數(shù)學建模的論文范文(14篇)

字號:

    在一個固定的時間段內(nèi),總結(jié)可以幫助我們梳理和整理心中的思緒和感受。在總結(jié)的時候,我們要客觀公正地評價自己的表現(xiàn)。下面是一些培養(yǎng)孩子閱讀習慣的方法和建議,供家長參考。
    數(shù)學建模的論文篇一
    摘要:數(shù)學作為很多學科的計算工具,可以說是現(xiàn)代科學的基礎(chǔ),要想利用數(shù)學來解決實際問題,首先要建立相應的數(shù)學模型,本文在數(shù)學建模思想概念和特點的基礎(chǔ)上,從計算機軟件、實際生活中的應用等方面,對其應用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗模型三個階段,對數(shù)學建模的方法,進行了深入的研究。
    引言。
    隨著自然科學的發(fā)展,利用數(shù)學等思想來解決實際問題,越來越受到人們的重視,數(shù)學作為一門歷史悠久的自然科學,是在實際應用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學理論來解決實際問題,成為了很多專家和學者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學來解決實際問題,首先要建立相應的數(shù)學模型,將實際的問題轉(zhuǎn)化成數(shù)學符號的表達方式,這樣才能夠通過數(shù)學計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應用的需要,建立了一個相應的數(shù)學模型,這樣才能夠讓計算機來解決。
    數(shù)學是一門歷史悠久的自然科學,在古時候,由于實際應用的需要,人們就已經(jīng)開始使用數(shù)學來解決實際問題,但是受到當時技術(shù)條件的限制,數(shù)學理論的水平比較低,只是利用數(shù)學來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學得到了極大的發(fā)展,對于利用自然科學來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學建模的理論還沒有形成,隨著計算機軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學建模的重要性,發(fā)現(xiàn)利用數(shù)學建模思想,可以解決很多實際的問題,而數(shù)學建模的概念,就是將遇到的實際問題,利用特定的數(shù)學符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學問題,可以利用數(shù)學的計算方法來解決。
    如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學的發(fā)展,出現(xiàn)了很多具體的學科,利用這些不同的學科,可以解決不同的實際問題,而數(shù)學就是其中最重要的一門學科,而且是其他學科的基礎(chǔ),如物理學科中,數(shù)學就是一個計算的工具,由此可以看出數(shù)學的重要性,進入到信息時代后,計算機得到了普及應用,無論是日常生活中還是工作中,計算機都有非常重要的應用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學建模顯然更加科學,現(xiàn)在數(shù)學建模已經(jīng)成為了一門獨立的學科,很多高校中都開設了這門課程,為了培養(yǎng)學生們利用數(shù)學解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學建模大賽,采用開放式的參賽方式,對學生們的數(shù)學建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
    2.1計算機軟件中數(shù)學建模思想的應用。
    通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學模型,如在早期的計算機程序設計中,受到當時計算機技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學模型,然后將這個模型轉(zhuǎn)化成相應的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
    經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學建模大賽,所有的高校學生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設置的也比較靈活,會有多個題目提供給隊員選擇,學生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學建模大賽舉辦的主要目的,就是讓學生們掌握如何利用數(shù)學理論,來解決實際問題,在學習數(shù)學知識的過程中,很多學生會認為,數(shù)學與實踐的距離很遠,學習的都是純理論的知識,學習的興趣很低,與一些實踐密切相關(guān)的學科相比,選擇數(shù)學專業(yè)的學生很少,而數(shù)學建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學,并利用數(shù)學來解決復雜的問題。受到特殊的歷史因素影響,我國自然科學發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學建模等現(xiàn)代科學,研究的時間比較短,導致目前我國很少會利用數(shù)學建模來解決實際問題,相比之下,發(fā)達國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學模型,然后按照這個建立的模型來處理。
    從本質(zhì)上來說,數(shù)學是在實際應用的基礎(chǔ)上,逐漸形成的一門學科,但是受到當時技術(shù)水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學知識,隨著自然科學的發(fā)展,對數(shù)學的應用越來越多,而數(shù)學自身理論的發(fā)展速度很快,遠遠超過了實際應用的范圍,同時隨著其他學科的發(fā)展,數(shù)學變成了一種計算的工具,因此數(shù)學應用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學的應用達到了一個極限,人們在數(shù)學和物理的基礎(chǔ)上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學計算,還不能解決實際的問題,但是計算機語言和軟件技術(shù)的.發(fā)展,使其在很多領(lǐng)域得到了應用,在計算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學模型的過程,由此可以看出,數(shù)學建模思想應用的第二階段中,主要是以現(xiàn)代計算機等電子設備的方式,來解決實際的問題。
    3.1分析問題。
    數(shù)學模型的應用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學符號,如果能夠直接用數(shù)學語言來進行描述,那么就可以容易的建立相應的數(shù)學模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復雜,其中很多都無法直接用數(shù)學語言來描述,這就增加了數(shù)學建模的難度。由此可以看出,分析問題作為數(shù)學建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學模型,同時對數(shù)學模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學模型協(xié)同來解決一個問題。
    在分析實際問題后,就要用數(shù)學符號來描述要解決的問題,這是建立數(shù)學模型的準備環(huán)節(jié),要想利用數(shù)學來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學語言,然后才能夠通過計算的方式解決,而數(shù)學模型的過程,就是在描述完成后,建立相應的數(shù)學表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學建模的基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學定律,從而建立相應的表達式,最后解決相應的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學知識外,也可以結(jié)合其他學科的知識,尤其是現(xiàn)在遇到的問題越來越復雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學建模的難度越來越大,從近些年全國數(shù)學建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
    在數(shù)學模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數(shù)學模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗模型的準確外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學、合理,由此可以看出,校驗工作對于數(shù)學模型的建立,具有非常重要的意義。
    4結(jié)語。
    通過全文的分析可以知道,對于數(shù)學理論的應用,從很久之前就已經(jīng)開始了,但是數(shù)學建模思想的出現(xiàn),卻是隨著計算機技術(shù)的發(fā)展,逐漸形成的一門學科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學模型完成的任務,只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學建模思想最好的應用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應的程序。
    數(shù)學建模的論文篇二
    高校學生社團是一種具有共同興趣愛好的學生自發(fā)組織的開展一些藝術(shù)、娛樂和學術(shù)型的活動的團體。學生社團以其鮮明的開放性、自主性以及多樣性等特點,為一些有特長的學生提供了廣闊的舞臺,讓這些學生可以更好的發(fā)揮自己的才能,促進其更好的成才。全國大學生數(shù)學建模競賽是最早由教育部工業(yè)與數(shù)學應用學會共同承辦的一個科技性的賽事,該比賽要通過數(shù)學和計算機的知識來解決實際生活中的問題,由于其特有的比賽形式,使得高職院校在全校范圍內(nèi)直接選拔參賽隊員是件費神的事情,因此,為了更好的為數(shù)學建模競賽選拔人才,激發(fā)學生的學習興趣,學術(shù)性社團“數(shù)學建模協(xié)會”也就應運而生。數(shù)學建模協(xié)會的成立,可以更好的為學生提供一個展示自己的機會,可以增強學生對數(shù)學的學習興趣,培養(yǎng)學生應用數(shù)學解決實際問題的能力,激發(fā)學生的創(chuàng)新思維,為數(shù)學建模競賽選拔人才。本文主要以西安航空職業(yè)技術(shù)學院數(shù)學建模協(xié)會為例,探討高職數(shù)學建模社團活動開展的形式和意義。
    (一)數(shù)學建模社團有利于數(shù)學建模競賽的開展。高職數(shù)學建模協(xié)會為數(shù)學建模競賽搭建了一個平臺,是數(shù)學建模競賽強有力的后盾,數(shù)學建模競賽成績的取得與這個平臺密不可分,只有充分發(fā)揮數(shù)學建模社團的作用,才能源源不斷的為數(shù)學建模提供人力和智力保障,才能更好的推動高職數(shù)學的學習氛圍。1、數(shù)學建模協(xié)會起著動員宣傳的作用從沒聽過,到知道,在到熟悉,只有通過大力宣傳和動員,才能讓更多的人了解數(shù)學建模,讓更多優(yōu)秀學生參加到數(shù)學建模競賽中。大學校園中有許多數(shù)學愛好者,他們對數(shù)學建模也有一定的認識,只要有參加數(shù)學建?;顒拥脑竿模伎梢岳脭?shù)學建模協(xié)會招新的機會,加入數(shù)學建模創(chuàng)新協(xié)會。將成績優(yōu)秀的學生邀請加入數(shù)學建模協(xié)會,對進一步擴大數(shù)學建模協(xié)會,夯實數(shù)學建?;A(chǔ),起著舉足輕重的作用。2、數(shù)學建模協(xié)會起著知識傳播的作用高職院校學生在校學習時間較短,學業(yè)較為繁重,課余時間較少,數(shù)學建模培訓的時間不足,無法讓學生在短時期內(nèi)掌握較多的數(shù)學建模相關(guān)知識。因此,利用數(shù)學建模協(xié)會活動可以開展數(shù)學建模課程的培訓工作,普及數(shù)學建模相關(guān)知識。采用“老帶新”的模式進行數(shù)學建模知識的普及。通過制定系統(tǒng)的培訓方案,在每年秋季競賽后,參加過競賽的同學對新入?yún)f(xié)會的成員可以進行初級培訓,為今后的競賽奠定基礎(chǔ)。3、數(shù)學建模社團起著選拔學生的作用每年數(shù)學建模競賽的隊員需要通過校內(nèi)賽等形式進行選拔,此時,數(shù)學建模協(xié)會就起著校內(nèi)賽命題及選拔隊員的作用,當然這種選拔方式也有的弊端,就是所有隊員都是來自校內(nèi)賽成績優(yōu)秀的學生,而校內(nèi)賽發(fā)揮不理想但建模能力突出或計算機技術(shù)水平優(yōu)秀的學生就沒法參加數(shù)學建模競賽。為確保每一位有能力的學生都能夠加入到建模競賽隊伍中來,可以通過校內(nèi)競賽與建模協(xié)會推薦兩者相結(jié)合的方式選拔建模競賽學生,以確保最優(yōu)優(yōu)秀的學生參加數(shù)學建模競賽。(二)數(shù)學建模社團有利于大學生綜合素質(zhì)的培養(yǎng)。(1)數(shù)學建模社團屬于專業(yè)的學術(shù)性社團,成立的目的是為了參加全國大學生數(shù)學建模競賽,數(shù)學建模社團活動的趣味性和實踐性可以提高學生的學習興趣,培養(yǎng)學生自主學習的能力,增加學生參與競賽的熱情。社團活動中的培訓使學生可以更好的應對競賽,取得更好的成績。另外,競賽之余還可以進行其他領(lǐng)域的學術(shù)交流,比如計算機,經(jīng)濟,工程等領(lǐng)域,良好的交流氛圍激發(fā)學生的創(chuàng)新思維和意識,從而培養(yǎng)他們的創(chuàng)新能力。(2)數(shù)學建模社團是學生自發(fā)組織的服務學生的群體,除了學術(shù)研究之外,還可以進行一些創(chuàng)新創(chuàng)業(yè)的活動,具有更多的實踐的機會。比如,可以利用平時社團所學的知識,以團體的形式進行一些數(shù)據(jù)處理的校企合作;也可以以微信平臺和微信群等發(fā)布一些數(shù)學建模相關(guān)的微課等,進行一些微信群講座等等。這樣可以讓學生真正體會到數(shù)學的用處,達到學以致用的效果。(3)數(shù)學建模社團是學生自發(fā)組織的學術(shù)性社團,社團的組織機構(gòu)都是學生在擔任,社團的活動也都是學生在協(xié)調(diào)策劃,甚至很多時候社團的老成員都可以輔助老師進行社團的一些學術(shù)性的講座。因此,在學習的同時還鍛煉了他們的處事應變能力團隊合作的能力,可以說提高了學生的綜合素質(zhì)。
    (一)數(shù)學建模社團的管理形式。數(shù)學建模協(xié)會作為一個學生群體組織,需要好的制度和管理模式。以筆者所在學校為例,數(shù)學建模創(chuàng)新協(xié)會具有自己的一套規(guī)章管理制度;在管理形式方面是以“三個管理面”來進行社團管理和學術(shù)交流的,具體如下:1、學術(shù)交流面這個主要是通過“社團內(nèi)部進行學術(shù)交流活動”和“老帶新培訓”兩部分組成,內(nèi)部的交流活動主要是學生之間的相互溝通和交流,以及不定期的邀請指導教師和外校專家做一些數(shù)學建模報告。老帶新培訓是指社團主席團成員(一般是參加過前一年全國大學生數(shù)學建模競賽的學生)為新入社團的學生進行培訓,培訓的內(nèi)容基本上都是之前指導教師對他們集訓時的內(nèi)容,這種培訓方式可以提升社團成員的授課和理解問題的能力,對于在校大學生來說是一次很好的鍛煉。2、網(wǎng)絡交流面采用qq群,網(wǎng)絡空間和微信公眾平臺等開展社團成員之間的交流互動,社團宣傳。筆者所在學校的數(shù)學建模創(chuàng)新協(xié)會每一屆社團都有相應的qq群,另外,在20xx年也積極申請了微信平臺,目前的'關(guān)注量也在800余人,微信平臺的建立可以更方面使大學生關(guān)注數(shù)學建模相關(guān)信息,尤其是對大一新生可以更多的取了解數(shù)學建模,擴大數(shù)學建模的受益面和影響力。力求在大學生中營造一種“人人知數(shù)模,人人愛數(shù)模,人人參與數(shù)?!钡牧己玫慕逃h(huán)境,使建?;顒訌V泛化、群眾化。3、交流互訪面開展研討會,專家報告會,社團聯(lián)誼會等交流活動,既可以豐富數(shù)學建模社團學生的知識面,又能促進數(shù)學知識的理解和吸收,通過與其他社團的聯(lián)誼,豐富了社團學生的業(yè)余生活,又能學習其他社團好的管理經(jīng)驗,促進社團管理的制度化、規(guī)范化、專業(yè)化,也只有通過不斷的學習,不斷的交流,才能真正“走出去”,建立一個管理完善,富有成效的學生社團。(二)數(shù)學建模社團的特色活動。數(shù)學建模社團在開展學術(shù)活動和輔助教師進行競賽培訓的同時,還不定期的舉行一些活動,在提高學生學習興趣的同時也以擴大了數(shù)學建模的影響力。以筆者坐在學校為例,每年可以開展一系列的數(shù)學建模活動。比如,數(shù)學建模創(chuàng)新協(xié)會納新,數(shù)學建模創(chuàng)新協(xié)會趣味運動會,數(shù)學科技節(jié),趣味數(shù)學知識競賽,數(shù)學建模經(jīng)驗交流會,數(shù)學建模校內(nèi)賽,數(shù)學輔導周,數(shù)學建模專題講座。這些社團活動貫穿整個學年,不僅可以“由點及面、由淺入深”的對全國大學生數(shù)學建模競賽進行宣傳,在最大的范圍內(nèi),提升數(shù)學建模大賽的影響力及參與度,成效較好。而且讓枯燥的學術(shù)型社團變得豐富多彩,成為學生課后獲取知識的一種平臺,同時也是社團蓬勃發(fā)展的利器。
    總之,數(shù)學建模社團活動的開展,有利于培養(yǎng)學生的創(chuàng)新意識和思維,有利于激發(fā)了學生的學習興趣,有利于豐富學生的課后生活,有利于調(diào)動了學生參加學術(shù)型社團的積極性,同時也是高職院校組織參加數(shù)學建模競賽的強有力的后盾。
    [1]胡建茹,王搖娟.加強專業(yè)社團建設推進大學生創(chuàng)新實踐能力培養(yǎng)[j].中國石油大學學報:社會科學版,20xx(12)。
    [2]王珍娥,宋維,孫潔.數(shù)學社團建設的探索與實踐[j].機械職業(yè)教育,20xx(7)。
    [3]李湘玲,王泳興.大學生社團發(fā)展與創(chuàng)新型人才培養(yǎng)互動機制研究:以吉首大學為例[j].黑龍江教育,20xx(11)。
    [4]孫浩,葉正麟.西北工業(yè)大學數(shù)學建模創(chuàng)新教育之探索[j].高等數(shù)學研究,20xx(4)。
    作者:張?zhí)m單位:西安航空職業(yè)技術(shù)學院通識教育學院。
    數(shù)學建模的論文篇三
    數(shù)學,源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應用數(shù)學的發(fā)展,使數(shù)學日益滲透到社會各個領(lǐng)域.中考實際應用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學課程標準指出,教師在教學中應引導學生從實際背景中理清數(shù)學關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學模型.教師要為學生創(chuàng)造用數(shù)學的氛圍,引導學生參與自主學習、自主探索、自主提問、自主解決,體驗做數(shù)學的過程,從而提高解決實際問題的能力.
    一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學離不開學生“做”數(shù)學的過程,因而教師在教學中要留有讓學生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學生缺乏信任,由“引導者”變?yōu)椤肮噍斦摺?,將解題過程直接教給學生,影響了學生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學,需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學,激發(fā)學生的興趣,啟發(fā)學生進行思考,誘發(fā)學生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認為建模就是解應用題,或重生活味輕數(shù)學味,或使討論活動流于形式.三是學生的抽象能力較差.在建模教學中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學生經(jīng)歷閱讀提取有用的信息,但是部分學生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學生成功建模.
    1.自主探索原則.
    學生長期處于師講、生聽的教學模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學中,教師要為學生創(chuàng)設輕松愉悅的探究氛圍,讓學生手腦并用,在探索、交流、操作中提高解決問題的`能力.
    2.因材施教原則.
    教師要著眼于學生原有的認知結(jié)構(gòu),要貼近學生的最近發(fā)展區(qū),引導他們從舊知的角度思考,找出問題的解決方法。
    3.可接受性原則.
    數(shù)學建模內(nèi)容的設計,要符合學生的年齡特點和認知能力,能讓學生理解所探究的內(nèi)容.若設計的問題不切實際,往往會扼殺學生的興趣,教師要密切聯(lián)系教學內(nèi)容、生活實際,讓學生有能力解決問題.
    數(shù)學建模的論文篇四
    摘要:運籌學與數(shù)學建模2門課程聯(lián)系密切,在運籌學教學中,適當融入數(shù)學建模思想,能大幅度提高學生應用數(shù)學解決實際問題的能力.從運籌學教學中教學大綱的改革、教學環(huán)節(jié)的設計等方面進行了探索與實踐.教學實踐表明,將數(shù)學建模思想融入到運籌學教學中能提高課堂教學的效果,鍛煉學生的動手實踐能力.
    1運籌學教學中融入數(shù)學建模思想的必要性。
    2數(shù)學建模思想融入運籌學的教學改革。
    3運籌學教學中融入數(shù)學建模思想的教學改革成效。
    4結(jié)束語。
    數(shù)學建模的論文篇五
    就當前高等數(shù)學的教育教學而言,高數(shù)老師對學生的計算能力、思考能力以及邏輯思維能力過于重視,一切以課本為基礎(chǔ)開展教學活動。作為一門充滿活力并讓人感到新奇的學科,由于教育觀念和思想的落后,課堂教學之中沒有穿插應用實例,在工作的時候?qū)W生不知道怎樣把問題解決,工作效率無法進一步提升,不僅如此,陳舊的教學理念和思想讓學生漸漸的失去學習的興趣和動力。
    (二)教學方法傳統(tǒng)化。
    教學方法的優(yōu)秀與否在學生學習的過程中發(fā)揮著重要的作用,也直接影響著學生的學習成績。一般高數(shù)老師在授課的時候都是以課本的順次進行,也就意味著老師“由定義到定理”、“由習題到練習”,這種默守陳規(guī)的教學方式無法為學生營造活躍的學習氛圍,讓學生獨自學習、思考的能力進一步下降。這就要求教師致力于和諧課堂氛圍營造以及使用新穎的教育教學方法,讓學生在課堂中主動參與學習。
    二、建模在高等數(shù)學教學中的作用。
    對學生的想象力、觀察力、發(fā)現(xiàn)、分析并解決問題的能力進行培養(yǎng)的過程中,數(shù)學建模發(fā)揮著重要的作用。最近幾年,國內(nèi)出現(xiàn)很多以數(shù)學建模為主體的賽事活動以及教研活動,其在學生學習興趣的提升、激發(fā)學生主動學習的積極性上扮演著重要的角色,發(fā)揮著突出的作用,在高等數(shù)學教學中引入數(shù)學建模還能培養(yǎng)學生不畏困難的品質(zhì),培養(yǎng)踏實的工作精神,在協(xié)調(diào)學生學習的知識、實際應用能力等上有突出的作用。雖然國內(nèi)高等院校大都開設了數(shù)學建模選修課或者培訓班,但是由于課程的要求和學生的認知水平差異較大,所以課程無法普及為大眾化的教育。如今,高等院校都在積極的尋找一種載體,對學生的整體素質(zhì)進行培養(yǎng),提升學生的創(chuàng)新精神以及創(chuàng)造力,讓學生滿足社會對復合型人才的需求,而最好的載體則是高等數(shù)學。
    高等數(shù)學作為工科類學生的一門基礎(chǔ)課,由于其必修課的性質(zhì),把數(shù)學建模引入高等數(shù)學課堂中具有較廣的影響力。把數(shù)學建模思想滲入高等數(shù)學教學中,不僅能讓數(shù)學知識的本來面貌得以還原,更讓學生在日常中應用數(shù)學知識的能力得到很好的培養(yǎng)。數(shù)學建模要求學生在簡化、抽象、翻譯部分現(xiàn)實世界信息的過程中使用數(shù)學的語言以及工具,把內(nèi)在的聯(lián)系使用圖形、表格等方式表現(xiàn)出來,以便于提升學生的表達能力。在實際的學習數(shù)學建模之后,需要檢驗現(xiàn)實的信息,確定最后的結(jié)果是否正確,通過這一過程中的鍛煉,學生在分析問題的過程中可以主動地、客觀的辯證的運用數(shù)學方法,最終得出解決問題的最好方法。因此,在高等數(shù)學教學中引入數(shù)學建模思想具有重要的意義。
    三、將建模思想應用在高等數(shù)學教學中的具體措施。
    (一)在公式中使用建模思想。
    在高數(shù)教材中占有重要位置的是公式,也是要求學生必須掌握的內(nèi)容之一。為了讓教師的'教學效果進一步提升,在課堂上老師不僅要讓學生對計算的技巧進一步提升之余,還要和建模思想結(jié)合在一起,讓解題難度更容易,還讓課堂氛圍更活躍。為了讓學生對公式中使用建模思想理解的更透徹,老師還應該結(jié)合實例開展教學。
    (二)講解習題的時候使用數(shù)學模型的方式。
    課本例題使用建模思想進行解決,老師通過對例題的講解,很好的講述使用數(shù)學建模解決問題的方式,讓學生清醒的認識在解決問題的過程中怎樣使用數(shù)學建模。完成每章學習的內(nèi)容之后,充分的利用時間為學生解疑答惑,以學生所學的專業(yè)情況和學生水平的高低選擇合適的例題,完成建模、解決問題的全部過程,提升學生解決問題的效率。
    (三)組織學生積極參加數(shù)學建模競賽。
    一般而言,在競賽中可以很好地鍛煉學生競爭意識以及獨立思考的能力。這就要求學校充分的利用資源并廣泛的宣傳,讓學生積極的參加競賽,在實踐中鍛煉學生的實際能力。在日常生活中使用數(shù)學建模解決問題,讓學生獨自思考,然后在競爭的過程中意識到自己的不足,今后也會努力學習,改正錯誤,提升自身的能力。
    四、結(jié)束語。
    高等數(shù)學主要對學生從理論學習走向解決實際問題的能力進行培養(yǎng),在高等數(shù)學中應用建模思想,促使學生對高數(shù)知識更充分的理解,學習的難度進一步降低,提升應用能力和探索能力。當前,在高等教學過程中引入建模思想還存在一定的不足,需要高校高等數(shù)學老師進行深入的研究和探索的同時也需要學生很好的配合,以便于今后的教學中進一步提升教學的質(zhì)量。
    參考文獻。
    [1]謝鳳艷,楊永艷。高等數(shù)學教學中融入數(shù)學建模思想[j]。齊齊哈爾師范高等??茖W校學報,20xx(02):119—120。
    [2]李薇。在高等數(shù)學教學中融入數(shù)學建模思想的探索與實踐[j]。教育實踐與改革,20xx(04):177—178,189。
    [3]楊四香。淺析高等數(shù)學教學中數(shù)學建模思想的滲透[j]。長春教育學院學報,20xx(30):89,95。
    [4]劉合財。在高等數(shù)學教學中融入數(shù)學建模思想[j]。貴陽學院學報,20xx(03):63—65。
    數(shù)學建模的論文篇六
    走美杯”是“走進美妙的數(shù)學花園”的簡稱。
    “走進美妙的數(shù)學花園”中國青少年數(shù)學論壇是中國少年科學院創(chuàng)新素質(zhì)教育的品牌活動。20xx年,由國際數(shù)學家大會組委會、中國數(shù)學會、中國教育學會、中國少年科學院成功舉辦了首屆“走進美妙的數(shù)學花園”中國少年數(shù)學論壇,至今已連續(xù)舉辦七屆,全國三十多個城市近三十萬人參與了此項活動,在全國青少年中產(chǎn)生了巨大的影響?!白哌M美妙的數(shù)學花園”中國青少年數(shù)學論壇活動是一項面對小學三年級至初中二年級學生的綜合性數(shù)學活動。通過“趣味數(shù)學解題技能展示”、“數(shù)學建模小論文答辯”、“數(shù)學益智游戲”、“團體對抗賽”等一系列內(nèi)容豐富的活動提高廣大中小學生的數(shù)學建模意識和數(shù)學應用能力,培養(yǎng)他們一種正確的思想方法。著名數(shù)學家陳省身先生兩次為同學們親筆題詞“數(shù)學好玩”和“走進美妙的數(shù)學花園”,大大鼓舞了廣大青少年攀登數(shù)學高峰的熱情和信心,使同學們自覺地成為學習的主人,實現(xiàn)從“學數(shù)學”到“用數(shù)學”過程的轉(zhuǎn)變,從而進一步推動我國數(shù)學文化的傳播與普及。
    “走美”活動已連續(xù)舉辦七屆,近30萬青少年踴躍參與,已取得良好社會效果,并被寫入全國少工委《少先隊輔導員工作綱要(試行)》,向全國少年兒童推廣。
    “走美”作為數(shù)學競賽中的后起之秀,憑借其新穎的考試形式以及較高的競賽難度取得了非常迅速的發(fā)展,近年來在重點中學選拔中引起了廣泛的關(guān)注??陀^地說“走美”一、二等獎對小升初作用非常大,三等獎作用不大。
    1、活動對象。
    全國各地小學三年級至初中二年級學生。
    2、總成績計算。
    筆試獲獎率:
    一等獎5%,二等獎10%,三等獎15%。
    3、筆試時間。
    每年3月上、中旬。
    報名截止時間:每年12月底。
    走美杯比賽流程。
    1、全國組委會下發(fā)通知,各地組委會開始組織工作。
    2、學生到當?shù)亟M委會報名,填寫《報名表》。
    3、各地組委會將報名學生名單全部匯總至全國組委會。
    4、全國“走進美妙的數(shù)學花園”趣味數(shù)學解題技能展示初賽(全國統(tǒng)一筆試)。
    6、全國組委會公布初賽獲獎名單并頒發(fā)獲獎證書。
    7、獲得初賽一、二、三等獎選手有資格報名參加暑期赴英國劍橋大學數(shù)學交流活動。
    8、各地按照組委會要求提交數(shù)學建模小論文。
    9、前各地組委會上報參加全國總論壇學生名單。
    10、全國總論壇和表彰活動。
    數(shù)學建模的論文篇七
    高校數(shù)學教育是高等教育的基礎(chǔ)學科,占據(jù)重要的一席之地。如何改變學生對數(shù)學枯燥乏味的學習狀態(tài),讓學生輕松愉快地參與到數(shù)學學習中,是當前高校數(shù)學教學者面臨的一個重要課題。在高校數(shù)學教學中開展數(shù)學建模競賽,不僅能培養(yǎng)學生的創(chuàng)新思維,還能有效提高提高學生的創(chuàng)新能力、綜合素質(zhì)和對數(shù)學的應用能力。本文對高校開展數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)進行了分析闡述,并對此進行了一定的思考。
    數(shù)學建模是一種融合數(shù)學邏輯思想的思考方法,通過運用抽象性的數(shù)學語言和數(shù)學邏輯思考方法,創(chuàng)造性的解決數(shù)學問題。當前很多高校中開始引入數(shù)學建模思想來加強學生創(chuàng)新能力的培養(yǎng),可以使學生的邏輯思維能力和運用數(shù)學邏輯創(chuàng)新解決問題的能力得到提升。數(shù)學建模競賽起源于1985年的美國,幾年后國內(nèi)幾所高校數(shù)學建模教師組織學生開始參與美國的數(shù)學建模大賽,促進了數(shù)學建模思維的快速發(fā)展。直到1992中國首屆數(shù)學建模大賽召開,而后一發(fā)不可收拾,至今仍以每年20%左右的速度增長,呈現(xiàn)一派繁榮景象。
    2.1數(shù)學建模競賽自主性較強。自主性首先體現(xiàn)在在數(shù)學建模過程中學生可以根據(jù)自己的建模需要通過一切可以利用的資源、工具來進行資料查閱和收集,建模比賽隊員可以根據(jù)自己的意見和思維進行靈活自由解答,形式不拘一格。其次體現(xiàn)在數(shù)學建模競賽的組織形式呈現(xiàn)多元化特點,組織制度上也較為靈活多樣,數(shù)學建模主要側(cè)重于分析思想,沒有標準答案可以參考分享。2.2建模隊伍呈日益燎原之勢。1992年首屆中國數(shù)學建模大賽開展以來,其影響力與日俱增,高校和社會各界對數(shù)學建模頗為重視,參賽隊伍、參賽學生的質(zhì)量一直處于上升狀態(tài),數(shù)學模型也日漸合理科學,學生團隊在國際數(shù)學建模大賽中屢創(chuàng)驕人戰(zhàn)績。2.3組織培訓日益加強。數(shù)學建模競賽對學生數(shù)學知識的掌握及靈活運用、口套表達、語言邏輯思維、綜合素質(zhì)都有著非常高的要求,因此高校遴選參賽選手都投入了很大的精力,組織培訓的時間很長,培訓內(nèi)容也很豐富,為數(shù)學建模競賽取得好成績奠定了堅實的基礎(chǔ)。
    3.1學生的團隊協(xié)作能力和意識得到增強。數(shù)學建模競賽的團隊組織形式活潑自由,通常采用學生組隊模式開展,數(shù)學建模競賽隊伍形成一個團結(jié)戰(zhàn)斗的整體,代表著不僅僅是學校的聲譽,還一定程度上展示著國家的形象。經(jīng)過長時間的培訓,對數(shù)學模型的研究和分析,根據(jù)學生訓練中的優(yōu)勢和特長,進行合理科學的小組分工,讓學生快速高效地完成整個數(shù)學建模,在建模過程中學生統(tǒng)籌協(xié)作、密切配合,發(fā)揮各自的優(yōu)勢和長處,確保數(shù)學建模取得最大效用,學生的團隊協(xié)作能力和意識得到鍛煉,責任感和榮譽感進一步增強,通過建模競賽彰顯團隊的合作能力和中國數(shù)學建模方面的發(fā)展。
    3.2高校學生參賽積極性高漲。近年來大學生數(shù)學建模競賽的參與性高漲,參賽人數(shù)保持著20%左右的上漲幅度,參賽成績也較為理想,創(chuàng)新能力得到了較好的鍛煉和培養(yǎng),綜合素質(zhì)得到提高,數(shù)學的應用能力提升。
    3.3高校學生數(shù)學邏輯思維能力和靈活運用知識的能力得到提升。數(shù)學建模競賽充滿著刺激性和挑戰(zhàn)性,是學生各方面綜合能力的一個展示。在數(shù)學建模競賽中,學生不僅要需要扎實豐厚的數(shù)學知識儲備,還需要具備清晰的數(shù)學邏輯思維和語言表達能力。同時要有機智的臨場發(fā)揮能力和應變能力,不怯場、不驚慌,有充分的思想準備,能輕松應對其他參賽選手和評委的提問,能組織條理性、邏輯性的語言進行表述,將參賽小組數(shù)學模型的含義和設計清晰完整的傳達給評委和其他參賽選手。在這個過程中,無疑會使學生的數(shù)學邏輯思維和語言表達能力及靈活運用數(shù)學知識的能力有一個較大的提升。
    3.4學生的自學能力和意志力得到鍛。數(shù)學建模競賽對參賽學生的綜合知識和能力要求非常高,難度也非常大,需要與眾不同的智慧和能力??梢哉f數(shù)學建模過程中,有許多高深的知識難于理解,有的日常學習過程中根本接觸不到,需要數(shù)學建模參賽小組成員的互助合作,充分發(fā)揮各自優(yōu)勢和平時培訓中的知識積淀,通過借助大量的工具書及參考資料,加上團隊的`理解分析去摸索,探尋數(shù)學建模所需要的基礎(chǔ)知識,無疑這對學生的自學能力培養(yǎng)是一個很好的鍛煉。另外,搜尋資料、學習數(shù)學建模知識的過程是枯燥乏味的,需要長久的耐力和信心,無疑這對學生的堅毅不畏難的品質(zhì)是一個很好的培養(yǎng)和磨煉。
    3.5創(chuàng)新思維與能力得到有效提升。經(jīng)過艱苦復雜的數(shù)學建模訓練,高校學生信息收集與處理復雜問題的能力得到培養(yǎng)鍛煉,學生數(shù)量觀念得到增強,能夠養(yǎng)成敏銳觀察事物數(shù)量變化的能力,數(shù)學的嚴謹推導也使學生養(yǎng)成認真細心、一絲不茍的習慣,邏輯思維能力得到提高,思路變得更加富有條理性,能靈活地處理各種復雜問題,有效解決數(shù)學疑難,數(shù)學理論能更好第應用于實踐,數(shù)學素養(yǎng)進一步得到提升。
    綜上所述,高校學生數(shù)學建模競賽的開展,能較高地提升學生的創(chuàng)新能力和綜合素養(yǎng),團隊合作能力、競爭能力、表達交流能力、邏輯思維能力、意志品質(zhì)能力等都能得到良好的塑造。高校要積極組織和開展數(shù)學建模競賽,使學生的綜合素質(zhì)得到發(fā)展和鍛煉。學校用重視和鼓勵全體學生參與數(shù)學建模競賽,通過競賽實現(xiàn)學生各方面能力尤其是創(chuàng)新能力的培養(yǎng)。
    [1]趙剛.高校數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)探究[j].才智,20xx(06).
    [2]陳羽,徐小紅,房少梅.數(shù)學建模實踐及其對培養(yǎng)學生創(chuàng)新思維的影響分析[j].科技創(chuàng)業(yè)月刊,20xx(08).
    [3]趙建英.數(shù)學建模競賽對高校創(chuàng)新人才培養(yǎng)的促進作用分析[j].科技展望,20xx(08)5.
    [4]畢波,杜輝.關(guān)于高校開展數(shù)學建模競賽與創(chuàng)新思維培養(yǎng)的思考[j].中國校外教育,20xx(12).
    數(shù)學建模的論文篇八
    使學生的綜合應用能力、實踐創(chuàng)新能力和綜合應用素質(zhì)等多方面均能得到提升和發(fā)展。
    對于醫(yī)學專業(yè)的學生來說,在校所學的數(shù)學基礎(chǔ)理論課程比較有限,并且學生對純粹的數(shù)學知識與復雜的理論推導已經(jīng)極為厭倦,如果數(shù)學建模還是以傳統(tǒng)的“灌輸式”和教師“主導型”為主、簡單的應用案例為主要教學內(nèi)容的話,其結(jié)果勢必會使學生有一種再講數(shù)學課和做應用題的感覺,既不能很好地激發(fā)學生的學習興趣,也不能體現(xiàn)數(shù)學建模的思想方法和本質(zhì)特色。
    因此,如何使學生擺脫這種尷尬的現(xiàn)狀已成為我們教學的一大難點。針對這種情況,在教學模式上,我們大膽嘗試研究型教學模式,即采用“從實踐中來,到實踐中去”的教學理念。一方面,從最現(xiàn)實、最熱門的醫(yī)學話題出發(fā),從學生最感興趣的.問題入手,激發(fā)學生的學習興趣和進一步學習的主動性,使他們從一開始就能進入到學習的角色中去;另一方面,通過開展多種方式的實踐教學活動,使學生在實踐中掌握數(shù)學建模的常用方法和基本技能,忽略繁瑣的數(shù)學推導過程,讓學生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學生解決問題的創(chuàng)新能力。
    近些年來,我們開設的醫(yī)藥數(shù)學建模課受到了學生的一致好評,其關(guān)鍵之處在于我們一改傳統(tǒng)的教學模式,通過組織數(shù)學建模興趣研討班,讓每位同學都能充分地參與到研究中去并且使每位學生都有發(fā)言的機會。這些舉措旨在進一步激發(fā)學生的創(chuàng)新意識,提高學生的數(shù)學建模實踐能力。研討班面向全校各類醫(yī)學專業(yè)的學生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學生不僅對所學的醫(yī)學知識有了更深刻的理解與認識,在文獻資料查閱、計算機編程、語言表達能力等諸多方面也都有了顯著的提高。通過這個過程的學習,為學生今后從事醫(yī)學科研工作打下了良好的基礎(chǔ)。
    為了有效的培養(yǎng)學生綜合應用能力和深層次學習的習慣與意識,我們在教學方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導,突出知識的應用思想和應用意識,讓學生帶著問題上課,嘗試在解決問題中與教師進行交流,下課帶著問題回去。
    在課堂教學中,重點講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導學生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導學生解決問題;通過課后作業(yè),總結(jié)和鞏固所學知識,學習應用與拓展知識。這種完全以學生為主,教師為輔的做法,有利于培養(yǎng)學生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學生的綜合應用素質(zhì)。
    在現(xiàn)實生活中的實際問題是比較復雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應用方能解決。
    因此,以實際問題驅(qū)動的教學模式,主要是引導學生如何將復雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學生學習并掌握相關(guān)的數(shù)學知識與方法。這種在應用中學習的教學方法,在很大程度上解決了學生普遍存在的“學數(shù)學有什么用、學了數(shù)學不知怎么用”的困惑。
    在整個教學過程中,貫穿以學生為主體,通過案例分析引導學生的思維方法,針對一個案例的解決過程和方法,要求實現(xiàn)舉一反三,促使學生對所掌握的知識進行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學生在學習和問題的解決中學會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗、彌補不足,進一步學習相關(guān)知識和方法,再進行實踐,從而不斷增強自身的綜合應用能力和素質(zhì)。
    隨著醫(yī)學院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應科學技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學建模課程的開設對培養(yǎng)大學生實踐創(chuàng)新能力的幾點做法。教學實踐證明:數(shù)學建模課充分鍛煉了學生的各項能力,是提高醫(yī)學專業(yè)學生綜合應用素質(zhì)行之有效的方法。
    數(shù)學建模的論文篇九
    為了培養(yǎng)小學生良好的數(shù)學學習興趣,激發(fā)他們的數(shù)學潛能,教師需要采取必要的措施注重數(shù)學建模思想的有效培養(yǎng),促進學生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應充分考慮小學生的性格特點,提高數(shù)學建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸πW生數(shù)學建模思想的培養(yǎng)策略進行初步的探討。
    作為小學數(shù)學教學中的重要組成部分,數(shù)學建模思想的滲透及相關(guān)教學活動的順利開展,有利于提高復雜數(shù)學問題的處理效率,保持數(shù)學課堂教學的高效性。要實現(xiàn)這樣的發(fā)展目標,增強小學生數(shù)學建模思想的實際培養(yǎng)效果,需要加強對學生動手實踐能力的培養(yǎng),激發(fā)學生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學教學計劃的實施。因此,教師需要利用學生動手實踐能力的作用,實現(xiàn)數(shù)學建模思想的有效培養(yǎng),促使小學生能夠在數(shù)學建模過程中享受到更多的快樂。比如,在講解“認識角”知識的過程中,某些學生認為邊越長角度也越大。為了使學生能夠?qū)ζ渲械闹R點有更加正確而全面的認識,教師可以通過在黑板上設置一些能夠活動的三角板,讓學生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學計劃的實施打下堅實的基礎(chǔ)。通過這種教學方法的合理運用,可以激發(fā)出學生們在數(shù)學建模學習中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學建模思想有一定的了解,在未來學習過程中能夠保持良好的`數(shù)學建模能力。
    通過對小學階段各種數(shù)學實踐教學活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學模型有利于加深學生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學,福建莆田351164)點的深入理解,增強其主動參與數(shù)學建模教學活動的積極性。因此,為了使小學生數(shù)學建模思想培養(yǎng)能夠達到預期的效果,教師需要結(jié)合實際的教學內(nèi)容,建立必要的數(shù)學參考模型,提升學生對數(shù)學建模思想的整體認知水平。比如,在講授“異分母分數(shù)加減法”這部分知識的過程中,可以設置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當學生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學模型的構(gòu)建。在這樣的教學過程中,學生可以加深對知識點的理解,實現(xiàn)數(shù)學建模思想的有效培養(yǎng)。
    加強小學生數(shù)學建模思想的有效培養(yǎng),需要在具體的教學活動開展中注重對數(shù)學思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學生在長期的數(shù)學學習中能夠不斷提高自身的數(shù)學能力,運用各種數(shù)學知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學生分為不同的小組,讓學生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學設備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學生們能夠在良好的教學模式中提升自身的認知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應通過對學生的正確引導,運用三角板、圓柱等教學輔助工具,讓學生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應注重小學生數(shù)學建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學生的創(chuàng)新能力,優(yōu)化學生的思維方式,全面提升小學數(shù)學建模教學水平。
    總之,加強小學生數(shù)學建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學生數(shù)學能力的有效鍛煉,確保相關(guān)的教學計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當前小學數(shù)學教育教學的實際發(fā)展概況,可知靈活運用各種科學的數(shù)學建模思想培養(yǎng)策略,有利于滿足學生數(shù)學建模學習中的多樣化需求,為相關(guān)教學目標的順利實現(xiàn)提供可靠的保障。
    [1]童小艷.小學數(shù)學教學中培養(yǎng)學生建模思想的策略[j].學子(教育新理念),20xx(6).
    [2]白寧.先學而后教——小學生數(shù)學建模思想培養(yǎng)的捷徑[j].數(shù)學學習與研究,20xx(16).
    數(shù)學建模的論文篇十
    摘要:在新課改以后,要求教師要在教學中重視學生的主體地位,提升學生學習興趣,培養(yǎng)他們的自主學習能力。本文從小學數(shù)學教學過程中數(shù)學建模入手,對如何將數(shù)學建模運用到學生解題過程中進行了分析。
    數(shù)學建模是指利用數(shù)學模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學思維、數(shù)學方法解決各種數(shù)學問題。數(shù)學建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學建模的方法能夠有效的提高學生的學習興趣,培養(yǎng)學生的數(shù)學能力。這種方式能夠?qū)碗s的數(shù)學問題利用簡單的方式找到解決方案,是提高小學數(shù)學課堂效率及課堂質(zhì)量的有效手段。小學數(shù)學是小學學習中的重要課程之一,也是培養(yǎng)學生數(shù)學思維的重要階段??梢哉f,小學數(shù)學的學習是學生學習數(shù)學的關(guān)鍵,對今后的學習起到極大的影響。因此,對于小學數(shù)學教師來說,不斷的完善教學手段,提高數(shù)學課堂質(zhì)量是教學工作中的重中之重。而數(shù)學建模就是為了解決數(shù)學在生活中的實際問題,能夠讓學生感受到數(shù)學本身的魅力,培養(yǎng)他們的數(shù)學思維,提高數(shù)學學習能力,從而讓小學數(shù)學教學質(zhì)量也得到大幅度的提升。小學數(shù)學與數(shù)學建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學建模運用在小學數(shù)學教學過程中,是每個小學數(shù)學教師都值得思考的問題。
    數(shù)學建模是為了解決數(shù)學中遇到的問題,數(shù)學本身特別是小學數(shù)學也是一門較貼近學生生活的學科。因此在數(shù)學學習中,教師要首先培養(yǎng)學生的數(shù)學學習意識,讓他們感受到數(shù)學與生活的緊密聯(lián)系,然后再引導學生用數(shù)學建模去解決遇到的問題。在這一過程中,數(shù)學教師要注意以下兩個問題:(一)在教學中一定要貼近學生的生活,課堂中所提出的問題也必須要符合生活實際,讓學生對所學內(nèi)容感到親切。積極引導學生利用多種方式解決同一問題,尤其是利用數(shù)學建模的方式,以達到培養(yǎng)他們的數(shù)學思維以及想象能力的目的。(二)在學生進行數(shù)學建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學學習的積極性,讓他們在數(shù)學建模中獲得成就感,增加自信心,以此來提高學生在今后學習中使用數(shù)學建模方法的熱情。
    二、提高學生想象力,用數(shù)學建模簡化問題。
    對于小學生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學學習中,如果能將想象力與數(shù)學學習結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學生這一特點,提高他們的想象力,然后再引導他們利用數(shù)學建模解決問題,讓題目簡單化。具體來說,就是在面對復雜的'數(shù)學問題時,教師可以先為學生創(chuàng)建教學情境,以這樣的方式提高學生的學習興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導,讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導他們進行數(shù)學建模,解決問題。這樣的方式充分的利用了學生的想象能力,將所需解決的問題簡單化。
    三、選擇合適的題目作為建模案例。
    在數(shù)學建模過程中,教師也要時刻牢記題目應該貼近學生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學建模的過程中去,然后再反復練習之后達到提高他們建模能力的目的。在選擇數(shù)學建模案例時教師主要應該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學生在學習了該題目以后掌握這一類的解題方法,達到小學數(shù)學教學的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學生進行不同方面的建模練習,以此提高他們數(shù)學建模的能力。
    四、引導學生主動進行數(shù)學建模。
    在教師經(jīng)過反復的教學后,學生都已經(jīng)擁有了基本的數(shù)學建模知識,了解了數(shù)學建模過程,并且能夠在解題過程中簡單的使用數(shù)學建模。此時,教師在教學中就可以引導學生利用數(shù)學建模解決數(shù)學題目了。引導學生用數(shù)學建模方法解決數(shù)學問題,就要在解題過程中多對學生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學生之間利用合作的方式讓他們進行數(shù)學建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學建模水平,同時這樣的方式能夠讓數(shù)學建模深入到每一個學生的心中,逐漸影響每一個學生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學建模的方法能夠有效的改變過去的傳統(tǒng)教學思路,增加學生對數(shù)學的學習興趣,提高數(shù)學解題能力。這種教學方法對于小學數(shù)學教師來說,值得不斷的探討研究,并應用在教學中,以此提高數(shù)學課堂的教學效率和教學質(zhì)量。
    數(shù)學建模的論文篇十一
    摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面。現(xiàn)階段,數(shù)學建模已經(jīng)成為應用數(shù)學知識解決日常問題的一個重要手段。本文通過簡述數(shù)學建模的方法與過程,以及應用數(shù)學建模解決實際經(jīng)濟問題的應用,展現(xiàn)的了數(shù)學學習的重要意義,以及數(shù)學在經(jīng)濟問題解決中的重要作用。
    經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應對這些難以把控的變量,做好風險的預估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學知識、應用數(shù)學建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
    數(shù)學建模,其實就是建立數(shù)學模型的簡稱,實際上數(shù)學建模可以稱之為解決問題的一種思考方法,借助數(shù)學工具應用已知的定理定義進行合理的運算,推導出一種理性的結(jié)果的過程。數(shù)學建模是可以聯(lián)系數(shù)學和外部世界的一個中介和橋梁,在工業(yè)設計、經(jīng)濟領(lǐng)域、工程建設等各個方面,運用數(shù)學的語言和方法進行問題的求解和推導,實際上,都是一種數(shù)學建模的過程。數(shù)學建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學模型的最終建立是一個反復驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設:根據(jù)建模目的,結(jié)合實際對象的特性,對復雜問題進行簡化,提取主要因素,提煉精確的數(shù)學語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當?shù)臄?shù)學工具,建立各個量(變量、常量)間的數(shù)學關(guān)系,化實際問題為數(shù)學語言;4.模型求解:對上述數(shù)學關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗模型的合理性和適用性。
    二、經(jīng)濟問題數(shù)學模型的建立。
    經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應用于處理具有隨機性情況的模型,可以解決類似風險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設,精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認識,然后通過細致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應用數(shù)學知識建立完整的數(shù)學經(jīng)濟模型。
    三、建模舉例。
    四、結(jié)語。
    綜上所述,我們可以看到,數(shù)學建模在經(jīng)濟中的應用可以非常廣泛,對很多的決策和工作都可以提供參考和指導,如提高利潤、規(guī)避風險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W習和思考。
    數(shù)學建模的論文篇十二
    :隨著經(jīng)濟的快速發(fā)展,我國的科學技術(shù)也得到了長足的進步,在計算機應用方面,從對計算機技術(shù)尚存新鮮感到運用成熟,可以說有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當中,計算機已經(jīng)融入其中,廣泛地應用于各行各業(yè),筆者以數(shù)學建模為例,分析了數(shù)學建模與計算機應用之間的關(guān)系,與此同時,也探尋了計算機應用技術(shù)在數(shù)學建模的輔助之下發(fā)揮的作用,并對數(shù)學建模進行概念定義,使得讀者能夠?qū)?shù)學建模的意義有著更深層次的了解,希望能夠起到促進二者之間的良性發(fā)展。
    隨著經(jīng)濟的快速發(fā)展,我國的科學技術(shù)也有了長足的進步,而與之密不可分的數(shù)學學科也有著不可小覷的進步,與此同時,數(shù)學學科的延伸領(lǐng)域從物理等逐漸擴展到環(huán)境、人口、社會、經(jīng)濟范圍,使得其作用力逐漸增強。不僅如此,數(shù)學學科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進了多方面多層次的發(fā)展,由此可見,數(shù)學學科的重要性質(zhì)。在日常生活中,運用數(shù)學學科去解決實際問題時,首要完成的就是從復雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號、公式等將潛在的信息表達出來,再運用計算機技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學建模為例,分析了數(shù)學建模與計算機應用之間的關(guān)系,與此同時,也探尋了計算機應用技術(shù)在數(shù)學建模的輔助之下發(fā)揮的作用,并對數(shù)學建模進行概念定義,使得讀者能夠?qū)?shù)學建模的意義有著更深層次的了解,希望能夠起到促進二者之間的良性發(fā)展。
    從宏觀角度上來講,數(shù)學建模是更側(cè)重于實際研究方面,并不僅僅是通過數(shù)字演示來完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個領(lǐng)域當中,從任何一個相關(guān)領(lǐng)域中都能夠找到數(shù)學學科的發(fā)展軌跡,從中不難看出數(shù)學學科的實際意義與鮮明特點。數(shù)學為一門注重實際問題研究的學科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無邊際的宇宙,小到對于個體微生物或者單細胞物體,綜合性之強形成了研究范圍廣的特點。多個學科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學元素,且這些元素都是至關(guān)重要的,所以這個計算過程十分復雜,計算量與數(shù)據(jù)驗算過程也十分耗費時間,因此需要充足的存儲空間支持這一過程的運行。在數(shù)學建模的過程當中,所涉獵的數(shù)學算法并不是很簡單,而建立的模型也遵循個人習慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學建模的過程當中,就需要使用各種輔助工具來完成這一過程。由于計算機軟件具有的高速運轉(zhuǎn)空間,使得計算機技術(shù)應用于數(shù)學學科的建模過程當中,與數(shù)學建模過程密不可分息息相關(guān)。由此可見,計算機技術(shù)的應用水平對于數(shù)學學科的重要作用。
    2。1計算機的獨特性與數(shù)學建模的實際性特點計算機的獨特性與數(shù)學建模的實際性特點,使得二者之間有著密不可分的聯(lián)系,正是因為這種聯(lián)系使得雙方都能夠有長足的發(fā)展,在技術(shù)上是起著互相促進的作用。計算機的廣泛應用為數(shù)學建模提供了較為便利的服務,在使用過程當中,數(shù)學建模也能夠起到完成對計算機技術(shù)的促進,能夠在這一過程中形成更為便捷高速的使用方法與途徑,使得計算機技術(shù)應用更為靈活,也可以說數(shù)學建模為計算機技術(shù)的實際應用提供了更為廣闊的應用空間,從中不難發(fā)現(xiàn),數(shù)學建模對于計算機應用技術(shù)的支持性。計算機應用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學建模則是需要首要完成的,二者之間是相互影響共同促進的作用。
    2。2計算機為數(shù)學建模提供了重要的技術(shù)支持數(shù)學建模對于計算機應用技術(shù)的重要的指導意義與作用。第一點,計算機在其技術(shù)的支持之下,有著大量的存儲空間能夠完成存儲資料的這一過程,許多重要資料在計算機技術(shù)的保護之下,存儲時間較為長久,且保護力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點,計算機是多媒體的一個分支,運用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實踐的效率。由于數(shù)學建模過程的復雜化及對于實際問題的研究方向的特質(zhì),使得對于各項技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過程也十分復雜,常見的過程有三維打印、三維激光掃描等。這些都是需要計算機技術(shù)的支持才能夠完成的,所以對于計算機技術(shù)的要求非常高,與此同時,計算機應用技術(shù)為數(shù)學建模提供了更為便捷、快速的解決方案與途徑。
    2。3數(shù)學建模為計算機的發(fā)展提供了基石計算機的產(chǎn)生起源于數(shù)學建模的過程,在二十世紀八十年代,由于導彈在飛行時的運行軌跡的計算量過大,人工無法滿足這一高速率的運算條件,基于這一背景條件,產(chǎn)生了計算機,計算機應用技術(shù)由此拉開了序幕。數(shù)學建模的過程是需要計算機來完成的,在全部的過程當中,計算機參與計算的比重很大,從某種意義程度上來講,計算機技術(shù)對于數(shù)學建模的發(fā)展是起著推動性的作用的,二者之間是有著聯(lián)系的。
    數(shù)學建模的論文篇十三
    大學數(shù)學具有高度抽象性和概括性等特點,知識本身難度大再加上學時少、內(nèi)容多等教學現(xiàn)狀常常造成學生的學習積極性不高、知識掌握不夠透徹、遇到實際問題時束手無策,而數(shù)學建模思想能激發(fā)學生的學習興趣,培養(yǎng)學生應用數(shù)學的意識,提高其解決實際問題的能力。數(shù)學建模活動為學生構(gòu)建了一個由數(shù)學知識通向?qū)嶋H問題的橋梁,是學生的數(shù)學知識和應用能力共同提高的最佳結(jié)合方式。因此在大學數(shù)學教育中應加強數(shù)學建模教育和活動,讓學生積極主動學習建模思想,認真體驗和感知建模過程,以此啟迪創(chuàng)新意識和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
    數(shù)學建模即抓住問題的本質(zhì),抽取影響研究對象的主因素,將其轉(zhuǎn)化為數(shù)學問題,利用數(shù)學思維、數(shù)學邏輯進行分析,借助于數(shù)學方法及相關(guān)工具進行計算,最后將所得的答案回歸實際問題,即模型的檢驗,這就是數(shù)學建模的全過程。一般來說",數(shù)學建模"包含五個階段。
    1.準備階段。
    主要分析問題背景,已知條件,建模目的等問題。
    2.假設階段。
    做出科學合理的假設,既能簡化問題,又能抓住問題的本質(zhì)。
    3.建立階段。
    從眾多影響研究對象的因素中適當?shù)厝∩?,抽取主因素予以考慮,建立能刻畫實際問題本質(zhì)的數(shù)學模型。
    4.求解階段。
    對已建立的數(shù)學模型,運用數(shù)學方法、數(shù)學軟件及相關(guān)的工具進行求解。
    5.驗證階段。
    用實際數(shù)據(jù)檢驗模型,如果偏差較大,就要分析假設中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實。如果建立的模型經(jīng)得起實踐的檢驗,那么此模型就是符合實際規(guī)律的,能解決實際問題或有效預測未來的,這樣的建模就是成功的,得到的模型必被推廣應用。
    二、加強數(shù)學建模教育的作用和意義。
    (一)加強數(shù)學建模教育有助于激發(fā)學生學習數(shù)學的興趣,提高數(shù)學修養(yǎng)和素質(zhì)。
    數(shù)學建模教育強調(diào)如何把實際問題轉(zhuǎn)化為數(shù)學問題,進而利用數(shù)學及其有關(guān)的工具解決這些問題,因此在大學數(shù)學的教學活動中融入數(shù)學建模思想,鼓勵學生參與數(shù)學建模實踐活動,不但可以使學生學以致用,做到理論聯(lián)系實際,而且還會使他們感受到數(shù)學的生機與活力,激發(fā)求知的興趣和探索的欲望,變被動學習為主動參與其效率就會大為改善。數(shù)學修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
    (二)加強數(shù)學建模教育有助于提高學生的分析解決問題能力、綜合應用能力。
    數(shù)學建模問題來源于社會生活的眾多領(lǐng)域,在建模過程中,學生首先需要閱讀相關(guān)的文獻資料,然后應用數(shù)學思維、數(shù)學邏輯及相關(guān)知識對實際問題進行深入剖析研究并經(jīng)過一系列復雜計算,得出反映實際問題的最佳數(shù)學模型及模型最優(yōu)解。因此通過數(shù)學建?;顒訉W生的視野將會得以拓寬,應用意識、解決復雜問題的能力也會得到增強和提高。
    (三)加強數(shù)學建模教育有助于培養(yǎng)學生的創(chuàng)造性思維和創(chuàng)新能力。
    所謂創(chuàng)造力是指"對已積累的知識和經(jīng)驗進行科學地加工和創(chuàng)造,產(chǎn)生新概念、新知識、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學建?;顒拥母鱾€環(huán)節(jié)無不充滿了創(chuàng)造性思維的挑戰(zhàn)。
    很多不同的實際問題,其數(shù)學模型可以是相同或相似的,這就要求學生在建模時觸類旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對一個具體的建模問題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學問題,是完成建模過程的關(guān)鍵所在。同時建模題材有較大的靈活性,沒有統(tǒng)一的標準答案,因此數(shù)學建模過程是培養(yǎng)學生創(chuàng)造性思維,提高創(chuàng)新能力的過程.
    (四)加強數(shù)學建模教育有助于提高學生科技論文的撰寫能力。
    數(shù)學建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來,對本科生來說是一個挑戰(zhàn)。經(jīng)歷數(shù)學建模全過程的磨練,特別是數(shù)模論文的撰寫,學生的文字語言、數(shù)學表述能力及論文的撰寫能力無疑會得到前所未有的提高。
    (五)加強數(shù)學建模教育有助于增強學生的團結(jié)合作精神并提高協(xié)調(diào)組織能力建模問題通常較復雜,涉及的知識面也很廣,因此數(shù)學建模實踐活動一般效仿正規(guī)競賽的規(guī)則,三人為一隊在三天內(nèi)以論文形式完成建模題目。要較好地完成任務,離不開良好的組織與管理、分工與協(xié)作.
    三、開展數(shù)學建模教育及活動的具體途徑和有效方法。
    即在課堂教學中,教師以具體的案例作為主要的教學內(nèi)容,通過具體問題的建模,介紹建模的過程和思想方法及建模中要注意的問題。案例教學法的關(guān)鍵在于把握兩個重要環(huán)節(jié):
    案例的選取和課堂教學的組織。
    教學案例一定要精心選取,才能達到預期的教學效果。其選取一般要遵循以下幾點。
    1.代表性:案例的選取要具有科學性,能拓寬學生的知識面,突出數(shù)學建?;顒又卦谂囵B(yǎng)興趣提高能力等特點。
    2.原始性:來自媒體的信息,企事業(yè)單位的報告,現(xiàn)實生活和各學科中的問題等等,都是數(shù)學建模問題原始資料的重要來源。
    3.創(chuàng)新性:案例應注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學生的創(chuàng)造性思維,培養(yǎng)學生的創(chuàng)新精神和提高創(chuàng)造能力。
    案例教學的課堂組織,一部分是教師講授,從實際問題出發(fā),講清問題的背景、建模的要求和已掌握的信息,介紹如何通過合理的假設和簡化建立優(yōu)化的數(shù)學模型。還要強調(diào)如何用求解結(jié)果去解釋實際現(xiàn)象即檢驗模型。另一部分是課堂討論,讓學生自由發(fā)言各抒己見并提出新的模型,簡介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點評,提供一些改進的方向,讓學生自己課外獨立探索和鉆研,這樣既突出了教學重點,又給學生留下了進一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學生的課堂學習興趣和積極性,使傳授知識變?yōu)閷W習知識、應用知識,真正地達到提高素質(zhì)和培養(yǎng)能力的教學目的.
    (二)開展數(shù)模競賽的專題培訓指導工作。
    建立數(shù)學建模競賽指導團隊,分專題實行教師負責制。每位教師根據(jù)自己的專長,負責講授某一方面的數(shù)學建模知識與技巧,并選取相應地建模案例進行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計回歸模型及數(shù)學軟件的使用等。學生根據(jù)自己的薄弱點,選擇適合的專題培訓班進行學習,以彌補自己的不足。這種針對性的數(shù)模教學,會極大地提高教學效率。
    以現(xiàn)代網(wǎng)絡技術(shù)為依托,建立數(shù)學建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學實驗,教學錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國內(nèi)外數(shù)模競賽介紹,校內(nèi)競賽,專家點評,獲獎心得交流;同時提供數(shù)模學習資源下載如講義,背景材料,歷年國內(nèi)外競賽題,優(yōu)秀論文等。以此為學生提供良好的自主學習網(wǎng)絡平臺,實現(xiàn)課堂教學與網(wǎng)絡教學的有機結(jié)合,達到有效地提高學生數(shù)學建模綜合應用能力的目的。
    完全模擬全國大學生數(shù)模競賽的形式規(guī)則:定時公布賽題,三人一組,只能隊內(nèi)討論,按時提交論文,之后指導教師、參賽同學集中討論,進一步完善。筆者負責數(shù)學建模競賽培訓近20年,多年的實踐證明,每進行一次這樣的訓練,學生在建模思路、建模水平、使用軟件能力、論文書寫方面就有大幅提高。多次訓練之后,學生的建模水平更是突飛猛進,效果甚佳。
    如20xx年我指導的隊榮獲全國高教社杯大學生數(shù)學建模競賽的最高獎---高教社杯獎,這是此賽設置的唯一一個名額,也是當年從全國(包括香港)院校的約1萬多個本科參賽隊中脫穎而出的。又如20xx年我校57隊參加全國大學生數(shù)學建模競賽,43隊獲獎,獲獎比例達75%,創(chuàng)歷年之最。
    (五)鼓勵學生積極參加全國大學生數(shù)學建模競賽、國際數(shù)學建模競賽。
    全國大學生數(shù)學建模競賽創(chuàng)辦于1992年,每年一屆,目前已成為全國高校規(guī)模最大的基礎(chǔ)性學科競賽,國際大學生數(shù)學建模競賽是世界上影響范圍最大的高水平大學生學術(shù)賽事。參加數(shù)學建模大賽可以激勵學生學習數(shù)學的積極性,提高運用數(shù)學及相關(guān)工具分析問題解決問題的綜合能力,開拓知識面,培養(yǎng)創(chuàng)造精神及合作意識。
    四、結(jié)束語。
    數(shù)學建模本身是一個創(chuàng)造性的思維過程,它是對數(shù)學知識的綜合應用,具有較強的創(chuàng)新性,而高校數(shù)學教學改革的目的之一是要著力培養(yǎng)學生的創(chuàng)造性思維,提高學生的創(chuàng)新能力。因此應將數(shù)學建模思想融入教學活動中,通過不斷的數(shù)學建模教育和實踐培養(yǎng)學生的創(chuàng)新能力和應用能力從而提高學生的基本素質(zhì)以適應社會發(fā)展的要求。
    數(shù)學建模的論文篇十四
    3.3增強選擇數(shù)學模型的能力。
    選擇數(shù)學模型是數(shù)學能力的反映。數(shù)學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學能力的強弱。建立數(shù)學模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。結(jié)合教學內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學模型列表:
    一次函數(shù)成本、利潤、銷售收入等。
    二次函數(shù)優(yōu)化問題、用料最省問題、造價最低、利潤最大等。
    冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細胞分裂、生物繁殖等。
    三角函數(shù)測量、交流量、力學問題等。
    3.4加強數(shù)學運算能力。
    數(shù)學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學運算推理能力是使數(shù)學建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
    利用數(shù)學建模解數(shù)學應用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學生發(fā)散思維能力是很有益的,是提高學生素質(zhì),進行素質(zhì)教育的一條有效途徑。同時數(shù)學建模的`應用也是科學實踐,有利于實踐能力的培養(yǎng),是實施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。