性,并證明你的結(jié)論。
    變(1)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。
    變(2)討論函數(shù)的單調(diào)性,并證明你的結(jié)論。
    例
    三、隨堂練習(xí)。
    1、判斷下列說(shuō)法正確的是。
    (1)若定義在上的函數(shù)滿足,則函數(shù)是上的單調(diào)增函數(shù);。
    (2)若定義在上的函數(shù)滿足,則函數(shù)在上不是單調(diào)減函數(shù);。
    (4)若定義在上的函數(shù)在區(qū)間上是單調(diào)增函數(shù),在區(qū)間上也是單調(diào)增函數(shù),則函數(shù)是上的單調(diào)增函數(shù)。
    2、若一次函數(shù)在上是單調(diào)減函數(shù),則點(diǎn)在直角坐標(biāo)平面的()。
    a.上半平面b.下半平面c.左半平面d.右半平面。
    3、函數(shù)在上是______;函數(shù)在上是_______。
    3.下圖分別為函數(shù)和的圖象,求函數(shù)和的單調(diào)增區(qū)間。
    4、求證:函數(shù)是定義域上的單調(diào)減函數(shù)。
    四、回顧小結(jié)。
    課后作業(yè)。
    一、基礎(chǔ)題。
    (1)(2)。
    2、畫(huà)函數(shù)的圖象,并寫(xiě)出單調(diào)區(qū)間。
    二、提高題。
    3、求證:函數(shù)在上是單調(diào)增函數(shù)。
    4、若函數(shù),求函數(shù)的單調(diào)區(qū)間。
    5、若函數(shù)在上是增函數(shù),在上是減函數(shù),試比較與的大小。
    三、能力題。
    6、已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。
    變(1)已知函數(shù),試討論函數(shù)f(x)在區(qū)間上的單調(diào)性。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇三
    集合語(yǔ)言是現(xiàn)代數(shù)學(xué)的基本語(yǔ)言,使用集合語(yǔ)言,可以簡(jiǎn)潔、準(zhǔn)確地表達(dá)數(shù)學(xué)的一些內(nèi)容.本章中只將集合作為一種語(yǔ)言來(lái)學(xué)習(xí),學(xué)生將學(xué)會(huì)使用最基本的集合語(yǔ)言去表示有關(guān)的數(shù)學(xué)對(duì)象,發(fā)展運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力.
    函數(shù)的學(xué)習(xí)促使學(xué)生的數(shù)學(xué)思維方式發(fā)生了重大的轉(zhuǎn)變:思維從靜止走向了運(yùn)動(dòng)、從運(yùn)算轉(zhuǎn)向了關(guān)系.函數(shù)是高中數(shù)學(xué)的核心內(nèi)容,是高中數(shù)學(xué)課程的一個(gè)基本主線,有了這條主線就可以把數(shù)學(xué)知識(shí)編織在一起,這樣可以使我們對(duì)知識(shí)的掌握更牢固一些.函數(shù)與不等式、數(shù)列、導(dǎo)數(shù)、立體、解析、算法、概率、選修中的很多專題內(nèi)容有著密切的聯(lián)系.用函數(shù)的思想去理解這些內(nèi)容,是非常重要的出發(fā)點(diǎn).反過(guò)來(lái),通過(guò)這些內(nèi)容的學(xué)習(xí),加深了對(duì)函數(shù)思想的認(rèn)識(shí).函數(shù)的思想方法貫穿于高中數(shù)學(xué)課程的始終.高中數(shù)學(xué)課程中,函數(shù)有許多下位知識(shí),如必修1第二章的冪、指、對(duì)函數(shù)數(shù),在必修四將學(xué)習(xí)三角函數(shù).函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.
    二、學(xué)情分析。
    1.學(xué)生的作業(yè)與試卷部分缺失,導(dǎo)致易錯(cuò)問(wèn)題分析不全面.通過(guò)布置易錯(cuò)點(diǎn)分析的任務(wù),讓學(xué)生意識(shí)到保留資料的重要性.
    2.學(xué)生學(xué)基本功較扎實(shí),學(xué)習(xí)態(tài)度較端正,有一定的自主學(xué)習(xí)能力.但是沒(méi)有養(yǎng)成及時(shí)復(fù)習(xí)的習(xí)慣,有些內(nèi)容已經(jīng)淡忘.通過(guò)自主梳理知識(shí),讓學(xué)生感受復(fù)習(xí)的必要性,培養(yǎng)學(xué)生良好的復(fù)習(xí)習(xí)慣.
    3.在研究例4時(shí),對(duì)分類的情況研究的不全面.為了突破這個(gè)難點(diǎn),應(yīng)用幾何畫(huà)板制作了課件,給學(xué)生形象、直觀的感知,體會(huì)二次函數(shù)對(duì)稱軸與所給的區(qū)間的位置關(guān)系是解決這類問(wèn)題的關(guān)鍵.
    三、設(shè)計(jì)思路。
    本節(jié)課新課中滲透的理念是:“強(qiáng)調(diào)過(guò)程教學(xué),啟發(fā)思維,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性”.在本節(jié)課的學(xué)習(xí)過(guò)程中,教師沒(méi)有把梳理好的知識(shí)展示給學(xué)生,而是讓學(xué)生自己進(jìn)行知識(shí)的梳理.一方讓學(xué)生體會(huì)到知識(shí)網(wǎng)絡(luò)化的必要性,另一方面希望學(xué)生養(yǎng)成知識(shí)梳理的習(xí)慣.在本節(jié)課中不斷提出問(wèn)題,采取問(wèn)題驅(qū)動(dòng),引導(dǎo)學(xué)生積極思考,讓學(xué)生全面參與,整個(gè)教學(xué)過(guò)程尊重學(xué)生的思維方式,引導(dǎo)學(xué)生在“最近發(fā)展區(qū)”發(fā)現(xiàn)問(wèn)題、解決問(wèn)題.通過(guò)自主分析、交流合作,從而進(jìn)行有機(jī)建構(gòu),解決問(wèn)題,改變學(xué)生模仿式的學(xué)習(xí)方式.在教學(xué)過(guò)程中,滲透了特殊到一般的思想、數(shù)形結(jié)合思想、函數(shù)與方程思想.在教學(xué)過(guò)程中通過(guò)恰當(dāng)?shù)膽?yīng)用信息技術(shù),從而突破難點(diǎn).
    四、教學(xué)目標(biāo)分析。
    (一)知識(shí)與技能。
    1.了解集合的含義與表示,理解集合間的基本關(guān)系,集合的基本運(yùn)算.
    a:能從集合間的運(yùn)算分析出集合的基本關(guān)系.b:對(duì)于分類討論問(wèn)題,能區(qū)分取交還是取并.
    2.理解函數(shù)的定義,掌握函數(shù)的基本性質(zhì),會(huì)運(yùn)用函數(shù)的圖象理解和研究函數(shù)的性質(zhì).
    a:會(huì)用定義證明函數(shù)的單調(diào)性、奇偶性.b:會(huì)分析函數(shù)的單調(diào)性、奇偶性、對(duì)稱性的關(guān)系.
    (二)過(guò)程與方法。
    1.通過(guò)學(xué)生自主知識(shí)梳理,了解自己學(xué)習(xí)的不足,明確知識(shí)的來(lái)龍去脈,把學(xué)習(xí)的內(nèi)容網(wǎng)絡(luò)化、系統(tǒng)化.
    2.在解決問(wèn)題的過(guò)程中,學(xué)生通過(guò)自主探究、合作交流,領(lǐng)悟知識(shí)的橫、縱向聯(lián)系,體會(huì)集合與函數(shù)的本質(zhì).
    (三)情感態(tài)度與價(jià)值觀。
    在學(xué)生自主整理知識(shí)結(jié)構(gòu)的過(guò)程中,認(rèn)識(shí)到材料整理的必要性,從而形成及時(shí)反思的學(xué)習(xí)習(xí)慣,獨(dú)立獲取數(shù)學(xué)知識(shí)的能力.在解決問(wèn)題的過(guò)程中,學(xué)生感受到成功的喜悅,樹(shù)立學(xué)好數(shù)學(xué)的信心.在例4的解答過(guò)程中,滲透動(dòng)靜結(jié)合的思想,讓學(xué)生養(yǎng)成理性思維的品質(zhì).
    五、重難點(diǎn)分析。
    重點(diǎn):掌握知識(shí)之間的聯(lián)系,洞悉問(wèn)題的考察點(diǎn),能選擇合適的知識(shí)與方法解決問(wèn)題.
    難點(diǎn):含參問(wèn)題的討論,函數(shù)性質(zhì)之間的關(guān)系.
    六.知識(shí)梳理(約10分鐘)。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇四
    我們做函數(shù)題目的時(shí)候,要把握輸出函數(shù)解析式的方法,這點(diǎn)需要我們細(xì)細(xì)的去總結(jié)。課后一定要記得去看,反復(fù)練習(xí),不然過(guò)一陣子就會(huì)忘記,一定要經(jīng)常去翻看課本教材。
    做函數(shù)題目要有信心,對(duì)自己要相信的態(tài)度,不要被難題嚇倒,給自己積極的心理暗示,對(duì)做題也會(huì)有幫助。
    函數(shù)未知數(shù)的求法會(huì)比較難求,所以要總結(jié)自己的做題順序,尋求老師的幫助會(huì)更好。課后一定要記得去看,反復(fù)練習(xí),不然過(guò)一陣子就會(huì)忘記,一定要經(jīng)常去翻看課本教材。
    高中數(shù)學(xué)函數(shù)方法:理解函數(shù)三要素:定義域,對(duì)應(yīng)法則,值域。題目類型:求定義域,值域,相等函數(shù)概念.值域求法:換元法,單調(diào)性法,分離系數(shù)法,數(shù)形結(jié)合法,配方法等。求函數(shù)解析式:a待定系數(shù)法;b配湊法;c換元法;d代入法;e構(gòu)造方程組法:若已知的函數(shù)關(guān)系較為抽象簡(jiǎn)約,則可以對(duì)變量進(jìn)行置換,設(shè)法構(gòu)造方程組,通過(guò)解方程組求得函數(shù)解析式。f賦值法:當(dāng)題中所給變量較多,且含有“任意”等條件時(shí),往往可以對(duì)具有“任意性”的變量進(jìn)行賦值,使問(wèn)題具體化、簡(jiǎn)單化,從而求得解析式。g遞推法。
    函數(shù)的性質(zhì)和圖像:性質(zhì):?jiǎn)握{(diào)性,奇偶性,周期性。函數(shù)的性質(zhì)和圖像要相互結(jié)合起來(lái)思考,把每一個(gè)條件都要分析處理,從中尋找解題思路。
    導(dǎo)數(shù)與函數(shù)的單調(diào)性:復(fù)雜的函數(shù)要求函數(shù)的單調(diào)性,可以用導(dǎo)數(shù)的方法,可以使問(wèn)題大大簡(jiǎn)化。函數(shù)模型與綜合應(yīng)用:對(duì)于一些常見(jiàn)的問(wèn)題,可以構(gòu)建我們熟悉的函數(shù)模型進(jìn)行求解。注意函數(shù)的定義域問(wèn)題。
    首先就是熟悉坐標(biāo)系:在除以學(xué)習(xí)過(guò)坐標(biāo)軸以后,我們?cè)诔醵A段開(kāi)始學(xué)習(xí)坐標(biāo)系,坐標(biāo)系是所有函數(shù)的容器,在所有的函數(shù)里面需要坐標(biāo)系來(lái)體現(xiàn)的。
    理解函數(shù)概念:理解自變量和應(yīng)變量的概念進(jìn)而理解函數(shù)的概念,函數(shù)的概念理解了,理解了函數(shù)的概念才可以進(jìn)行函數(shù)題的計(jì)算。
    學(xué)習(xí)簡(jiǎn)單的函數(shù):學(xué)習(xí)簡(jiǎn)單的函數(shù),完全掌握簡(jiǎn)單的函數(shù),一次函數(shù)和二次函數(shù)。將一次函數(shù)和一元一次方程對(duì)應(yīng),將二次函數(shù)和一元二次方程對(duì)應(yīng),學(xué)會(huì)求點(diǎn)求數(shù)值。學(xué)會(huì)表示點(diǎn):另外需要學(xué)會(huì)表示點(diǎn),學(xué)會(huì)利用橫縱坐標(biāo)來(lái)表示點(diǎn)的位置和特點(diǎn)。學(xué)會(huì)表示點(diǎn)的位置,點(diǎn)的移動(dòng)和點(diǎn)的特性。
    讀懂函數(shù)圖像:根據(jù)函數(shù)的圖像能想夠讀懂函數(shù)圖像上的點(diǎn)的意義和函數(shù)圖像的意義。在實(shí)際的生活中能夠看懂圖像,看懂圖像的意義。學(xué)習(xí)簡(jiǎn)單的函數(shù)建立:在學(xué)習(xí)計(jì)算的過(guò)程中,試著可以將遇到的問(wèn)題轉(zhuǎn)化為我們的函數(shù)問(wèn)題,培養(yǎng)動(dòng)態(tài)思維能力。
    函數(shù)其實(shí)在初中的時(shí)候就已經(jīng)講過(guò)了,當(dāng)然那時(shí)候是最簡(jiǎn)單的一次和二次,而整個(gè)高中函數(shù)最富有戲劇性的函數(shù)實(shí)際上也就是二次函數(shù),學(xué)好函數(shù)總的策略是掌握每一種函數(shù)的性質(zhì),這樣就可以運(yùn)用自如,有備無(wú)患了。
    函數(shù)的性質(zhì)一般有單調(diào)性、奇偶性、有界性及周期性。能夠完美體現(xiàn)上述性質(zhì)的函數(shù)在中學(xué)階段只有三角函數(shù)中的正弦函數(shù)和余弦函數(shù)。以上是函數(shù)的基本性質(zhì),通過(guò)奇偶性可以衍生出對(duì)稱性,這樣就和二次函數(shù)聯(lián)系起來(lái)了,事實(shí)上,二次函數(shù)可以和以上所有性質(zhì)聯(lián)系起來(lái),任何函數(shù)都可以,因?yàn)檫@些性質(zhì)就是在大量的基本函數(shù)中抽象出來(lái)為了更加形象地描述它們的。我相信這點(diǎn)你定是深有體會(huì)。剩下的冪函數(shù)、指數(shù)函數(shù)對(duì)數(shù)函數(shù)等等本身并不復(fù)雜,只要抓住起性質(zhì),例如對(duì)數(shù)函數(shù)的定義域,指數(shù)函數(shù)的值域等等,出題人可以大做文章,答題人可以縱橫捭闔暢游其中。性質(zhì)是函數(shù)最本質(zhì)的東西,世界的本質(zhì)就是簡(jiǎn)單,復(fù)雜只是起外在的表現(xiàn)形式,函數(shù)能夠很好到體現(xiàn)這點(diǎn)。另外,高三還要學(xué)導(dǎo)數(shù),學(xué)好了可以幫助理解以前的東西,學(xué)不好還會(huì)擾亂人的思路,所以,我建議你去預(yù)習(xí),因?yàn)轭A(yù)習(xí)絕對(duì)不會(huì)使你落后,我最核心的學(xué)習(xí)經(jīng)驗(yàn)就是預(yù)習(xí),這種方法使我的數(shù)學(xué)遠(yuǎn)遠(yuǎn)領(lǐng)先其它同學(xué)而立于不敗之地。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇五
    一、學(xué)數(shù)學(xué)就像玩游戲,想玩好游戲,當(dāng)然先要熟悉游戲規(guī)則。
    而在數(shù)學(xué)當(dāng)中,游戲規(guī)則就是所謂的基本定義。想學(xué)好函數(shù),第一要牢固掌握基本定義及對(duì)應(yīng)的圖像特征,如定義域,值域,奇偶性,單調(diào)性,周期性,對(duì)稱軸等。
    很多同學(xué)都進(jìn)入一個(gè)學(xué)習(xí)函數(shù)的誤區(qū),認(rèn)為只要掌握好的做題方法就能學(xué)好數(shù)學(xué),其實(shí)應(yīng)該首先應(yīng)當(dāng)掌握最基本的定義,在此基礎(chǔ)上才能學(xué)好做題的方法,所有的做題方法要成立歸根結(jié)底都必須從基本定義出發(fā),最好掌握這些定義和性質(zhì)的代數(shù)表達(dá)以及圖像特征。
    二、牢記幾種基本初等函數(shù)及其相關(guān)性質(zhì)、圖象、變換。
    中學(xué)就那么幾種基本初等函數(shù):一次函數(shù)(直線方程)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、正弦余弦函數(shù)、正切余切函數(shù),所有的函數(shù)題都是圍繞這些函數(shù)來(lái)出的,只是形式不同而已,最終都能靠基本知識(shí)解決。
    還有三種函數(shù),盡管課本上沒(méi)有,但是在高考以及自主招生考試中都經(jīng)常出現(xiàn)的對(duì)勾函數(shù):y=ax+b/x,含有絕對(duì)值的函數(shù),三次函數(shù)。這些函數(shù)的定義域、值域、單調(diào)性、奇偶性等性質(zhì)和圖像等各方面的特征都要好好研究。
    三、圖像是函數(shù)之魂!要想學(xué)好做好函數(shù)題,必須充分關(guān)注函數(shù)圖象問(wèn)題。
    翻閱歷年高考函數(shù)題,有一個(gè)算一個(gè),幾乎百分之八十的函數(shù)問(wèn)題都與圖像有關(guān)。這就要求同學(xué)們?cè)趯W(xué)習(xí)函數(shù)時(shí)多多關(guān)注函數(shù)的圖像,要會(huì)作圖、會(huì)看圖、會(huì)用圖!多多關(guān)注函數(shù)圖象的平移、放縮、翻轉(zhuǎn)、旋轉(zhuǎn)、復(fù)合與疊加等問(wèn)題。
    四、多做題,多向老師請(qǐng)教,多總結(jié)。
    多做題不是指題海戰(zhàn)術(shù),而是根據(jù)自己的情況,做適當(dāng)?shù)念}目;重點(diǎn)要落在多總結(jié)上,總結(jié)什么呢?總結(jié)題型,總結(jié)方法,總結(jié)錯(cuò)題,總結(jié)思路,總結(jié)知識(shí)等!
    一、學(xué)數(shù)學(xué)就像玩游戲,想玩好游戲,當(dāng)然先要熟悉游戲規(guī)則。
    而在數(shù)學(xué)當(dāng)中,游戲規(guī)則就是所謂的基本定義。想學(xué)好函數(shù),第一要牢固掌握基本定義及對(duì)應(yīng)的圖像特征,如定義域,值域,奇偶性,單調(diào)性,周期性,對(duì)稱軸等。
    很多同學(xué)都進(jìn)入一個(gè)學(xué)習(xí)函數(shù)的誤區(qū),認(rèn)為只要掌握好的做題方法就能學(xué)好數(shù)學(xué),其實(shí)應(yīng)該首先應(yīng)當(dāng)掌握最基本的定義,在此基礎(chǔ)上才能學(xué)好做題的方法,所有的做題方法要成立歸根結(jié)底都必須從基本定義出發(fā),最好掌握這些定義和性質(zhì)的代數(shù)表達(dá)以及圖像特征。
    二、牢記幾種基本初等函數(shù)及其相關(guān)性質(zhì)、圖象、變換。
    中學(xué)就那么幾種基本初等函數(shù):一次函數(shù)(直線方程)、二次函數(shù)、反比例函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、正弦余弦函數(shù)、正切余切函數(shù),所有的函數(shù)題都是圍繞這些函數(shù)來(lái)出的,只是形式不同而已,最終都能靠基本知識(shí)解決。
    還有三種函數(shù),盡管課本上沒(méi)有,但是在高考以及自主招生考試中都經(jīng)常出現(xiàn)的對(duì)勾函數(shù):y=ax+b/x,含有絕對(duì)值的函數(shù),三次函數(shù)。這些函數(shù)的定義域、值域、單調(diào)性、奇偶性等性質(zhì)和圖像等各方面的特征都要好好研究。
    三、圖像是函數(shù)之魂!要想學(xué)好做好函數(shù)題,必須充分關(guān)注函數(shù)圖象問(wèn)題。
    翻閱歷年高考函數(shù)題,有一個(gè)算一個(gè),幾乎百分之八十的函數(shù)問(wèn)題都與圖像有關(guān)。這就要求同學(xué)們?cè)趯W(xué)習(xí)函數(shù)時(shí)多多關(guān)注函數(shù)的圖像,要會(huì)作圖、會(huì)看圖、會(huì)用圖!多多關(guān)注函數(shù)圖象的平移、放縮、翻轉(zhuǎn)、旋轉(zhuǎn)、復(fù)合與疊加等問(wèn)題。
    四、多做題,多向老師請(qǐng)教,多總結(jié)。
    多做題不是指題海戰(zhàn)術(shù),而是根據(jù)自己的情況,做適當(dāng)?shù)念}目;重點(diǎn)要落在多總結(jié)上,總結(jié)什么呢?總結(jié)題型,總結(jié)方法,總結(jié)錯(cuò)題,總結(jié)思路,總結(jié)知識(shí)等!
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇六
    在高中數(shù)學(xué)教學(xué)中,數(shù)學(xué)思想的培養(yǎng)在倡導(dǎo)新課程教育的大環(huán)境下顯得尤為重要,這不僅關(guān)系到教學(xué)效率的提高,對(duì)增強(qiáng)學(xué)生的文化素養(yǎng)也大有裨益。經(jīng)過(guò)多年的教育教學(xué)總結(jié)了幾點(diǎn)高中數(shù)學(xué)函數(shù)教學(xué)的有效對(duì)策:
    一、在概念中滲透。
    高中學(xué)生要掌握數(shù)學(xué)知識(shí),就必須經(jīng)歷一個(gè)階段,即學(xué)生“吸收”數(shù)學(xué)知識(shí)的過(guò)程,特別是在形成概念的階段,數(shù)學(xué)教師應(yīng)給予學(xué)生更多的解釋和正確的引導(dǎo)。如,以偶函數(shù)與自變量的關(guān)系來(lái)說(shuō),在一定定義域中的自變量互為相反時(shí),經(jīng)相應(yīng)函數(shù)關(guān)系式的對(duì)應(yīng)后,即能夠在某解析公式中得到相應(yīng)的證明,進(jìn)而在這個(gè)基礎(chǔ)之上概括出包括偶、奇函數(shù)的部分函數(shù)定義,從這個(gè)例子中能夠使從具體到抽象的函數(shù)充分體現(xiàn)出來(lái)。
    二、在教學(xué)中強(qiáng)化。
    在實(shí)際的高中數(shù)學(xué)教學(xué)時(shí),教師可在學(xué)生初步認(rèn)識(shí)數(shù)學(xué)時(shí)就加入一定的實(shí)例,從而使學(xué)生理解的數(shù)學(xué)概念得到強(qiáng)化。比如,在對(duì)數(shù)函數(shù)教學(xué)中加入圖形案例,就能夠使學(xué)生更為清楚、直觀地對(duì)函數(shù)發(fā)生以及后續(xù)變化過(guò)程進(jìn)行了解。
    三、方程教學(xué)的應(yīng)用。
    要使高中生對(duì)數(shù)學(xué)思想方法進(jìn)行充分掌握,函數(shù)與方程是必不可少的,同時(shí)在實(shí)際運(yùn)用中,函數(shù)與方程經(jīng)常需要互相轉(zhuǎn)化,因此對(duì)其加以合理利用,就能夠?qū)崿F(xiàn)復(fù)雜問(wèn)題的簡(jiǎn)單化,并互相作用。
    四、函數(shù)圖象的應(yīng)用。
    函數(shù)圖象能夠?qū)⒑瘮?shù)性質(zhì)直觀地反映出來(lái),并能夠通過(guò)研究圖像與圖形,有效解決函數(shù)問(wèn)題,是數(shù)形結(jié)合應(yīng)用的.重要組成部分。另外在函數(shù)圖象問(wèn)題的解決過(guò)程中,必須具備函數(shù)意識(shí)與分析意識(shí),才能找到最為合理的解決方式。
    五、函數(shù)分類的應(yīng)用。
    在高中函數(shù)教學(xué)中,分類不同函數(shù)是具體應(yīng)用之一??赏ㄟ^(guò)例題在教學(xué)中對(duì)解題思想進(jìn)行展示,從而使學(xué)生分類不同函數(shù)的能力得到訓(xùn)練與培養(yǎng)。大多數(shù)數(shù)學(xué)思想的解決方法只有在實(shí)際的數(shù)學(xué)題中通過(guò)實(shí)際解析,才能實(shí)現(xiàn)深化理解,進(jìn)而使應(yīng)用的靈活性與準(zhǔn)確性得到提升。
    在高中數(shù)學(xué)函數(shù)教學(xué)過(guò)程中,教師應(yīng)根據(jù)實(shí)際情況,將高中函數(shù)中的知識(shí)點(diǎn)理清,從高中函數(shù)的形式與概念入手,引導(dǎo)學(xué)生深刻認(rèn)識(shí)函數(shù)的本質(zhì),隨后拓展學(xué)生的眼界,找出與函數(shù)關(guān)聯(lián)的若干知識(shí)點(diǎn),讓學(xué)生掌握利用函數(shù)思想對(duì)其他問(wèn)題進(jìn)行解決的方法,同時(shí)在這個(gè)階段中,強(qiáng)化學(xué)生理解函數(shù)的程度,真正實(shí)現(xiàn)高中函數(shù)相關(guān)知識(shí)點(diǎn)的全面掌握。
    參考文獻(xiàn):
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇七
    如圖所示為a的不同大小影響函數(shù)圖形的情況。
    可以看到:
    (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
    (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
    (3)函數(shù)圖形都是下凹的。
    (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
    (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無(wú)窮大的過(guò)程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與x軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與x軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過(guò)渡位置。
    (6)函數(shù)總是在某一個(gè)方向上無(wú)限趨向于x軸,永不相交。
    (7)函數(shù)總是通過(guò)(0,1)這點(diǎn)。
    (8)顯然指數(shù)函數(shù)無(wú)界。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇八
    1、本節(jié)內(nèi)容在全書(shū)及章節(jié)的地位:《函數(shù)的單調(diào)性》是必修1第一章第3節(jié),是高考的重點(diǎn)考查內(nèi)容之一,是函數(shù)的一個(gè)重要性質(zhì),在比較幾個(gè)數(shù)的大小、求函數(shù)值域、對(duì)函數(shù)的定性分析以及與其他知識(shí)的綜合上都有廣泛的應(yīng)用。通過(guò)對(duì)這一節(jié)課的學(xué)習(xí),可以讓學(xué)生加深對(duì)函數(shù)的本質(zhì)認(rèn)識(shí)。也為今后研究具體函數(shù)的性質(zhì)作了充分準(zhǔn)備,起到承上啟下的作用。
    2、教學(xué)目標(biāo):根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知水平我制定如下教學(xué)目標(biāo):
    情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂(lè)趣。
    重點(diǎn):形成增(減)函數(shù)的形式化定義。
    難點(diǎn)。形成增減函數(shù)概念的過(guò)程中,如何從圖像升降的直觀認(rèn)識(shí)過(guò)渡到函數(shù)增減數(shù)學(xué)符號(hào)語(yǔ)言表述;用定義證明函數(shù)的單調(diào)性。
    為了講清重點(diǎn)、難點(diǎn),使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?BR>    二、教法。
    三、學(xué)法。
    它們環(huán)環(huán)相扣,層層深入,從而順利完成教學(xué)目標(biāo)。接下來(lái),我再具體談一談這堂課的教學(xué)過(guò)程:
    四、教學(xué)程序及設(shè)想。
    (一)創(chuàng)設(shè)情境——引入概念。
    通過(guò)設(shè)置問(wèn)題情景、課堂導(dǎo)入、新課講授及終結(jié)階段的教學(xué)中,我力求培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力,以點(diǎn)撥、啟發(fā)、引導(dǎo)為教師職責(zé)。
    1、由具體的數(shù)列實(shí)例引入:
    觀察下列各個(gè)函數(shù)的圖象,并說(shuō)說(shuō)它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:隨x的增大,y的值有什么變化。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇九
    (陜西省漢臺(tái)中學(xué))。
    摘要:眾所周知,在我國(guó)的高中教育中,數(shù)學(xué)教學(xué)占據(jù)了重要的地位。高中數(shù)學(xué)有其教學(xué)的復(fù)雜性,因此,只有在教學(xué)中運(yùn)用正確的教學(xué)方法才能取得事半功倍的效果。高中數(shù)學(xué)教學(xué)中函數(shù)的單調(diào)性問(wèn)題讓許多學(xué)生感到頭疼,學(xué)生無(wú)法對(duì)這一知識(shí)點(diǎn)進(jìn)行掌握和理解。但是,函數(shù)的單調(diào)性問(wèn)題又在生活和生產(chǎn)中有著很多用途。因此,在高中數(shù)學(xué)教學(xué)中,老師應(yīng)該根據(jù)學(xué)生學(xué)習(xí)的特性,采取合適的方法進(jìn)行函數(shù)單調(diào)性的教學(xué)。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇十
    課題:§1.3.1函數(shù)的單調(diào)性教學(xué)目的:(1)通過(guò)已學(xué)過(guò)的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義;(2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)能夠熟練應(yīng)用定義判斷數(shù)在某區(qū)間上的的單調(diào)性.教學(xué)重點(diǎn):函數(shù)的單調(diào)性及其幾何意義.教學(xué)難點(diǎn):利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.教學(xué)過(guò)程:一、引入課題1.觀察下列各個(gè)函數(shù)的圖象,并說(shuō)說(shuō)它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:
    yx1-11-1yx1-11-1yx1-11-1。
    1隨x的增大,y的值有什么變化?2能否看出函數(shù)的最大、最小值?2.畫(huà)出下列函數(shù)的圖象,觀察其變化規(guī)律:1.f(x)=x1從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的.增大,f(x)的值隨著________.。
    yx1-11-1。
    2.f(x)=-2x+11從左至右圖象上升還是下降______?2在區(qū)間____________上,隨著x的增大,f(x)的值隨著________.1在區(qū)間____________上,f(x)的值隨著x的增大而________.2在區(qū)間____________上,f(x)的值隨著x的增大而________.二、新課教學(xué)(一)函數(shù)單調(diào)性定義1.增函數(shù)一般地,設(shè)函數(shù)y=f(x)的定義域?yàn)閕,如果對(duì)于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1。
    1的解集.。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇十一
    老師講課認(rèn)真聽(tīng)講,不會(huì)的問(wèn)題及時(shí)標(biāo)記。在課堂上,做一個(gè)好學(xué)生,認(rèn)真聽(tīng)講,對(duì)于老師講的問(wèn)題及時(shí)記錄,進(jìn)行相應(yīng)的標(biāo)記,在下課的時(shí)候,及時(shí)詢問(wèn)老師,早日解決問(wèn)題。
    一定要課前預(yù)習(xí)一下知識(shí)點(diǎn)。在上課前或平時(shí)閑暇時(shí)間,一定要注意課下多多預(yù)習(xí),預(yù)習(xí)比復(fù)習(xí)更加重要,真的很重要,關(guān)乎到課堂的思維能力的轉(zhuǎn)變,多多看看,對(duì)自己的理解有幫助。
    課上要學(xué)會(huì)學(xué)習(xí),記筆記,也要記住老師講的知識(shí)點(diǎn)。課堂上,自己要活躍一點(diǎn),帶給老師感覺(jué),讓老師對(duì)你有印象,便于日后學(xué)習(xí)高中數(shù)學(xué),與老師探討學(xué)習(xí)方法,記筆記,記住講的重點(diǎn)。
    多做一些比較普通而又常出的問(wèn)題,來(lái)熟悉自己學(xué)的知識(shí)。在課下的時(shí)候,自己找出適合自己做的題,在做題中找出適合自己的題目,來(lái)進(jìn)行做和學(xué),總有一份題目適合自己做,便會(huì)更熟悉自己學(xué)的知識(shí)。
    學(xué)會(huì)總結(jié)本節(jié)課的知識(shí)點(diǎn),重點(diǎn),做一個(gè)學(xué)會(huì)學(xué)習(xí)的人。及時(shí)總結(jié)所學(xué)的知識(shí)點(diǎn),做一個(gè)學(xué)好習(xí)的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。
    建立一個(gè)記錯(cuò)本,錯(cuò)誤的題記錄到本子上。將自己以前做過(guò)的錯(cuò)題,及時(shí)的整理出來(lái),并且能夠及時(shí)的回顧,便于日后在本子上學(xué)習(xí)到知識(shí),能夠復(fù)習(xí)到自己以前錯(cuò)過(guò)的題。
    與老師經(jīng)常交流學(xué)習(xí)方法,總有一個(gè)適合你。多多的與老師交流,給老師留下一個(gè)好印象,便于自己和老師更深入的交流學(xué)習(xí),及時(shí)的詢問(wèn)一下高中數(shù)學(xué)的學(xué)習(xí)方法,總有一個(gè)適合自己。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇十二
    通過(guò)函數(shù)的單調(diào)性教學(xué),我從以下方面對(duì)自己的教學(xué)作一個(gè)完整的反思,以便更好的發(fā)現(xiàn)不足之處,及時(shí)調(diào)整,讓學(xué)生更好學(xué)習(xí)。
    從學(xué)生來(lái)說(shuō),這部分需要學(xué)生有嚴(yán)謹(jǐn)?shù)恼撟C思維,和鍛煉相應(yīng)的論述能力,鑒于以前沒(méi)有接觸過(guò)類似的知識(shí)形式,學(xué)生上課很有激情,但課堂回答問(wèn)題的整體狀態(tài)不佳。從作業(yè)上看,總體是很滿意的,但也出現(xiàn)了全班的通病,那就是在證明函數(shù)單調(diào)性上出現(xiàn)了問(wèn)題,這需要在以后的習(xí)題訓(xùn)練課中進(jìn)行相關(guān)的加強(qiáng)和強(qiáng)調(diào)。
    再?gòu)恼n本上來(lái)說(shuō)的話,課本降低了對(duì)定義域、值域的要求,尤其是人為的過(guò)于技巧性的,過(guò)于繁難的運(yùn)算。函數(shù)概念的教學(xué)可以從學(xué)生在義務(wù)教育階段已掌握的具體函數(shù)和函數(shù)的描述性定義入手,引導(dǎo)學(xué)生聯(lián)系自己的生活經(jīng)歷和實(shí)際問(wèn)題(課本p17三個(gè)實(shí)際問(wèn)題),嘗試列舉各種各樣的函數(shù),構(gòu)建函數(shù)的一般概念.掌握函數(shù)的三種表示方法:列表法、圖象法和解析法。
    教材中更注重通過(guò)圖形求函數(shù)的定義域、值域如第28頁(yè)第3題等。削弱了映射的概念,第26頁(yè)映射的概念是在學(xué)習(xí)函數(shù)概念之后給出的,重點(diǎn)是通過(guò)例7的講解讓學(xué)生理解映射的概念。而是加強(qiáng)了函數(shù)的表示法的教學(xué):函數(shù)的表示方法(列表法、圖象法、解析法)在老教材中是與函數(shù)的概念在一起,而新教材卻將它單獨(dú)設(shè)為一節(jié)的內(nèi)容,強(qiáng)調(diào)了它的重要性與實(shí)用性。即讓學(xué)生從現(xiàn)實(shí)世界認(rèn)識(shí)函數(shù),又明確了函數(shù)表示的多種形式,更為后面函數(shù)性質(zhì)的直觀認(rèn)識(shí),打下了基礎(chǔ),在教學(xué)中教師應(yīng)對(duì)這個(gè)變化給與加強(qiáng)。
    函數(shù)的單調(diào)性的教學(xué)加強(qiáng)了對(duì)數(shù)形結(jié)合等數(shù)學(xué)思想方法學(xué)習(xí)的要求,讓學(xué)生盡量從圖形上直觀的認(rèn)識(shí)函數(shù)的性質(zhì),然后再?gòu)睦碚撋线M(jìn)行研究,這種發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、研究問(wèn)題的探究方式,也是新課程提出的新的教學(xué)理念的一個(gè)體現(xiàn)。為了給學(xué)生補(bǔ)充相關(guān)的知識(shí),與考試大綱進(jìn)行銜接,必須增加函數(shù)的最大值、最小值的概念。這是老教材中所沒(méi)有的,對(duì)于函數(shù)的最大、最小值老教材只是通過(guò)圖形直觀認(rèn)識(shí),而新教材結(jié)合函數(shù)的單調(diào)性給出最大、最小值的概念,學(xué)生接受非常自然。利用函數(shù)的單調(diào)性求最值也成為研究函數(shù)性質(zhì)的一個(gè)必要的問(wèn)題。最后,對(duì)于復(fù)合函數(shù)的單調(diào)性:對(duì)于復(fù)合函數(shù),課本只有在選修教材中才出現(xiàn),但是函數(shù)的學(xué)習(xí)中卻有很多復(fù)合函數(shù)的問(wèn)題,對(duì)于復(fù)合函數(shù)的單調(diào)性,編者的意圖是不作要求的,但是在學(xué)習(xí)冪、指、對(duì)函數(shù)及三角函數(shù)時(shí),都出現(xiàn)了復(fù)合函數(shù)的單調(diào)性問(wèn)題,在教學(xué)中,我們是在學(xué)習(xí)了指數(shù)函數(shù)后,結(jié)合指數(shù)函數(shù)與一次函數(shù)、二次函數(shù)的復(fù)合形式進(jìn)行的講解,而且是從函數(shù)單調(diào)性的定義入手,不涉及過(guò)于復(fù)雜的、技巧性較高的問(wèn)題,這樣的教學(xué)對(duì)于高一學(xué)生來(lái)說(shuō),接受的還是比較好的。
    將本文的word文檔下載到電腦,方便收藏和打印。
    高中數(shù)學(xué)冪函數(shù)教學(xué)教案篇十三
    一、教材分析:
    《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗(yàn)教科書(shū)《數(shù)學(xué)》(冀教版)九年級(jí)上冊(cè)第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過(guò)小球飛行這樣的實(shí)際情境,創(chuàng)設(shè)三個(gè)問(wèn)題,這三個(gè)問(wèn)題對(duì)應(yīng)了一元二次方程有兩個(gè)不等實(shí)根、有兩個(gè)相等實(shí)根、沒(méi)有實(shí)根的三種情況。這樣,學(xué)生結(jié)合問(wèn)題實(shí)際意義就能對(duì)二次函數(shù)與一元二次方程的關(guān)系有很好的體會(huì);從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識(shí)與實(shí)際問(wèn)題的聯(lián)系。
    本節(jié)教學(xué)時(shí)間安排1課時(shí)。
    二、教學(xué)目標(biāo):
    知識(shí)技能:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體會(huì)方程與函數(shù)之間的聯(lián)系.
    2.理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒(méi)有實(shí)根.
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    數(shù)學(xué)思考:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
    2.經(jīng)歷用圖象法求一元二次方程的近似根的過(guò)程,獲得用圖象法求方程近似根的體驗(yàn).
    3.通過(guò)觀察二次函數(shù)圖象與x軸的交點(diǎn)個(gè)數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
    解決問(wèn)題:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過(guò)程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
    2.通過(guò)利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
    情感態(tài)度:
    1.從學(xué)生感興趣的問(wèn)題入手,讓學(xué)生親自體會(huì)學(xué)習(xí)數(shù)學(xué)的價(jià)值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
    2.通過(guò)學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識(shí)。
    三、教學(xué)重點(diǎn)、難點(diǎn):
    教學(xué)重點(diǎn):
    1.體會(huì)方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    教學(xué)難點(diǎn):
    1.探索方程與函數(shù)之間關(guān)系的過(guò)程。
    2.理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。
    四、教學(xué)方法:?jiǎn)l(fā)引導(dǎo)合作交流。
    五:教具、學(xué)具:課件。
    六、教學(xué)過(guò)程:
    [活動(dòng)1]檢查預(yù)習(xí)引出課題。
    預(yù)習(xí)作業(yè):
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
    師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。
    教師重點(diǎn)關(guān)注:學(xué)生回答問(wèn)題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來(lái),2題的格式要規(guī)范。
    設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來(lái),讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問(wèn)題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過(guò)的熟悉的知識(shí)類比探究本課新知識(shí)。
    [活動(dòng)2]創(chuàng)設(shè)情境探究新知。
    問(wèn)題。
    1.課本p94問(wèn)題.
    3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
    師生行為:教師提出問(wèn)題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問(wèn)題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問(wèn)題3是由學(xué)生分組探究的,這個(gè)問(wèn)題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
    教師重點(diǎn)關(guān)注:
    1.學(xué)生能否把實(shí)際問(wèn)題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;。
    2.學(xué)生在思考問(wèn)題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;。
    3.學(xué)生在探究問(wèn)題的過(guò)程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽(tīng)、獲得信息、梳理歸納的過(guò)程,使解決問(wèn)題的方法更準(zhǔn)確。
    設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問(wèn)題入手給學(xué)生創(chuàng)設(shè)熟悉的問(wèn)題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問(wèn)題的關(guān)系;學(xué)生通過(guò)小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。
    [活動(dòng)3]例題學(xué)習(xí)鞏固提高。
    問(wèn)題。
    例利用函數(shù)圖象求方程x2-2x-2=0的實(shí)數(shù)根(精確到0.1).
    師生行為:教師提出問(wèn)題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。
    教師關(guān)注:(1)學(xué)生在解題過(guò)程中格式是否規(guī)范;(2)學(xué)生所畫(huà)圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
    設(shè)計(jì)意圖:通過(guò)預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。
    [活動(dòng)4]練習(xí)反饋鞏固新知。