高一數(shù)學(xué)的教案(專業(yè)16篇)

字號:

    教案是教師為了教學(xué)目的而設(shè)計(jì)的一種指導(dǎo)性文稿。教案應(yīng)當(dāng)注重培養(yǎng)學(xué)生的綜合能力和創(chuàng)新思維。范文中的教案內(nèi)容可以激發(fā)教師對不同教學(xué)環(huán)節(jié)的靈感和思考。
    高一數(shù)學(xué)的教案篇一
    1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
    (1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
    (2)能從數(shù)和形兩個(gè)角度認(rèn)識單調(diào)性和奇偶性.
    (3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
    2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
    3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
    (1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
    (2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
    (1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識.教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
    (2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
    (1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識就可以融入其中,將概念的形成與認(rèn)識結(jié)合起來.
    (2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
    函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較容易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時(shí)還可以借助圖象說明定義域關(guān)于原點(diǎn)對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
    高一數(shù)學(xué)的教案篇二
    把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫。
    2.學(xué)生畫完后展示自己的結(jié)果并與同學(xué)交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
    (二)研探新知。
    1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測畫法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見解,教師及時(shí)給予點(diǎn)評。
    畫水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫出多邊形來,因此平面多邊形水平放置時(shí),直觀圖的畫法可以歸結(jié)為確定點(diǎn)的位置的畫法。強(qiáng)調(diào)斜二測畫法的步驟。
    練習(xí)反饋。
    根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
    2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
    教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
    教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書畫法。
    3.探求空間幾何體的直觀圖的畫法。
    (1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
    教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
    (2)投影出示幾何體的三視圖。
    請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。
    4.平行投影與中心投影。
    投影出示課本p23圖,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點(diǎn)。
    5.鞏固練習(xí),課本p25練習(xí)1,2,3。
    三、歸納整理。
    學(xué)生回顧斜二測畫法的關(guān)鍵與步驟。
    四、作業(yè)。
    1.書畫作業(yè),課本p25習(xí)題1—3a組和b組。
    高一數(shù)學(xué)的教案篇三
    (1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
    (2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點(diǎn)。
    2.過程與方法。
    學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
    3.情感態(tài)度與價(jià)值觀。
    (1)提高空間想象力與直觀感受。
    (2)體會(huì)對比在學(xué)習(xí)中的作用。
    (3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
    高一數(shù)學(xué)的教案篇四
    一、指導(dǎo)思想:
    使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
    1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
    2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
    高一下學(xué)期數(shù)學(xué)教學(xué)計(jì)劃3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
    4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
    5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
    6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
    二、
    我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
    1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
    2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識,孕育創(chuàng)新精神。
    3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
    4.時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的.素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識。
    1)選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
    2)通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
    3)在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
    1、基本情況:12班共66人,男生22人,女生44人;本班相對而言,數(shù)學(xué)尖子約3人,中上等生約10人,中等生約11人,中下生約20人,后進(jìn)生約12人。13班共59人,男生39人,女生20人;本班相對而言,數(shù)學(xué)尖子約12人,中上等生約12人,中等生約21人,中下生約7人,后進(jìn)生約7人。
    2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。
    a)激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
    b)注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
    c)加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
    d)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
    e)自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
    高一數(shù)學(xué)的教案篇五
    熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。
    熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。
    【復(fù)習(xí)要求】熟悉與數(shù)列知識相關(guān)的背景,如增長率、存款利息等問題,提高學(xué)生閱讀理解能力、抽象轉(zhuǎn)化的能力以及解答實(shí)際問題的能力,強(qiáng)化應(yīng)用儀式。
    【方法規(guī)律】應(yīng)用數(shù)列知識界實(shí)際應(yīng)用問題的關(guān)鍵是通過對實(shí)際問題的綜合分析,確定其數(shù)學(xué)模型是等差數(shù)列,還是等比數(shù)列,并確定其首項(xiàng),公差或公比等基本元素,然后設(shè)計(jì)合理的計(jì)算方案,即數(shù)學(xué)建模是解答數(shù)列應(yīng)用題的關(guān)鍵。
    一、基礎(chǔ)訓(xùn)練。
    a、511b、512c、1023d、1024。
    2、若一工廠的生產(chǎn)總值的月平均增長率為p,則年平均增長率為。
    a、b、
    c、d、
    二、典型例題。
    例4、流行性感冒簡稱流感是由流感病毒引起的急性呼吸道傳染病。某市去年11月分曾發(fā)生流感,據(jù)資料記載,11月1日,該市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于該市醫(yī)療部門采取措施,使該種病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染著減少30人,到11月30日止,該市在這30天內(nèi)感染該病毒的患者共有8670人,問11月幾日,該市感染此病毒的新的患者人數(shù)最多?并求這一天的新患者人數(shù)。
    高一數(shù)學(xué)的教案篇六
    (2)理解邏輯聯(lián)結(jié)詞“或”“且”“非”的含義;。
    (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;。
    (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;。
    (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;。
    (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.
    二、教學(xué)重點(diǎn)難點(diǎn):
    重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.
    三、教學(xué)過程。
    1.新課導(dǎo)入。
    在當(dāng)今社會(huì)中,人們從事任何工作、學(xué)習(xí),都離不開邏輯.具有一定邏輯知識是構(gòu)成一個(gè)公民的文化素質(zhì)的重要方面.數(shù)學(xué)的特點(diǎn)是邏輯性強(qiáng),特別是進(jìn)入高中以后,所學(xué)的教學(xué)比初中更強(qiáng)調(diào)邏輯性.如果不學(xué)習(xí)一定的邏輯知識,將會(huì)在我們學(xué)習(xí)的過程中不知不覺地經(jīng)常犯邏輯性的錯(cuò)誤.其實(shí),同學(xué)們在初中已經(jīng)開始接觸一些簡易邏輯的知識.
    初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個(gè)命題的例子.(板書:命題.)。
    (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)。
    學(xué)生舉例:平行四邊形的對角線互相平.……(1)。
    兩直線平行,同位角相等.…………(2)。
    教師提問:“……相等的角是對頂角”是不是命題?……(3)。
    (同學(xué)議論結(jié)果,答案是肯定的.)。
    教師提問:什么是命題?
    (學(xué)生進(jìn)行回憶、思考.)。
    概念總結(jié):對一件事情作出了判斷的語句叫做命題.
    (教師肯定了同學(xué)的回答,并作板書.)。
    由于判斷有正確與錯(cuò)誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
    (教師利用投__,和學(xué)生討論以下問題.)。
    例1判斷以下各語句是不是命題,若是,判斷其真假:
    命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
    初中所學(xué)的命題概念涉及邏輯知識,我們今天開始要在初中學(xué)習(xí)的基礎(chǔ)上,介紹簡易邏輯的知識.
    2.講授新課。
    (片刻后請同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)。
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.
    判斷一個(gè)語句是不是命題,關(guān)鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如中含有變量,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
    (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.
    “或”、“且”、“非”這些詞叫做邏輯聯(lián)結(jié)詞.邏輯聯(lián)結(jié)詞除這三種形式外,還有“若…則…”和“當(dāng)且僅當(dāng)”兩種形式.
    對“或”的理解,可聯(lián)想到集合中“并集”的概念.中的“或”,它是指“”、“”中至少一個(gè)是成立的,即且;也可以且;也可以且.這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
    對“且”的理解,可聯(lián)想到集合中“交集”的概念.中的“且”,是指“”、“這兩個(gè)條件都要滿足的意思.
    對“非”的理解,可聯(lián)想到集合中的“補(bǔ)集”概念,若命題對應(yīng)于集合,則命題非就對應(yīng)著集合在全集中的補(bǔ)集.
    命題可分為簡單命題和復(fù)合命題.
    不含邏輯聯(lián)結(jié)詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結(jié)構(gòu)上不能再分解成其他命題)的命題.
    由簡單命題和邏輯聯(lián)結(jié)詞構(gòu)成的命題叫做復(fù)合命題,如“6是自然數(shù)且是偶數(shù)”就是由簡單命題“6是自然數(shù)”和“6是偶數(shù)”由邏輯聯(lián)結(jié)詞“且”構(gòu)成的復(fù)合命題.
    (4)命題的表示:用,,,,……來表示.
    (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。
    我們接觸的復(fù)合命題一般有“或”、“且”、“非”、“若則”等形式.
    給出一個(gè)含有“或”、“且”、“非”的復(fù)合命題,應(yīng)能說出構(gòu)成它的簡單命題和弄清它所用的邏輯聯(lián)結(jié)詞;應(yīng)能根據(jù)所給出的兩個(gè)簡單命題,寫出含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的復(fù)合命題.
    對于給出“若則”形式的復(fù)合命題,應(yīng)能找到條件和結(jié)論.
    在判斷一個(gè)命題是簡單命題還是復(fù)合命題時(shí),不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數(shù)的末位數(shù)字不是0就是5”的字面上無“或”,但它們都是復(fù)合命題.
    3.鞏固新課。
    例2判斷下列命題,哪些是簡單命題,哪些是復(fù)合命題.如果是復(fù)合命題,指出它的構(gòu)成形式以及構(gòu)成它的簡單命題.
    (1);。
    (2)0.5非整數(shù);。
    (3)內(nèi)錯(cuò)角相等,兩直線平行;。
    (4)菱形的對角線互相垂直且平分;。
    (5)平行線不相交;。
    (6)若,則.
    (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
    例3寫出下表中各給定語的否定語(用課件打出來).
    若給定語為。
    等于。
    大于。
    是
    都是。
    至多有一個(gè)。
    至少有一個(gè)。
    至多有#formatimgid_0#個(gè)。
    其否定語分別為。
    分析:“等于”的否定語是“不等于”;。
    “大于”的否定語是“小于或者等于”;。
    “是”的否定語是“不是”;。
    “都是”的否定語是“不都是”;。
    “至多有一個(gè)”的否定語是“至少有兩個(gè)”;。
    “至少有一個(gè)”的否定語是“一個(gè)都沒有”;。
    “至多有個(gè)”的否定語是“至少有個(gè)”.
    (如果時(shí)間寬裕,可讓學(xué)生討論后得出結(jié)論.)。
    置疑:“或”、“且”的否定是什么?(視學(xué)生的情況、課堂時(shí)間作適當(dāng)?shù)谋嫖雠c展開.)。
    4.課堂練習(xí):第26頁練習(xí)1,2.
    5.課外作業(yè):第29頁習(xí)題1.61,2.
    高一數(shù)學(xué)的教案篇七
    本節(jié)的重點(diǎn)是二次根式的化簡.本章自始至終圍繞著二次根式的化簡與計(jì)算進(jìn)行,而二次根式的化簡不但涉及到前面學(xué)習(xí)過的算術(shù)平方根、二次根式等概念與二次根式的運(yùn)算性質(zhì),還要牽涉到絕對值以及各種非負(fù)數(shù)、因式分解等知識,在應(yīng)用中常常需要對字母進(jìn)行分類討論.
    本節(jié)的難點(diǎn)是正確理解與應(yīng)用公式.這個(gè)公式的表達(dá)形式對學(xué)生來說,比較生疏,而實(shí)際運(yùn)用時(shí),則要牽涉到對字母取值范圍的討論,學(xué)生往往容易出現(xiàn)錯(cuò)誤.
    教法建議
    1.性質(zhì)的引入方法很多,以下2種比較常用:
    (1)設(shè)計(jì)問題引導(dǎo)啟發(fā):由設(shè)計(jì)的問題
    1)、、各等于什么?
    2)、、各等于什么?
    啟發(fā)、引導(dǎo)學(xué)生猜想出
    (2)從算術(shù)平方根的意義引入.
    2.性質(zhì)的鞏固有兩個(gè)方面需要注意:
    (1)注意與性質(zhì)進(jìn)行對比,可出幾道類型不同的題進(jìn)行比較;
    (2)學(xué)生初次接觸這種形式的表示方式,在教學(xué)時(shí)要注意細(xì)分層次加以鞏固,如單個(gè)數(shù)字,單個(gè)字母,單項(xiàng)式,可進(jìn)行因式分解的多項(xiàng)式,等等.
    (第1課時(shí))
    1.掌握二次根式的性質(zhì)
    2.能夠利用二次根式的性質(zhì)化簡二次根式
    3.通過本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法
    對比、歸納、總結(jié)
    1.重點(diǎn):理解并掌握二次根式的性質(zhì)
    2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡有關(guān)的二次根式.
    1課時(shí)
    五、教b具學(xué)具準(zhǔn)備
    投影儀、膠片、多媒體
    復(fù)習(xí)對比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主
    一、導(dǎo)入新課
    我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.
    問:式子的意義是什么?被開方數(shù)中的表示的是什么數(shù)?
    答:式子表示非負(fù)數(shù)的算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).
    二、新課
    計(jì)算下列各題,并回答以下問題:
    (1);(2);(3);
    1.各小題中被開方數(shù)的冪的底數(shù)都是什么數(shù)?
    2.各小題的結(jié)果和相應(yīng)的被開方數(shù)的冪的底數(shù)有什么關(guān)系?
    3.用字母表示被開方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語言敘述你的結(jié)論.
    高一數(shù)學(xué)的教案篇八
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的`如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    一、知識歸納
    2、實(shí)際問題中的有關(guān)術(shù)語、名稱:
    (1)仰角與俯角:均是指視線與水平線所成的角;
    (2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的夾角;
    (3)方向角:常見的如:正東方向、東南方向、北偏東、南偏西等;
    3、用正弦余弦定理解實(shí)際問題的常見題型有:
    測量距離、測量高度、測量角度、計(jì)算面積、航海問題、物理問題等;
    二、例題討論
    一)利用方向角構(gòu)造三角形
    四)測量角度問題
    例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)e為中心的7海里以內(nèi)海域被設(shè)為警戒水域.點(diǎn)e正北55海里處有一個(gè)雷達(dá)觀測站a.某時(shí)刻測得一艘勻速直線行駛的船只位于點(diǎn)a北偏東。
    高一數(shù)學(xué)的教案篇九
    所謂三維目標(biāo)是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價(jià)值觀”。
    知識與技能:既是課堂教學(xué)的出發(fā)點(diǎn),又是課堂教學(xué)的歸宿。我們在教學(xué)過程中,需要學(xué)生掌握什么,哪些些問題需要重點(diǎn)掌握,哪些只需簡單理解;技能是會(huì)與不會(huì)的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價(jià)、知識與技能是傳統(tǒng)教學(xué)合理的內(nèi)核,是我國傳統(tǒng)教育教學(xué)的優(yōu)勢,應(yīng)該從傳統(tǒng)教學(xué)中繼承與發(fā)揚(yáng)。新課改不是不要雙基,而是不要過度的強(qiáng)調(diào)雙基,而舍棄弱化其它有價(jià)值的東西,導(dǎo)致非全面、不和藹的發(fā)展。
    過程與方法:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的操作系統(tǒng)?!斑^程和方法”維度的目標(biāo)立足于讓學(xué)生會(huì)學(xué),新課程倡導(dǎo)對學(xué)與教的過程的體驗(yàn)、方法的選擇,是在知識與能力目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)的進(jìn)一步開發(fā)。過程與方法是一個(gè)體驗(yàn)的過程、發(fā)現(xiàn)的過程,不但可以讓學(xué)生體驗(yàn)到科學(xué)發(fā)展的過程,我們更多地要讓學(xué)生掌握過程,不一定要統(tǒng)一的結(jié)果。
    情感、態(tài)度與價(jià)值觀:既是課堂教學(xué)的目標(biāo)之一,又是課堂教學(xué)的動(dòng)力系統(tǒng)?!扒楦?、態(tài)度和價(jià)值觀”,目標(biāo)立足于讓學(xué)生樂學(xué),新課程倡導(dǎo)對學(xué)與教的情感體驗(yàn)、態(tài)度形成、價(jià)值觀的體現(xiàn),是在知識與能力、過程與方法目標(biāo)基礎(chǔ)上對教學(xué)目標(biāo)深層次的開拓,只有學(xué)生充分的認(rèn)識到他們肩負(fù)的責(zé)任,就能夠激發(fā)起他們的學(xué)習(xí)熱情,他們才會(huì)有濃厚的學(xué)習(xí)興趣,才能學(xué)有所成,將來回報(bào)社會(huì)。
    三維目標(biāo)不是三個(gè)目標(biāo),也不是三種目標(biāo),是一個(gè)問題的三個(gè)方面。三維目標(biāo)是三位一體不可分割的,他們是相輔相成的,相互促進(jìn)的。
    高一數(shù)學(xué)的教案篇十
    目標(biāo):
    1.讓學(xué)生熟練掌握二次函數(shù)的圖象,并會(huì)判斷一元二次方程根的存在性及根的個(gè)數(shù);。
    2.讓學(xué)生了解函數(shù)的零點(diǎn)與方程根的聯(lián)系;。
    3.讓學(xué)生認(rèn)識到函數(shù)的圖象及基本性質(zhì)(特別是單調(diào)性)在確定函數(shù)零點(diǎn)中的作用;。
    4。培養(yǎng)學(xué)生動(dòng)手操作的能力。
    二、教學(xué)重點(diǎn)、難點(diǎn)。
    重點(diǎn):零點(diǎn)的概念及存在性的判定;
    難點(diǎn):零點(diǎn)的確定。
    三、復(fù)習(xí)引入。
    例1:判斷方程x2-x-6=0解的存在。
    分析:考察函數(shù)f(x)=x2-x-6,其。
    圖像為拋物線容易看出,f(0)=-60,。
    f(4)0,f(-4)0。
    由于函數(shù)f(x)的圖像是連續(xù)曲線,因此,
    點(diǎn)b(0,-6)與點(diǎn)c(4,6)之間的那部分曲線。
    必然穿過x軸,即在區(qū)間(0,4)內(nèi)至少有點(diǎn)。
    x1使f(x1)=0;同樣,在區(qū)間(-4,0)內(nèi)也至。
    少有點(diǎn)x2,使得f(x2)=0,而方程至多有兩。
    個(gè)解,所以在(-4,0),(0,4)內(nèi)各有一解。
    定義:對于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù)x叫函數(shù)y=f(x)的零點(diǎn)。
    抽象概括。
    y=f(x)的圖像與x軸的交點(diǎn)的橫坐標(biāo)叫做該函數(shù)的零點(diǎn),即f(x)=0的解。
    若y=f(x)的圖像在[a,b]上是連續(xù)曲線,且f(a)f(b)0,則在(a,b)內(nèi)至少有一個(gè)零點(diǎn),即f(x)=0在(a,b)內(nèi)至少有一個(gè)實(shí)數(shù)解。
    f(x)=0有實(shí)根(等價(jià)與y=f(x))與x軸有交點(diǎn)(等價(jià)與)y=f(x)有零點(diǎn)。
    所以求方程f(x)=0的根實(shí)際上也是求函數(shù)y=f(x)的零點(diǎn)。
    3、我們所研究的大部分函數(shù),其圖像都是連續(xù)的曲線;
    4、但此結(jié)論反過來不成立,如:在[-2,4]中有根,但f(-2)0,f(4)0,f(-2)f(4)。
    5、缺少條件在[a,b]上是連續(xù)曲線則不成立,如:f(x)=1/x,有f(-1)xf(1)0但沒有零點(diǎn)。
    四、知識應(yīng)用。
    解:f(x)=3x-x2的圖像是連續(xù)曲線,因?yàn)椤?BR>    f(-1)=3-1-(-1)2=-2/30,f(0)=30-(0)2=-10,。
    練習(xí):求函數(shù)f(x)=lnx+2x-6有沒有零點(diǎn)?
    例3判定(x-2)(x-5)=1有兩個(gè)相異的實(shí)數(shù)解,且有一個(gè)大于5,一個(gè)小于2。
    解:考慮函數(shù)f(x)=(x-2)(x-5)-1,有。
    f(5)=(5-2)(5-5)-1=-1。
    f(2)=(2-2)(2-5)-1=-1。
    又因?yàn)閒(x)的圖像是開口向上的拋物線,所以拋物線與橫軸在(5,+)內(nèi)有一個(gè)交點(diǎn),在(-,2)內(nèi)也有一個(gè)交點(diǎn),所以方程式(x-2)(x-5)=1有兩個(gè)相異數(shù)解,且一個(gè)大于5,一個(gè)小于2。
    練習(xí):關(guān)于x的方程2x2-3x+2m=0有兩個(gè)實(shí)根均在[-1,1]內(nèi),求m的取值范圍。
    五、課后作業(yè)。
    p133第2,3題。
    高一數(shù)學(xué)的教案篇十一
    1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號及它們之間的關(guān)系。
    2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的`一般思想。
    3、了解集合元素個(gè)數(shù)問題的討論說明。
    通過提問匯總練習(xí)提煉的形式來發(fā)掘?qū)W生學(xué)習(xí)方法。
    培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維。
    [教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀。
    [教學(xué)方法]:講練結(jié)合法。
    [授課類型]:復(fù)習(xí)課。
    [課時(shí)安排]:1課時(shí)。
    [教學(xué)過程]:集合部分匯總。
    本單元主要介紹了以下三個(gè)問題:
    1,集合的含義與特征。
    2,集合的表示與轉(zhuǎn)化。
    3,集合的基本運(yùn)算。
    一,集合的含義與表示(含分類)。
    1,具有共同特征的對象的全體,稱一個(gè)集合。
    2,集合按元素的個(gè)數(shù)分為:有限集和無窮集兩類。
    高一數(shù)學(xué)的教案篇十二
    (3)能用邏輯聯(lián)結(jié)詞和簡單命題構(gòu)成不同形式的復(fù)合命題;
    (4)能識別復(fù)合命題中所用的邏輯聯(lián)結(jié)詞及其聯(lián)結(jié)的簡單命題;
    (5)會(huì)用真值表判斷相應(yīng)的復(fù)合命題的真假;
    (6)在知識學(xué)習(xí)的基礎(chǔ)上,培養(yǎng)學(xué)生簡單推理的技能.。
    重點(diǎn)是判斷復(fù)合命題真假的方法;難點(diǎn)是對“或”的含義的理解.。
    1.新課導(dǎo)入。
    初一平面幾何中曾學(xué)過命題,請同學(xué)們舉一個(gè)命題的例子.(板書:命題.)。
    (從初中接觸過的“命題”入手,提出問題,進(jìn)而學(xué)習(xí)邏輯的有關(guān)知識.)。
    學(xué)生舉例:平行四邊形的對角線互相平.……(1)。
    兩直線平行,同位角相等.…………(2)。
    教師提問:“……相等的角是對頂角”是不是命題?……(3)。
    (同學(xué)議論結(jié)果,答案是肯定的.)。
    教師提問:什么是命題?
    (學(xué)生進(jìn)行回憶、思考.)。
    概念總結(jié):對一件事情作出了判斷的語句叫做命題.。
    (教師肯定了同學(xué)的回答,并作板書.)。
    (教師利用投影片,和學(xué)生討論以下問題.)。
    例1判斷以下各語句是不是命題,若是,判斷其真假:
    2.講授新課。
    (片刻后請同學(xué)舉手回答,一共講了四個(gè)問題.師生一道歸納如下.)。
    (1)什么叫做命題?
    可以判斷真假的語句叫做命題.。
    (2)介紹邏輯聯(lián)結(jié)詞“或”、“且”、“非”.。
    命題可分為簡單命題和復(fù)合命題.。
    (4)命題的表示:用p,q,r,s,……來表示.。
    (教師根據(jù)學(xué)生回答的情況作補(bǔ)充和強(qiáng)調(diào),特別是對復(fù)合命題的概念作出分析和展開.)。
    對于給出“若p則q”形式的復(fù)合命題,應(yīng)能找到條件p和結(jié)論q.。
    3.鞏固新課。
    (1)5;
    (2)0.5非整數(shù);
    (3)內(nèi)錯(cuò)角相等,兩直線平行;
    (4)菱形的對角線互相垂直且平分;
    (5)平行線不相交;
    (6)若ab=0,則a=0.。
    (讓學(xué)生有充分的時(shí)間進(jìn)行辨析.教材中對“若…則…”不作要求,教師可以根據(jù)學(xué)生的情況作些補(bǔ)充.)。
    高一數(shù)學(xué)的教案篇十三
    3.能利用上述知識進(jìn)行相關(guān)的論證、計(jì)算、作雙曲線的草圖以及解決簡單的實(shí)際問題。
    一、預(yù)習(xí)檢查。
    1、焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程為.
    2、頂點(diǎn)間的距離為6,漸近線方程為的雙曲線的標(biāo)準(zhǔn)方程為.
    3、雙曲線的漸進(jìn)線方程為.
    4、設(shè)分別是雙曲線的半焦距和離心率,則雙曲線的一個(gè)頂點(diǎn)到它的一條漸近線的距離是.
    二、問題探究。
    探究1、類比橢圓的幾何性質(zhì)寫出雙曲線的幾何性質(zhì),畫出草圖并,說出它們的不同.
    探究2、雙曲線與其漸近線具有怎樣的關(guān)系.
    練習(xí):已知雙曲線經(jīng)過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標(biāo)準(zhǔn)方程是.
    例1根據(jù)以下條件,分別求出雙曲線的標(biāo)準(zhǔn)方程.
    (1)過點(diǎn),離心率.
    (2)、是雙曲線的左、右焦點(diǎn),是雙曲線上一點(diǎn),且,,離心率為.
    例2已知雙曲線,直線過點(diǎn),左焦點(diǎn)到直線的距離等于該雙曲線的虛軸長的,求雙曲線的離心率.
    例3(理)求離心率為,且過點(diǎn)的雙曲線標(biāo)準(zhǔn)方程.
    三、思維訓(xùn)練。
    1、已知雙曲線方程為,經(jīng)過它的右焦點(diǎn),作一條直線,使直線與雙曲線恰好有一個(gè)交點(diǎn),則設(shè)直線的斜率是.
    2、橢圓的離心率為,則雙曲線的離心率為.
    3、雙曲線的漸進(jìn)線方程是,則雙曲線的離心率等于=.
    4、(理)設(shè)是雙曲線上一點(diǎn),雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點(diǎn),若,則.
    四、知識鞏固。
    1、已知雙曲線方程為,過一點(diǎn)(0,1),作一直線,使與雙曲線無交點(diǎn),則直線的斜率的集合是.
    2、設(shè)雙曲線的一條準(zhǔn)線與兩條漸近線交于兩點(diǎn),相應(yīng)的焦點(diǎn)為,若以為直徑的圓恰好過點(diǎn),則離心率為.
    3、已知雙曲線的左,右焦點(diǎn)分別為,點(diǎn)在雙曲線的右支上,且,則雙曲線的離心率的值為.
    4、設(shè)雙曲線的半焦距為,直線過、兩點(diǎn),且原點(diǎn)到直線的距離為,求雙曲線的離心率.
    5、(理)雙曲線的焦距為,直線過點(diǎn)和,且點(diǎn)(1,0)到直線的距離與點(diǎn)(-1,0)到直線的距離之和.求雙曲線的離心率的取值范圍.
    高一數(shù)學(xué)的教案篇十四
    解決集合元素的問題時(shí),我們一定要注意集合中的元素要滿足互異性,以免產(chǎn)生增根。
    3、注意特殊集合——空集。
    空集是不含任何元素的集合。我們規(guī)定空集是任何集合的子集,是任何非空集合的真子集。因而,在涉及集合之間關(guān)系的問題時(shí)要特別注意空集。
    4、利用特殊工具——韋恩圖和數(shù)軸。
    集合的表示方法可分為列舉法、描述法、圖示法。列舉法一般表示有限集,描述法一般表示無限集,用于書寫最終結(jié)果。在運(yùn)算過程中,一般用數(shù)軸表示連續(xù)型元素的集合,用韋恩圖表示離散型元素的集合。圖形語言可以幫我們快捷而直觀的找出答案,提高解題速度。
    高一數(shù)學(xué)的教案篇十五
    教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
    教學(xué)過程:
    一、閱讀下列語句:
    1)全體自然數(shù)0,1,2,3,4,5,
    2)代數(shù)式.
    3)拋物線上所有的點(diǎn)。
    4)今年本校高一(1)(或(2))班的全體學(xué)生。
    5)本校實(shí)驗(yàn)室的所有天平。
    6)本班級全體高個(gè)子同學(xué)。
    7)著名的科學(xué)家。
    上述每組語句所描述的對象是否是確定的?
    二、1)集合:
    2)集合的元素:
    3)集合按元素的個(gè)數(shù)分,可分為1)__________2)_________。
    三、集合中元素的'三個(gè)性質(zhì):
    四、元素與集合的關(guān)系:1)____________2)____________。
    五、特殊數(shù)集專用記號:
    4)有理數(shù)集______5)實(shí)數(shù)集_____6)空集____。
    六、集合的表示方法:
    1)。
    2)。
    3)。
    七、例題講解:
    例1、中三個(gè)元素可構(gòu)成某一個(gè)三角形的三邊長,那么此三角形一定不是()。
    a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形。
    例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑?,然后說出它們是有限集還是無限集?
    1)地球上的四大洋構(gòu)成的集合;。
    2)函數(shù)的全體值的集合;。
    3)函數(shù)的全體自變量的集合;。
    4)方程組解的集合;。
    5)方程解的集合;。
    6)不等式的解的集合;。
    7)所有大于0且小于10的奇數(shù)組成的集合;。
    8)所有正偶數(shù)組成的集合;。
    例3、用符號或填空:
    1)______q,0_____n,_____z,0_____。
    2)______,_____。
    3)3_____,
    4)設(shè),,則。
    例4、用列舉法表示下列集合;。
    1.
    2.
    3.
    4.
    例5、用描述法表示下列集合。
    1.所有被3整除的數(shù)。
    2.圖中陰影部分點(diǎn)(含邊界)的坐標(biāo)的集合。
    課堂練習(xí):。
    例7、已知:,若中元素至多只有一個(gè),求的取值范圍。
    思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個(gè)元素;2)若則集合a不可能是單元素集合。
    小結(jié):
    作業(yè)班級姓名學(xué)號。
    1.下列集合中,表示同一個(gè)集合的是()。
    a.m=,n=b.m=,n=。
    c.m=,n=d.m=,n=。
    2.m=,x=,y=,,.則()。
    a.b.c.d.
    3.方程組的解集是____________________.
    4.在(1)難解的題目,(2)方程在實(shí)數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點(diǎn),(4)很多多項(xiàng)式。能夠組成集合的序號是________________.
    5.設(shè)集合a=,b=,
    c=,d=,e=。
    其中有限集的個(gè)數(shù)是____________.
    6.設(shè),則集合中所有元素的和為。
    7.設(shè)x,y,z都是非零實(shí)數(shù),則用列舉法將所有可能的值組成的集合表示為。
    8.已知f(x)=x2-ax+b,(a,br),a=,b=,。
    若a=,試用列舉法表示集合b=。
    9.把下列集合用另一種方法表示出來:
    (1)(2)。
    (3)(4)。
    10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
    11.已知集合a=。
    (1)若a中只有一個(gè)元素,求a的值,并求出這個(gè)元素;。
    (2)若a中至多只有一個(gè)元素,求a的取值集合。
    12.若-3,求實(shí)數(shù)a的值。
    【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文:集合含義及其表示能給您帶來幫助!
    高一數(shù)學(xué)的教案篇十六
    對數(shù)函數(shù)(第二課時(shí))是20__人教版高一數(shù)學(xué)(上冊)第二章第八節(jié)第二課時(shí)的內(nèi)容,本小節(jié)涉及對數(shù)函數(shù)相關(guān)知識,分三個(gè)課時(shí),這里是第二課時(shí)復(fù)習(xí)鞏固對數(shù)函數(shù)圖像及性質(zhì),并用此解決三類對數(shù)比大小問題,是對已學(xué)內(nèi)容(指數(shù)函數(shù)、指數(shù)比大小、對數(shù)函數(shù))的延續(xù)和發(fā)展,同時(shí)也體現(xiàn)了數(shù)學(xué)的實(shí)用性,為后續(xù)學(xué)習(xí)起到奠定知識基礎(chǔ)、滲透方法的作用,因此本節(jié)內(nèi)容起到了一種承上啟下的作用。
    二、教學(xué)目標(biāo)。
    根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:
    學(xué)習(xí)目標(biāo):
    1、復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像及性質(zhì)。
    2、運(yùn)用對數(shù)函數(shù)的性質(zhì)比較兩個(gè)數(shù)的大小。
    能力目標(biāo):
    1、培養(yǎng)學(xué)生運(yùn)用圖形解決問題的意識即數(shù)形結(jié)合能力。
    2、學(xué)生運(yùn)用已學(xué)知識,已有經(jīng)驗(yàn)解決新問題的能力。
    3、探索出方法,有條理闡述自己觀點(diǎn)的能力。
    德育目標(biāo):
    培養(yǎng)學(xué)生勤于思考、獨(dú)立思考、合作交流等良好的個(gè)性品質(zhì)。
    三、教材的重點(diǎn)及難點(diǎn)。
    教學(xué)中將在以下2個(gè)環(huán)節(jié)中突出教學(xué)重點(diǎn):
    1、利用學(xué)生預(yù)習(xí)后的心得交流,資源共享,互補(bǔ)不足。
    2、通過適當(dāng)?shù)木毩?xí),加強(qiáng)對解題方法的掌握及原理的理解。
    教學(xué)中會(huì)在以下3個(gè)方面突破教學(xué)難點(diǎn):
    1、教師調(diào)整角色,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可。
    2、小組合作探索新問題時(shí),注重生生合作、師生互動(dòng),適時(shí)用語言鼓勵(lì)學(xué)生,增強(qiáng)學(xué)生參與討論的自信。
    3、本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。
    四、學(xué)生學(xué)情分析。
    長處:高一學(xué)生經(jīng)過幾年的數(shù)學(xué)學(xué)習(xí),已具備一定的數(shù)學(xué)素養(yǎng),對于已學(xué)知識或用過的數(shù)學(xué)思想、方法有一定的應(yīng)用能力及應(yīng)用意識,對于本節(jié)課而言,從知識上說,對數(shù)函數(shù)的圖像和性質(zhì)剛剛學(xué)過,本節(jié)課是知識的應(yīng)用,從數(shù)學(xué)能力上說,指數(shù)比大小問題的解題思想和方法在這可借鑒,另外數(shù)形結(jié)合能力、小結(jié)概括能力、特殊到一般歸納能力已具備一點(diǎn)。
    學(xué)生可能遇到的困難:本節(jié)課從教學(xué)內(nèi)容上來看,第三類對數(shù)比大小是課本以外補(bǔ)充的內(nèi)容,沒有預(yù)習(xí)心得,讓學(xué)生在課堂中快速通過合作探究來完成解題思路的構(gòu)建,有一定的挑戰(zhàn)性,從學(xué)生能力上來看,探索出方法,有條理闡述自己觀點(diǎn)的能力還需加強(qiáng)鍛煉,知識之間的聯(lián)系認(rèn)識上還顯不足。
    五、教法特點(diǎn)。
    新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,在教育方式上,以學(xué)生為中心,讓學(xué)生成為學(xué)習(xí)的主人,教師在其中起引導(dǎo)作用即可?;诖?,本節(jié)課遵循此原則重點(diǎn)采用問題探究和啟發(fā)引導(dǎo)式的教學(xué)方法。從預(yù)習(xí)交流心得出發(fā),到探索新問題,再到題后的回顧總結(jié),一切以學(xué)生為中心,處處體現(xiàn)學(xué)生的主體地位,讓學(xué)生多說、多分析、多思考、多總結(jié),引導(dǎo)學(xué)生運(yùn)用自己的語言闡述觀點(diǎn),加強(qiáng)理解,在生生合作,師生互動(dòng)中解決問題,為提高學(xué)生分析問題、解決問題能力打下基礎(chǔ)。本節(jié)課采用多媒體輔助教學(xué),節(jié)省時(shí)間,加快課程進(jìn)度,增強(qiáng)了直觀形象性。
    六、教學(xué)過程分析。
    1、課件展示本節(jié)課學(xué)習(xí)目標(biāo)。
    設(shè)計(jì)意圖:明確任務(wù),激發(fā)興趣。
    2、溫故知新(已填表形式復(fù)習(xí)對數(shù)函數(shù)的圖像和性質(zhì))。
    設(shè)計(jì)意圖:復(fù)習(xí)已學(xué)知識和方法,為學(xué)生形成知識間的聯(lián)系和框架建立平臺(tái),并為下一步的應(yīng)用打下基礎(chǔ)。
    3、預(yù)習(xí)后心得交流。
    1)同底對數(shù)比大小。
    2)既不同底數(shù),也不同真數(shù)的對數(shù)比大小。
    設(shè)計(jì)意圖:通過學(xué)生的預(yù)習(xí),自己總結(jié)方法及此方法適用的題型,有條理的闡述自己的學(xué)習(xí)心得,老師只需起引導(dǎo)作用,引導(dǎo)學(xué)生從題目表面上升到題目的實(shí)質(zhì),從而找到解決問題的有效方法。
    4、合作探究——同真異底型的對數(shù)比大小。
    以例3為例,學(xué)生分組合作探究解題方法,預(yù)計(jì)兩種:一是利用換底公式將此類型轉(zhuǎn)化為同底異真型,利用之前總結(jié)的方法解決此問題。二是利用具體對數(shù)的大小關(guān)系探究出不同底對數(shù)函數(shù)在同一直角坐標(biāo)系中的圖像,以此來解決此類型比大小問題。
    設(shè)計(jì)意圖:這一部分是本節(jié)課的難點(diǎn),探究中充分發(fā)揮學(xué)生的主動(dòng)性,培養(yǎng)主動(dòng)學(xué)習(xí)的意識,同時(shí)也鍛煉學(xué)生各方面能力的很好機(jī)會(huì),為以后的探究學(xué)習(xí)積累經(jīng)驗(yàn)和方法,充分體現(xiàn)“授之以魚,不如授之以漁”的教學(xué)理念。另外數(shù)學(xué)問題的解決僅僅只是一半,更重要的是解題之后的回顧,即反思,如果沒有了反思,他們就錯(cuò)過了解題的一次重要而有效益的方面。因此,本題解決后,讓學(xué)生反思明白,要想利用性質(zhì)解決問題,關(guān)鍵要做到“腦中有圖”,以“形”促“數(shù)”。
    5、小結(jié)。
    6、思考題。
    以20__高考題為例,讓學(xué)生學(xué)以致用,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣。
    7、作業(yè)。
    包括兩個(gè)方面:
    1、書寫作業(yè)。
    2、下節(jié)課前的預(yù)習(xí)作業(yè)。
    通過本節(jié)課的教學(xué)實(shí)例來看,這種通過課本內(nèi)容預(yù)習(xí),而后課堂交流學(xué)習(xí)成果的方法效果不錯(cuò),既能很好的完成教學(xué)任務(wù),又能充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性。在自主探究時(shí),學(xué)生分組討論過程中,我參與小組討論,對有能力的小組,在探究出一種方法后,可鼓勵(lì)完成更多的方法探究,對于能力較弱的小組,可給予適當(dāng)?shù)奶崾荆箤W(xué)生都能動(dòng)起來,課堂都有所收獲,增強(qiáng)學(xué)生自信。另外,對于學(xué)生的總結(jié)回答,可能會(huì)比較慢,我一定會(huì)耐心聽,及時(shí)鼓勵(lì),給予學(xué)生微笑和語言的鼓勵(lì),效果很好。在小結(jié)環(huán)節(jié)中,對于高一學(xué)生自己小結(jié)的方法,是我一直的教學(xué)嘗試,由于只訓(xùn)練了半學(xué)期,學(xué)生只能達(dá)到小結(jié)知識的程度,在以后的訓(xùn)練中還會(huì)加入數(shù)學(xué)思想、數(shù)學(xué)方法的小結(jié)內(nèi)容,使這些數(shù)學(xué)名詞讓學(xué)生不再覺得抽象,而是變成具體的,可操作的、具體的解題工具。