2023年二次函數(shù)數(shù)學(xué)教案(模板18篇)

字號:

    教案可以記錄教師的教學(xué)經(jīng)驗和教學(xué)創(chuàng)新,為今后的教學(xué)活動提供參考。教案的編寫要注意培養(yǎng)學(xué)生的思維能力和創(chuàng)新意識,注重培養(yǎng)學(xué)生的能力素質(zhì)。教案的范文中展示了不同教學(xué)風(fēng)格和方法,可以幫助教師拓寬教學(xué)思路。
    二次函數(shù)數(shù)學(xué)教案篇一
    老師講課認(rèn)真聽講,不會的問題及時標(biāo)記。在課堂上,做一個好學(xué)生,認(rèn)真聽講,對于老師講的問題及時記錄,進行相應(yīng)的標(biāo)記,在下課的時候,及時詢問老師,早日解決問題。
    一定要課前預(yù)習(xí)一下知識點。在上課前或平時閑暇時間,一定要注意課下多多預(yù)習(xí),預(yù)習(xí)比復(fù)習(xí)更加重要,真的很重要,關(guān)乎到課堂的思維能力的轉(zhuǎn)變,多多看看,對自己的理解有幫助。
    課上要學(xué)會學(xué)習(xí),記筆記,也要記住老師講的知識點。課堂上,自己要活躍一點,帶給老師感覺,讓老師對你有印象,便于日后學(xué)習(xí)高中數(shù)學(xué),與老師探討學(xué)習(xí)方法,記筆記,記住講的重點。
    多做一些比較普通而又常出的問題,來熟悉自己學(xué)的知識。在課下的時候,自己找出適合自己做的題,在做題中找出適合自己的題目,來進行做和學(xué),總有一份題目適合自己做,便會更熟悉自己學(xué)的知識。
    學(xué)會總結(jié)本節(jié)課的知識點,重點,做一個學(xué)會學(xué)習(xí)的人。及時總結(jié)所學(xué)的知識點,做一個學(xué)好習(xí)的人,讓自己的心中有著大致的思路,能夠解答出老師的,這便是可以了。
    建立一個記錯本,錯誤的題記錄到本子上。將自己以前做過的錯題,及時的整理出來,并且能夠及時的回顧,便于日后在本子上學(xué)習(xí)到知識,能夠復(fù)習(xí)到自己以前錯過的題。
    與老師經(jīng)常交流學(xué)習(xí)方法,總有一個適合你。多多的與老師交流,給老師留下一個好印象,便于自己和老師更深入的交流學(xué)習(xí),及時的詢問一下高中數(shù)學(xué)的學(xué)習(xí)方法,總有一個適合自己。
    二次函數(shù)數(shù)學(xué)教案篇二
    一、教材分析:
    《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書《數(shù)學(xué)》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學(xué)生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識與實際問題的聯(lián)系。
    本節(jié)教學(xué)時間安排1課時。
    二、教學(xué)目標(biāo):
    知識技能:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
    2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    數(shù)學(xué)思考:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
    2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
    3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
    解決問題:
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
    2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
    情感態(tài)度:
    1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會學(xué)習(xí)數(shù)學(xué)的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
    2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。
    三、教學(xué)重點、難點:
    教學(xué)重點:
    1.體會方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    教學(xué)難點:
    1.探索方程與函數(shù)之間關(guān)系的過程。
    2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
    四、教學(xué)方法:啟發(fā)引導(dǎo)合作交流。
    五:教具、學(xué)具:課件。
    六、教學(xué)過程:
    [活動1]檢查預(yù)習(xí)引出課題。
    預(yù)習(xí)作業(yè):
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
    師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
    教師重點關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
    設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
    [活動2]創(chuàng)設(shè)情境探究新知。
    問題。
    1.課本p94問題.
    3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
    師生行為:教師提出問題1,給學(xué)生獨立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進行梳理和規(guī)范;問題2學(xué)生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
    教師重點關(guān)注:
    1.學(xué)生能否把實際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;。
    2.學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。
    3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
    設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。
    [活動3]例題學(xué)習(xí)鞏固提高。
    問題。
    例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
    師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨立完成,師生互相訂正。
    教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
    設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
    [活動4]練習(xí)反饋鞏固新知。
    二次函數(shù)數(shù)學(xué)教案篇三
    今天我說課的課題是二次函數(shù)圖像及其性質(zhì)。下面我將從以下幾個方面進行闡述:
    首先,我對本節(jié)教材進行簡要分析。
    本節(jié)內(nèi)容是人民教育出版的九年級數(shù)學(xué)課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》第二冊第二十七章第二節(jié)第三課時,屬于數(shù)與代數(shù)領(lǐng)域的知識。在此之前,學(xué)生已學(xué)習(xí)了二次函數(shù)的概念和二次函數(shù)的圖像及其性質(zhì)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識的復(fù)習(xí)總結(jié)和綜合運用,是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點和難點之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。
    本節(jié)課中的教學(xué)重點是梳理所學(xué)過的二次函數(shù)及其性質(zhì)的相關(guān)內(nèi)容,建構(gòu)符合學(xué)生認(rèn)知結(jié)構(gòu)的知識體系,教學(xué)難點是運用數(shù)形結(jié)合的思想,選用恰當(dāng)?shù)臄?shù)學(xué)關(guān)系式解決二次函數(shù)的問題,以及把實際問題轉(zhuǎn)化成二次函數(shù)問題并利用二次函數(shù)的性質(zhì)來解決。
    基于以上對教材的認(rèn)識,根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,制定如下的教學(xué)目標(biāo)。
    【知識與技能】:
    了解二次函數(shù)解析式的二種表示方法,會用配方法轉(zhuǎn)化二次函數(shù)的表示形式;
    會用描點法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì);
    會根據(jù)公式確定拋物線的頂點坐標(biāo)、開口方向、對稱軸以及拋物線與坐標(biāo)軸的交點坐標(biāo)。
    【過程與方法】:
    3、數(shù)學(xué)的思想方法去觀察、研究和解決實際問題,體驗數(shù)學(xué)建模的思想。培養(yǎng)學(xué)生運用二次函數(shù)圖像及其性質(zhì)的相關(guān)知識解決數(shù)學(xué)綜合題和實際問題的能力。
    【情感與態(tài)度目標(biāo)】:
    在數(shù)學(xué)教學(xué)中滲透美的教育,讓學(xué)生感受二次函數(shù)圖像的對稱之美,激發(fā)學(xué)生的學(xué)習(xí)興趣。運用二次函數(shù)解決實際問題,使學(xué)生進一步認(rèn)識到數(shù)學(xué)源于生活,用于生活的辯證觀點。
    為突出重點、突破難點、抓住關(guān)鍵,使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)勗O(shè)計思路。
    教法選擇與教學(xué)手段:基于本節(jié)課的特點是復(fù)習(xí)總結(jié)所學(xué)過的知識及其綜合運用,應(yīng)著重采用復(fù)習(xí)與總結(jié)的教學(xué)方法與手段,即利用任務(wù)驅(qū)動進行復(fù)習(xí)總結(jié),構(gòu)建二次函數(shù)圖像及其性質(zhì)的綜合化、網(wǎng)絡(luò)化、結(jié)構(gòu)化。通過提問思考、歸納總結(jié)、綜合運用等形式對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法進行有針對性的、系統(tǒng)性的、綜合性的教學(xué)。復(fù)習(xí)課例題教學(xué)的模式為學(xué)生思考,教師分析,解題小結(jié)三個環(huán)節(jié)。
    學(xué)法指導(dǎo):讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
    最后,我來具體談一談本節(jié)課的教學(xué)過程。
    (一)由任務(wù)導(dǎo)引相關(guān)回憶。
    為對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行重構(gòu)做準(zhǔn)備。通過兩題練習(xí)回憶復(fù)習(xí)二次函數(shù)圖像及其性質(zhì)的相關(guān)知識。第一題用配方法把二次函數(shù)的一般式化為頂點式的形式,并指出開口方向,對稱軸和頂點坐標(biāo),引導(dǎo)學(xué)生復(fù)習(xí)回憶,了解二次函數(shù)解析式的二種表示方法,掌握用配方法轉(zhuǎn)化二次函數(shù)的表示形式,會根據(jù)公式確定拋物線的頂點坐標(biāo)、開口方向、對稱軸。第二題用描點法畫出二次函數(shù)的圖象,并說出為何值時隨增大而增大,為何值時,隨增大而減小,引導(dǎo)學(xué)生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì)。
    運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行梳理,由以上練習(xí)引導(dǎo)學(xué)生回憶、理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識,并形成相關(guān)的知識結(jié)構(gòu)體系。通過知識回顧幫助學(xué)生梳理有關(guān)知識點,二次函數(shù)的定義、解析式的形式、圖像畫法、圖像及其性質(zhì)。
    通過對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識的復(fù)習(xí),讓學(xué)生運用相關(guān)概念、性質(zhì)進行解題,采用學(xué)生思考,教師分析,解題小結(jié)三個環(huán)節(jié)構(gòu)成的練習(xí)題講解模式,鞏固求解二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。第五題及第六題是運用二次函數(shù)圖像及其性質(zhì)的相關(guān)知識解決實際問題,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學(xué)生的化歸遷移的數(shù)學(xué)思維,培養(yǎng)學(xué)生的轉(zhuǎn)化能力。
    (四)反思概括,方法總結(jié)。
    總結(jié)本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想方法,學(xué)會用化歸思想,解決實際問題。培養(yǎng)學(xué)生由題及法,由法及類的數(shù)學(xué)總結(jié)歸納方法。
    (五)作業(yè)。
    課后通過練習(xí)來鞏固本節(jié)課所復(fù)習(xí)的知識點、重點和難點,強化教學(xué)目標(biāo)。
    各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂上是千變?nèi)f化的,會隨著學(xué)生和教師的靈性發(fā)揮而隨機生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實踐的檢驗。
    本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!
    二次函數(shù)數(shù)學(xué)教案篇四
    二次函數(shù)的最大值,最小值及增減性的理解和求法·。
    三、解答題。
    7·(1)請在坐標(biāo)系中畫出二次函數(shù)y=x2—2x的大致圖象;
    (3)觀察圖象,直接寫出方程x2—2x=1的根(精確到0·1)·。
    (1)當(dāng)t=3時,求足球距離地面的高度;
    (2)當(dāng)足球距離地面的高度為10米時,求t;
    二次函數(shù)數(shù)學(xué)教案篇五
    (1)其圖象叫拋物線;(2)拋物線y=x2的對稱軸是y軸,開口向上,頂點是原點。
    補充例題。
    下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?
    (1)y=2-3x2;(2)y=x(x-4);
    (3)y=1/2x2-3x-1;(4)y=1/4x2+3x-8;
    (5)y=7x(1-x)+4x2;(6)y=(x-6)(6+x)。
    作業(yè):p122中a組1,2,3。
    四、教學(xué)注意問題。
    1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點。
    2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x2的圖象,要求學(xué)生思考:
    (1)y=x2的圖象的圖象有什么特點。(答:具有對稱性。)。
    (2)如何判斷y=x2的圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x2看出來。)。
    二次函數(shù)數(shù)學(xué)教案篇六
    通過學(xué)生的討論,使學(xué)生更清楚以下事實:
    (1)分解因式與整式的乘法是一種互逆關(guān)系;。
    (2)分解因式的結(jié)果要以積的形式表示;。
    (3)每個因式必須是整式,且每個因式的次數(shù)都必須低于原來的多項式的次數(shù);。
    (4)必須分解到每個多項式不能再分解為止。
    活動5:應(yīng)用新知。
    例題學(xué)習(xí):
    p166例1、例2(略)。
    在教師的引導(dǎo)下,學(xué)生應(yīng)用提公因式法共同完成例題。
    讓學(xué)生進一步理解提公因式法進行因式分解。
    活動6:課堂練習(xí)。
    1.p167練習(xí);。
    2.看誰連得準(zhǔn)。
    x2-y2(x+1)2。
    9-25x2y(x-y)。
    x2+2x+1(3-5x)(3+5x)。
    xy-y2(x+y)(x-y)。
    3.下列哪些變形是因式分解,為什么?
    (1)(a+3)(a-3)=a2-9。
    (2)a2-4=(a+2)(a-2)。
    (3)a2-b2+1=(a+b)(a-b)+1。
    (4)2πr+2πr=2π(r+r)。
    學(xué)生自主完成練習(xí)。
    通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對因式分解意義的理解是否到位,以便教師能及時地進行查缺補漏。
    活動7:課堂小結(jié)。
    從今天的課程中,你學(xué)到了哪些知識?掌握了哪些方法?明白了哪些道理?
    學(xué)生發(fā)言。
    通過學(xué)生的回顧與反思,強化學(xué)生對因式分解意義的理解,進一步清楚地了解分解因式與整式的乘法的互逆關(guān)系,加深對類比的數(shù)學(xué)思想的理解。
    活動8:課后作業(yè)。
    課本p170習(xí)題的第1、4大題。
    學(xué)生自主完成。
    通過作業(yè)的鞏固對因式分解,特別是提公因式法理解并學(xué)會應(yīng)用。
    板書設(shè)計(需要一直留在黑板上主板書)。
    15.4.1提公因式法例題。
    1.因式分解的定義。
    2.提公因式法。
    二次函數(shù)數(shù)學(xué)教案篇七
    根據(jù)我們學(xué)校人人皆知的船模特色項目設(shè)計了這樣一個情境:
    讓班級中的上科院小院士來簡要介紹學(xué)校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
    讓學(xué)生在練習(xí)中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。
    二次函數(shù)數(shù)學(xué)教案篇八
    《34.4二次函數(shù)的應(yīng)用》選自義務(wù)教育課程標(biāo)準(zhǔn)試驗教科書《數(shù)學(xué)》(冀教版)九年級上冊第三十四章第四節(jié),這節(jié)課是在學(xué)生學(xué)習(xí)了二次函數(shù)的概念、圖象及性質(zhì)的基礎(chǔ)上,讓學(xué)生繼續(xù)探索二次函數(shù)與一元二次方程的關(guān)系,教材通過小球飛行這樣的實際情境,創(chuàng)設(shè)三個問題,這三個問題對應(yīng)了一元二次方程有兩個不等實根、有兩個相等實根、沒有實根的三種情況。這樣,學(xué)生結(jié)合問題實際意義就能對二次函數(shù)與一元二次方程的關(guān)系有很好的體會;從而得出用二次函數(shù)的圖象求一元二次方程的方法。這也突出了課標(biāo)的要求:注重知識與實際問題的聯(lián)系。
    本節(jié)教學(xué)時間安排1課時。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
    2.理解拋物線交x軸的點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.
    3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.
    2.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗.
    3.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想。
    1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性。
    2.通過利用二次函數(shù)的圖象估計一元二次方程的根,進一步掌握二次函數(shù)圖象與x軸的交點坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力。
    1.從學(xué)生感興趣的問題入手,讓學(xué)生親自體會學(xué)習(xí)數(shù)學(xué)的價值,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲。
    2.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識。
    1.體會方程與函數(shù)之間的聯(lián)系。
    2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
    1.探索方程與函數(shù)之間關(guān)系的過程。
    2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
    預(yù)習(xí)作業(yè):
    1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.
    2.回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
    師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評價。
    教師重點關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
    設(shè)計意圖:這兩道預(yù)習(xí)題目是對舊知識的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學(xué)生用學(xué)過的熟悉的知識類比探究本課新知識。
    問題。
    1.課本p94問題.
    3.結(jié)合預(yù)習(xí)題1,完成課本p94觀察中的題目。
    師生行為:教師提出問題1,給學(xué)生獨立思考的時間,教師可適當(dāng)引導(dǎo),對學(xué)生的解題思路和格式進行梳理和規(guī)范;問題2學(xué)生獨立思考指名回答,注重數(shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個問題的探究稍有難度,活動中教師要深入到各個小組中進行點撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。
    1.學(xué)生能否把實際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;。
    2.學(xué)生在思考問題時能否注重數(shù)形結(jié)合思想的應(yīng)用;。
    3.學(xué)生在探究問題的過程中,能否經(jīng)歷獨立思考、認(rèn)真傾聽、獲得信息、梳理歸納的過程,使解決問題的方法更準(zhǔn)確。
    設(shè)計意圖:由現(xiàn)實中的實際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動中去,體會二次函數(shù)與實際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗。
    [活動3]例題學(xué)習(xí)鞏固提高。
    問題。
    例利用函數(shù)圖象求方程x2-2x-2=0的實數(shù)根(精確到0.1).
    師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨立完成,師生互相訂正。
    教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。
    設(shè)計意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識中尋找到新知識的生長點,很容易明確例題的解題思路和方法,這樣既降低難點且突出重點。
    [活動4]練習(xí)反饋鞏固新知。
    二次函數(shù)數(shù)學(xué)教案篇九
    摘要:水彩畫在中學(xué)美術(shù)教育中占據(jù)著重要的地位,它不僅可以提升中學(xué)生的造型能力、色彩能力,同時也可以強化他們的審美素養(yǎng)。這里,筆者將結(jié)合自己的教學(xué)經(jīng)驗,來談一談水彩畫技法教學(xué)的一點心得,以期大方之家給予批評指正。
    關(guān)鍵詞:中學(xué)美術(shù)課;水彩畫;技法教學(xué)。
    一、水彩畫技法指導(dǎo)。
    學(xué)生在畫水彩畫之前需要有這樣的理念:從整體著眼,從局部入手。在腦海中必須有畫面的整體構(gòu)思與布局,在這個大前提下,再將畫面有效地分成若干個小部分,逐一完成。具體過程下面將分條闡述。
    (一)畫面勾勒輪廓階段。
    第一步就是教師指導(dǎo)學(xué)生先勾勒出素描稿,整體與局部的分配情況需要合理、恰切。為了提升上色的準(zhǔn)確性、恰切性,整個過程需要運用鉛筆來完成,并且在素描的過程中,需要有效地表現(xiàn)反光、高光、投影以及明暗交界線等。其中投影、暗部需要淡淡地用鉛筆進行標(biāo)記。這個素描過程至關(guān)重要,成為關(guān)鍵的開端。
    (二)畫面著色階段。
    接下來就需要用刷子蘸上清水,在畫紙上刷一遍,讓水完全浸濕畫紙。吃水飽和的畫紙,在短時間內(nèi),就不會立刻干燥,在這種情況下,才有助于具體干濕畫法的實踐、運用。
    水彩的透明特點需要被全面地觀照、審視,主要著色程序是由淺至深,特定物體的受光面需要先畫出來,緊接著再對其背光面進行繪畫。只有這樣才能夠有效地表現(xiàn)水彩畫的明調(diào)與暗調(diào)。最后,將特定物體顏色最深的細部完成??梢哉f水彩的表現(xiàn)方法,通常來說,主要分為干畫法、濕畫法以及干濕并用法。在中學(xué)美術(shù)教學(xué)中,我們提倡采用干濕并用法,即有的地方使用干畫法,而有的地方則采用濕畫法。這種方法易于被中學(xué)生接受,并且表現(xiàn)力相對較強。再者,我們可以有效利用濕畫法來繪畫每一個客觀物象。
    最后就是畫面的整理、完善環(huán)節(jié)。局部獨立物象的逐一繪畫,這種羅列可能會導(dǎo)致整個畫面的融合程度不足,進而容易產(chǎn)生層次方面的誤差感,給觀賞者一種拼湊的印象。鑒于此,教師必須指導(dǎo)學(xué)生進行畫面的整體處理,旨在讓每一個局部都被統(tǒng)攝到整個畫面中去,成為一個部分分割的成分。例如前景特定物象應(yīng)該是實的,需要在這個物象的主要部位,將輪廓線凸顯。而后面的特定物象應(yīng)該是虛的。較之前者,后者需要淡化其色彩和形體方面的處理,只有這樣才能夠創(chuàng)設(shè)出層次分明、立體感較強的畫面效果。如果整個畫面色彩顯得有些亂,就應(yīng)該在基調(diào)的范圍內(nèi)進行有效整理。如果整個畫面較為單調(diào)的話,就應(yīng)該將環(huán)境色恰當(dāng)?shù)厝谌肫渲?,進而色彩的豐富感就可以被提升。
    二、重要注意事項強調(diào)。
    在學(xué)生對范畫的欣賞、感悟過程中,教師需要對每一張畫,它的具體畫法、運用色彩等方面進行全面而細致地解讀,這樣才能使得學(xué)生對水彩畫的特點、畫法有一個整體的了解和體認(rèn)。同時,需要提醒學(xué)生:如果調(diào)色過多,就可能喪失水彩畫明快、透明的風(fēng)格特征。而且涂色需要爭取一次性完成,至多不可以超過三次,涂色越多,整個畫面就會變得更為臟亂。鑒于此,在涂色之前,教師必須講清楚調(diào)色與控制畫筆中水分的具體措施,并且讓學(xué)生全面把握繪畫所要使用的工具,只有充分熟悉工具的使用方法,才能談及具體涂色過程的開展。
    需要強化實踐教學(xué),即可以將學(xué)生帶到大自然中去繪畫。教師可以一邊繪畫,一邊講解,在此過程中,將特定物象的具體畫法,普遍存在的問題以及解決問題的辦法,一一告訴學(xué)生。教師的這種示范教學(xué),不僅可以給予學(xué)生直觀的感受,同時也讓學(xué)生了解了具體的繪畫方法,如何規(guī)避不該出現(xiàn)的失誤。另外,對于學(xué)生的作品不足之處,教師需要給予親自改正,這種教學(xué)方法會讓學(xué)生的繪畫技巧迅速提升的。
    另外,教師也可以將水彩畫的繪畫技巧編成一系列的口訣,這樣,學(xué)生記憶與掌握水彩畫相關(guān)技法將會變得事半而功倍。
    三、水彩畫技法教學(xué)示例。
    這里以水彩風(fēng)景寫生為示例對象。在寫生的起初,需要力求一次性完成天空的繪畫,當(dāng)整體基調(diào)確定之后,余下的景物色彩需要與之協(xié)調(diào)搭配。當(dāng)天空的繪畫尚未“風(fēng)干”之前,需要立刻將遠山,抑或者是遠樹勾畫出來。這樣就會使得它與天空疊加的部分自然融合,避免了分離之感的產(chǎn)生。這樣就契合了遠虛近實的繪畫要求。
    畫每一個特定物象之時,需要從左到右刷一遍清水,因為室外的空氣是比較干燥的,這樣的環(huán)境下,如果不刷水,濕畫法則難以為繼。倒映在水中的樹木和房屋需要在畫紙濕條件下,立刻涂色,進而產(chǎn)生朦朦朧朧的倒影效果。待畫面干了之后,在使用干畫法,小心翼翼地在水面上畫出幾道波紋來,這樣房屋和樹木的倒影就顯得愈加真實生動了。同時,水岸上的物象,需要使用干畫法進行繪畫,這樣就會使得這些物象更為實在、凸顯。進而與水中倒影構(gòu)成鮮明的對比。
    畫面的主體部分需要著力進行刻畫,進而讓整個畫面具有凝聚力。在讓學(xué)生充分領(lǐng)悟水彩畫技法的同時,還需要讓學(xué)生懂得藝術(shù)地處理畫面的空間。最后,也就是對整個畫面進行整理,濕畫法的缺陷在于使得畫面顯得很“碎”,因此需要在畫面的色彩和層次方面進行整體的調(diào)整,這樣,整個畫面就會變得和諧統(tǒng)一了。
    參考文獻。
    二次函數(shù)數(shù)學(xué)教案篇十
    在整個中學(xué)數(shù)學(xué)知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學(xué)的重要考點,也是線性數(shù)學(xué)知識的基礎(chǔ)。那老師應(yīng)該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學(xué)二次函數(shù)教案教學(xué)方法。
    一、重視每一堂復(fù)習(xí)課數(shù)學(xué)復(fù)習(xí)課不比新課,講的都是已經(jīng)學(xué)過的東西,我想許多老師都和我有相同的體會,那就是復(fù)習(xí)課比新課難上。
    四、要多了解學(xué)生。你對學(xué)生的了解更有助于你的教學(xué),特別是在初三總復(fù)習(xí)間斷,及時了解每個學(xué)生的復(fù)習(xí)情況有助于你更好的制定復(fù)習(xí)計劃和備下一堂課,也有利于你更好的改進教學(xué)方法。
    二、立足課堂,提高效率:做到教師入題海,學(xué)生出題海.教師應(yīng)多做題、多研究近幾年的中考試題,并根據(jù)本班學(xué)生的實際情況,從眾多復(fù)習(xí)資料中,選擇適合本班學(xué)生的最佳練習(xí),也可通過對題目的重組。
    三、教師在設(shè)計教學(xué)目標(biāo)時,要做到胸中有書,目中有人,讓每一節(jié)課都給學(xué)生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調(diào)動學(xué)生的參與度,激發(fā)他們的學(xué)習(xí)興趣,達到最佳的復(fù)習(xí)效果.
    四、激發(fā)興趣,提高質(zhì)量:興趣是學(xué)習(xí)最好的動力,在上復(fù)習(xí)課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復(fù)習(xí)的同時,也要關(guān)注學(xué)生的學(xué)習(xí)欲望和學(xué)習(xí)效果,要讓學(xué)生在學(xué)習(xí)的過程中體驗成功的快感.這樣他們才會更有興趣的學(xué)習(xí)下去.
    1.質(zhì)疑問難是學(xué)生自主學(xué)習(xí)的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學(xué)生的主體意識,必須鼓勵學(xué)生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學(xué)生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
    2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學(xué)生要學(xué)習(xí)的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學(xué)模型。
    3.學(xué)生有疑而問、質(zhì)疑問難,是用心思考、自主學(xué)習(xí)、主動探究的可貴表現(xiàn),理應(yīng)得到老師的熱情鼓勵和贊揚?,F(xiàn)在對學(xué)生的隨時“插嘴”,提出的各種疑難問題,應(yīng)抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
    4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
    1.教學(xué)案例、教學(xué)設(shè)計、教學(xué)實錄、教學(xué)敘事的區(qū)別:教學(xué)案例與教案:教案(教學(xué)設(shè)計)是事先設(shè)想的教育教學(xué)思路,是對準(zhǔn)備實施的教育措施的簡要說明,反映的是教學(xué)預(yù)期;而教學(xué)案例則是對已發(fā)生的教育教學(xué)過程的描述,反映的是教學(xué)結(jié)果。
    2.教學(xué)案例與教學(xué)實錄:它們同樣是對教育教學(xué)情境的描述,但教學(xué)實錄是有聞必錄(事實判斷),而教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
    4.教學(xué)案例必須從教學(xué)任務(wù)分析的目標(biāo)出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學(xué)案例的素材積累。
    二次函數(shù)數(shù)學(xué)教案篇十一
    讓學(xué)生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
    :各種隱含條件的挖掘。
    :引導(dǎo)發(fā)現(xiàn)法。
    (一)診斷補償,情景引入:
    (先讓學(xué)生復(fù)習(xí),然后提問,并做進一步診斷)。
    (二)問題導(dǎo)航,探究釋疑:
    (三)精講提煉,揭示本質(zhì):
    分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標(biāo)系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。
    解由題意,得點b的坐標(biāo)為(0。8,-2。4),
    又因為點b在拋物線上,將它的坐標(biāo)代入,得所以因此,函數(shù)關(guān)系式是。
    例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
    (1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
    (2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
    (3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
    (4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
    分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標(biāo),可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(biāo)(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
    解這個方程組,得a=2,b=-1。
    (2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
    (3)因為拋物線與x軸交于點m(-3,0)、(5,0),
    所以設(shè)二此函數(shù)的關(guān)系式為。
    又由于拋物線與y軸交于點(0,3),可以得到解得。
    (4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學(xué)們自己完成。
    (四)題組訓(xùn)練,拓展遷移:
    1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
    (1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
    (2)已知拋物線的頂點為(-1,2),且過點(2,1);
    (3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
    2、二次函數(shù)圖象的對稱軸是x=-1,與y軸交點的縱坐標(biāo)是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。
    (五)交流評價,深化知識:
    確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標(biāo)可利用此式來求。
    (2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
    (3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
    本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
    (2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標(biāo)和對稱軸。
    二次函數(shù)數(shù)學(xué)教案篇十二
    今天,我說課的內(nèi)容是北師大版《二次函數(shù)的圖象及性質(zhì)》復(fù)習(xí)課的第一課時,根據(jù)新課標(biāo)的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教法分析,學(xué)法指導(dǎo),教學(xué)程序及板書設(shè)計這五個方面來加以說明。
    1、命題解讀。
    二次函數(shù)的圖象及性質(zhì)近8年考查7次,以解答題為主,且綜合性較強,一般涉及求交點坐標(biāo)及頂點坐標(biāo)。在選擇、填空題中考查的知識點有二次函數(shù)圖象與系數(shù)a、b、c的關(guān)系、與一元二次方程的關(guān)系、增減性、對稱軸、頂點坐標(biāo)及與x軸、y軸的交點。
    2.教學(xué)目標(biāo)。
    (1)認(rèn)識二次函數(shù)是常見的簡單函數(shù)之一,也是刻畫現(xiàn)實世界變量之間關(guān)系的重要數(shù)學(xué)模型.理解二次函數(shù)的概念,掌握其函數(shù)關(guān)系式以及自變量的取值范圍.
    (2)能正確地描述二次函數(shù)的圖象,能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的'特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題.
    (3)、了解二次函數(shù)與一元二次方程的關(guān)系,能利用二次函數(shù)的圖象求一元二次方程的近似解.
    3、教學(xué)重點:。
    1、二次函數(shù)的圖象與性質(zhì)2、二次函數(shù)的平移。
    4.教學(xué)難點:
    能根據(jù)圖象或函數(shù)關(guān)系式說出二次函數(shù)圖象的特征及函數(shù)的性質(zhì),并能運用這些性質(zhì)解決問題.
    基于本節(jié)課的特點和我們學(xué)校正在進行的“三、三、六”教學(xué)模式,我采用“先學(xué)后教,當(dāng)堂訓(xùn)練”的教學(xué)方法。即:教師激情導(dǎo)課,學(xué)生自學(xué)自做,教師進行面批,組織小組交流,展示學(xué)習(xí)成果,檢測導(dǎo)結(jié)反饋。對于課堂上學(xué)生出現(xiàn)的疑問,盡量讓學(xué)生互相解決,教師起到幫助、組織、合作、協(xié)調(diào)的作用。最后讓學(xué)生當(dāng)堂完成實踐練題和檢測導(dǎo)結(jié),經(jīng)過嚴(yán)格有梯度的訓(xùn)練,使學(xué)生學(xué)會知識、形成能力。同時鼓勵和培養(yǎng)學(xué)生提高分析能力、表達能力和探究能力。以“學(xué)—導(dǎo)—練”三步為主線,以“六環(huán)節(jié)”為結(jié)構(gòu),來進行本節(jié)課的教學(xué)。在整個教學(xué)過程中加強學(xué)生自學(xué)方法的指導(dǎo)。以問題“引”自學(xué),以自測“顯”問題,以優(yōu)生“帶”差生,以點撥“疏”疑點,以訓(xùn)練“鞏”新知。
    由于是復(fù)習(xí)課,因此我在以學(xué)生為主體的原則下,讓他們通過畫圖、觀察、比較、推理、小組交流,直至最后探索出結(jié)論。以引導(dǎo)、探究、合作、點拔、評價的方式貫穿整個課堂。
    本節(jié)課設(shè)計了七個教學(xué)環(huán)節(jié):1、挑戰(zhàn)自我;2、考點清單;3、夯實基礎(chǔ);4、小結(jié)感悟;5、目標(biāo)檢測6、拓展延伸7、作業(yè)布置。
    一、挑戰(zhàn)自我。
    出示3道有關(guān)二次函數(shù)的圖象與性質(zhì),二次函數(shù)圖象的平移的中考試題,讓學(xué)生自主完成,引起有關(guān)知識點的回憶.第一題是二次函數(shù)對稱軸的考查;第二題考察圖象的平移;第三題解有關(guān)拋物線與系數(shù)a、b、c關(guān)系的題。
    教學(xué)效果:學(xué)生積極投入思考,開篇就為學(xué)生創(chuàng)設(shè)了一個自由、寬松的討論氛圍。
    二、考點清單。
    師生共同回憶1、二次函數(shù)的圖象與性質(zhì)2、二次函數(shù)圖象與系數(shù)a、b、c。
    教學(xué)效果:預(yù)計學(xué)生對這些知識有遺忘,應(yīng)積極引導(dǎo)回憶問題,達到對知識點有明確的認(rèn)識。
    三、夯實基礎(chǔ)。
    師生共同探討四道典型例題,強化知識點的靈活應(yīng)用。題讓學(xué)生先想后答,遇到難題小組交流,教師點撥,全班展示,充分發(fā)揮學(xué)生對積極主動性。
    教學(xué)效果:大部分學(xué)生學(xué)習(xí)二次函數(shù)有困難,應(yīng)互幫互助,共同進步。
    四、小結(jié)感悟:說說你在本節(jié)課解題過程中的收獲及疑惑?(小組交流)。
    教師給學(xué)生一定的時間去反思回顧,本節(jié)課對知識的研究探索過程,小結(jié)方法及相關(guān)結(jié)論,提煉數(shù)學(xué)思想,掌握數(shù)學(xué)規(guī)律,從而達到鞏固所學(xué)知識目的增強學(xué)習(xí)興趣和合作意識.
    五、目標(biāo)檢測:
    為學(xué)生提供自我檢測的機會,教師針對學(xué)生反饋情況,及時調(diào)整授課,查漏補缺.并要求學(xué)生在規(guī)定五分鐘內(nèi)完成,同時對每道題進行分?jǐn)?shù)量化。當(dāng)大部分學(xué)生完成后,教師出示答案,以便學(xué)生核對。同組的學(xué)生進行作業(yè)互相批改。并把結(jié)果告訴老師,以便老師掌握每位學(xué)生是否都當(dāng)堂達到學(xué)習(xí)目標(biāo)。對于當(dāng)堂不能完成任務(wù)的學(xué)生課下進行適當(dāng)?shù)妮o導(dǎo)。
    六、拓展延伸:給學(xué)有余力的學(xué)生提供更多的練習(xí)機會。
    七、課后作業(yè):《中考指導(dǎo)》。
    以上就是我的說課內(nèi)容,歡迎各位領(lǐng)導(dǎo)、同仁批評指導(dǎo)!
    1.給學(xué)生展示自我的空間。本節(jié)課的設(shè)計本著以教師為主導(dǎo)、學(xué)生為主體,以知識為載體、培養(yǎng)學(xué)生的思維能力為重點的教學(xué)思想。教師以探究任務(wù)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供給學(xué)生自主合作探究的舞臺。在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生分類、探究、合作、歸納的能力。課堂上把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)的能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及組織小組合作學(xué)習(xí),幫助學(xué)生形成積極主動的求知態(tài)度。
    2.在課堂上要給予學(xué)生充分的時間去思考、動手實踐,而不是使合作流于形式。要把合作交流的空間真正的還給學(xué)生。教師在課堂中還要照顧到每一名學(xué)生,讓全體的學(xué)生都動起來。
    二次函數(shù)數(shù)學(xué)教案篇十三
    1、教材的地位和作用。
    這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
    2、教學(xué)目標(biāo)和要求:
    (1)知識與技能:使學(xué)生理解二次函數(shù)的.概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
    (2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
    (3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
    4、教學(xué)難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。
    1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程。
    2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程。
    3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
    (一)復(fù)習(xí)提問。
    1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
    (一次函數(shù),正比例函數(shù),反比例函數(shù))。
    2.它們的形式是怎樣的?
    (y=kx+b,ky=kx,ky=,k0)。
    【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
    函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)。
    例1、(1)圓的半徑是r(cm)時,面積與半徑之間的關(guān)系是什么?
    解:s=0)。
    解:y=x(20/2-x)=x(10-x)=-x2+10x(0。
    解:y=100(1+x)2。
    =100(x2+2x+1)。
    =100x2+200x+100(0。
    教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
    【設(shè)計意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
    (三)講解新課。
    以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
    二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
    1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
    2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)。
    3、為什么二次函數(shù)定義中要求a?
    (若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)。
    4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
    5、b和c是否可以為零?
    由例1可知,b和c均可為零.
    若b=0,則y=ax2+c;。
    若c=0,則y=ax2+bx;。
    若b=c=0,則y=ax2.
    注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
    【設(shè)計意圖】這里強調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
    判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
    二次函數(shù)數(shù)學(xué)教案篇十四
    本節(jié)內(nèi)容是人民教育出版社出版的九年級《數(shù)學(xué)》下第26章第一節(jié)第二課時的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了二次函數(shù)的概念,對于函數(shù)的積累知識有一次函數(shù)和反比例函數(shù)。本節(jié)內(nèi)容是對二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),是后續(xù)研究二次函數(shù)圖像的變換的基礎(chǔ)。二次函數(shù)在初中函數(shù)的教學(xué)中有重要地位,它不僅是初中代數(shù)內(nèi)容的引申,也是初中數(shù)學(xué)教學(xué)的重點和難點之一,更為高中學(xué)習(xí)一元二次不等式和圓錐曲線奠定基礎(chǔ)。
    本節(jié)課中的教學(xué)重點利用描點法畫出二次函數(shù)的圖像,建構(gòu)符合學(xué)生認(rèn)知結(jié)構(gòu)的知識體系,教學(xué)難點是運用數(shù)形結(jié)合的思想描述函數(shù),根據(jù)解析式判斷函數(shù)的開口方向、對稱軸、頂點坐標(biāo)。基于以上對教材的認(rèn)識,根據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn),考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,制定如下的教學(xué)目標(biāo)。
    【知識與能力】:
    會用描點法畫出函數(shù)y=ax2的圖象。
    知道拋物線的有關(guān)概念。
    會根據(jù)公式確定拋物線的頂點坐標(biāo)、開口方向、對稱軸以及拋物線與坐標(biāo)軸的交點坐標(biāo)。
    【過程與方法】:
    1、通過二次函數(shù)的教學(xué)進一步體會研究函數(shù)的一般方法,加深對于數(shù)形結(jié)合思想的認(rèn)識。
    2.綜合運用所學(xué)知識、方法去解決數(shù)學(xué)問題,培養(yǎng)學(xué)生提出、分析、解決、歸納問題的數(shù)學(xué)能力,改善學(xué)生的數(shù)學(xué)思維品質(zhì)。
    【情感與態(tài)度目標(biāo)】:
    在數(shù)學(xué)教學(xué)中滲透美的教育,讓學(xué)生感受二次函數(shù)圖像的對2。
    稱之美,激發(fā)學(xué)生的學(xué)習(xí)興趣。認(rèn)識到數(shù)學(xué)源于生活,用于生活的辯證觀點。
    教法選擇與教學(xué)手段:基于本節(jié)課的特點是學(xué)習(xí)新知及其綜合運用,應(yīng)著重采用復(fù)習(xí)與總結(jié)的教學(xué)方法與手段,先從一次函數(shù)、反比例函數(shù)的圖像復(fù)習(xí)入手,通過提問思考、歸納總結(jié)、綜合運用等形式對二次函數(shù)圖像及其性質(zhì)進行有針對性的、系統(tǒng)性的教學(xué)。教學(xué)的模式為學(xué)生思考,討論,教師分析,演示、師生共同總結(jié)歸納。
    利用白板的動態(tài)畫板功能,畫出不同的二次函數(shù)圖像,進行分析比較和歸納。
    學(xué)法指導(dǎo):讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力。
    最后,我來具體談一談本節(jié)課的教學(xué)過程。
    (一)為對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行重構(gòu)做準(zhǔn)備。通過回憶復(fù)習(xí)一次函數(shù)和反比例函數(shù)圖像及其性質(zhì)等相關(guān)知識引入新課。利用描點法畫出二次函數(shù)的圖象,總結(jié)規(guī)律,會根據(jù)公式確定拋物線的頂點坐標(biāo)、開口方向、對稱軸。說出a為何值時y隨x增大而增大(增大而減?。龑?dǎo)學(xué)生掌握用描點法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì)。運用聯(lián)想、概括方法對二次函數(shù)圖像及其性質(zhì)的相關(guān)知識進行梳理,領(lǐng)悟數(shù)形結(jié)合的思想方法,發(fā)展學(xué)生的化歸遷移的數(shù)學(xué)思維,培養(yǎng)學(xué)生的轉(zhuǎn)化能力。
    (二)通過對二次函數(shù)圖像及其性質(zhì)的學(xué)習(xí),采用學(xué)生思考,教師分析,解題小結(jié)三個環(huán)節(jié)構(gòu)成的練習(xí)題講解模式,鞏固二次函數(shù)圖像及其性質(zhì)的基本題目的一般解題方法,并進一步研究二次函數(shù)圖像及其性質(zhì)的應(yīng)用。
    (三)反思概括,方法總結(jié)。
    總結(jié)本節(jié)課的知識點、重點和難點,著重理解二次函數(shù)圖像及其性質(zhì)的相關(guān)知識和基本解題方法,領(lǐng)悟數(shù)形結(jié)合的數(shù)學(xué)思想方法,學(xué)會用化歸思想,解決實際問題。培養(yǎng)學(xué)生由題及法,由法及類的數(shù)學(xué)總結(jié)歸納方法。
    (四)作業(yè)。
    課后通過練習(xí)來鞏固本節(jié)課所復(fù)習(xí)的知識點、重點和難點,強化教學(xué)目標(biāo)。
    各位老師,以上所說只是我預(yù)設(shè)的一種方案,但課堂上是千變?nèi)f化的,會隨著學(xué)生和教師的靈性發(fā)揮而隨機生成的,預(yù)設(shè)效果如何,最終還有待于課堂教學(xué)實踐的檢驗。本說課一定存在諸多不足,懇請各位老師提出寶貴意見,謝謝!
    二次函數(shù)數(shù)學(xué)教案篇十五
    學(xué)習(xí)目標(biāo):
    1、能夠分析和表示變量間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
    2、用三種方式表示變量間二次函數(shù)關(guān)系,從不同側(cè)面對函數(shù)性質(zhì)進行研究。
    3、通過解決用二次函數(shù)所表示的問題,培養(yǎng)學(xué)生的運用能力。
    學(xué)習(xí)重點:
    能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
    能夠根據(jù)二次函數(shù)的不同表示方式,從不同的側(cè)面對函數(shù)性質(zhì)進行研究。
    學(xué)習(xí)難點:
    能夠分析和表示變量之間的二次函數(shù)關(guān)系,并解決用二次函數(shù)所表示的問題。
    學(xué)習(xí)過程:
    一、學(xué)前準(zhǔn)備。
    函數(shù)的三種表示方式,即表格、表達式、圖象法,我們都不陌生,比如在商店的廣告牌上這樣寫著:一種豆子的售價與購買數(shù)量之間的關(guān)系如下:
    x(千克)00。511。522。53。
    y(元)0123456。
    二、探究活動。
    (一)合作探究:
    交流完成:
    (1)一邊長為xcm,則另一邊長為cm,所以面積為:用函數(shù)表達式表示:=________________________________。
    (2)表格表示:
    123456789。
    10—。
    (3)畫出圖象。
    (二)議一議。
    (1)在上述問題中,自變量x的取值范圍是什么?
    (2)當(dāng)x取何值時,長方形的面積最大?它的最大面積是多少?你是怎樣得到的?請你描述一下y隨x的變化而變化的情況。
    點撥:自變量x的取值范圍即是使函數(shù)有意義的自變量的取值范圍。請大家互相交流。
    (1)因為x是邊長,所以x應(yīng)取數(shù),即x0,又另一邊長(10—x)也應(yīng)大于,即10—x0,所以x10,這兩個條件應(yīng)該同時滿足,所以x的取值范圍是。
    (2)當(dāng)x取何值時,長方形的面積最大,就是求自變量取何值時,函數(shù)有最大值,所以要把二次函數(shù)y=—x2+10x化成頂點式。當(dāng)x=—時,函數(shù)y有最大值y最大=。當(dāng)x=時,長方形的面積最大,最大面積是25cm2。
    可以通過觀察圖象得知。也可以代入頂點坐標(biāo)公式中求得。。
    (三)做一做:學(xué)生獨立思考完成p62,p63的函數(shù)表達式,表格,圖象問題。
    (1)用函數(shù)表達式表示:y=________。
    (2)用表格表示:
    (3)用圖象表示:
    三、學(xué)習(xí)體會。
    本節(jié)課你有哪些收獲?你還有哪些疑問?
    四、自我測試。
    1、把長1。6米的鐵絲圍成長方形abcd,設(shè)寬為x(m),面積為y(m2)。則當(dāng)最大時,所取的值是()。
    a0。5b0。4c0。3d0。6。
    2、兩個數(shù)的和為6,這兩個數(shù)的積最大可能達到多少?利用圖象描述乘積與因數(shù)之間的關(guān)系。
    二次函數(shù)數(shù)學(xué)教案篇十六
    (8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))。
    【設(shè)計意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實踐操作中。
    (四)鞏固練習(xí)。
    1.已知一個直角三角形的兩條直角邊長的和是10cm。
    (1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;。
    (2)設(shè)這個直角三角形的面積為scm2,其中一條直角邊為xcm,求s關(guān)。
    于x的函數(shù)關(guān)系式。
    【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
    2.已知正方體的棱長為xcm,它的表面積為scm2,體積為vcm3。
    (1)分別寫出s與x,v與x之間的函數(shù)關(guān)系式子;。
    【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
    (1)分別寫出c關(guān)于r;v關(guān)于r的函數(shù)關(guān)系式;。
    【設(shè)計意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識聯(lián)系起來。
    4.籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
    【設(shè)計意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動腦筋,積極思考,讓學(xué)生能夠跳一跳,夠得到。
    (五)拓展延伸。
    1.已知二次函數(shù)y=ax2+bx+c,當(dāng)x=0時,y=0;x=1時,y=2;x=-1時,y=1.求a、b、c,并寫出函數(shù)解析式.
    【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個鋪墊。
    2.確定下列函數(shù)中k的值。
    【設(shè)計意圖】此題著重復(fù)習(xí)二次函數(shù)的`特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.
    (六)小結(jié)思考:
    本節(jié)課你有哪些收獲?還有什么不清楚的地方?
    【設(shè)計意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補充。
    (七)作業(yè)布置:
    必做題:
    2.在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
    選做題:
    2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象。
    【設(shè)計意圖】作業(yè)中分為必做題與選做題,實施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
    以實現(xiàn)教學(xué)目標(biāo)為前提。
    以現(xiàn)代教育理論為依據(jù)。
    以現(xiàn)代信息技術(shù)為手段。
    貫穿一個原則以學(xué)生為主體的原則。
    突出一個特色充分鼓勵表揚的特色。
    滲透一個意識應(yīng)用數(shù)學(xué)的意識。
    二次函數(shù)數(shù)學(xué)教案篇十七
    在函數(shù)教學(xué)中,我們不僅要在教會函數(shù)知識上下功夫,而且還應(yīng)該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學(xué)思想方法的高度進行函數(shù)教學(xué)。在函數(shù)的教學(xué)中,應(yīng)突出“類比”的思想和“數(shù)形結(jié)合”的思想。
    2.注重“數(shù)學(xué)結(jié)合”的教學(xué)。
    數(shù)形結(jié)合的思想方法是初中數(shù)學(xué)中一種重要的思想方法。數(shù)學(xué)是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學(xué)。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應(yīng)和轉(zhuǎn)化來解決數(shù)學(xué)問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復(fù)雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴(yán)謹(jǐn)與形的直觀之長。
    (1)讓學(xué)生經(jīng)歷繪制函數(shù)圖象的具體過程。
    (2)切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
    (3)注意讓學(xué)生體會研究具體函數(shù)圖象規(guī)律的方法。
    目標(biāo)。
    1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
    2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
    3、掌握一次函數(shù)的性質(zhì).
    過程與方法目標(biāo)。
    2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
    2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    一次函數(shù)的圖象和性質(zhì)。
    由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
    二次函數(shù)數(shù)學(xué)教案篇十八
    教學(xué)目標(biāo):
    知識與技能。
    1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
    2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
    3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。
    過程與方法。
    1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認(rèn)識現(xiàn)實世界的意識和能力。
    2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。
    情感與價值觀。
    1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
    2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
    教學(xué)重點:
    1、掌握函數(shù)概念。
    2、判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
    3、能把實際問題抽象概括為函數(shù)問題。
    教學(xué)難點:
    1、理解函數(shù)的概念。
    2、能把實際問題抽象概括為函數(shù)問題。
    教學(xué)過程設(shè)計:
    一、創(chuàng)設(shè)問題情境,導(dǎo)入新課。
    『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?