八年級數學勾股定理教案(模板19篇)

字號:

    教案可以幫助教師合理安排教學時間和教學資源,提高教學的有序性。為了編寫一份完美的教案,我們首先需要充分了解所要授課內容,明確教學目標和意圖。教案范文的實施效果也是可以借鑒的參考指標。
    八年級數學勾股定理教案篇一
    理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理;利用勾股定理的逆定理判定一個三角形是不是直角三角形。
    【過程與方法】。
    通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。
    【情感態(tài)度與價值觀】。
    通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
    二、教學重難點。
    【重點】。
    【難點】。
    三、教學過程。
    (一)導入新課。
    復習回顧出勾股定理。
    師生活動:學生獨立回憶勾股定理,師生共同分析得出其題設和結論,教師引導指出勾股定理是從形的特殊性得出三邊之間的數量關系。
    追問1:你能把勾股定理的題設與結論交換得到一個新的命題嗎?
    師生活動:師生共同得出新的命題,教師指出其為勾股定理的逆命題。
    (四)小結作業(yè)。
    作業(yè):總結一下判定一個三角形是直角三角形的方法。
    八年級數學勾股定理教案篇二
    在講解勾股定理的結論時,為了讓學生更好地理解和掌握勾股定理的探索過程,先讓學生自己進行探索,然后同學進行討論,最后上臺演示。這樣可以加深學生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復演示幾遍,讓學生自己感覺并最后體會到勾股定理的結論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學效率,培養(yǎng)了學生的解決問題的能力和創(chuàng)新能力。學生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。
    在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學們一看,興趣來了。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養(yǎng)了學生的想像力。
    最后介紹了勾股定理的歷史,并且推薦了一些網站,讓學生下課之后進行查閱、了解。只是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
    八年級數學勾股定理教案篇三
    一、學情分析:
    知識技能基礎:學生在小學已經學過分數的乘除法,掌握了分數的乘除法法則,在學習分式的乘除法法則時可通過與分數的乘除法法則進行類比學習。在前面學習了整式乘法和因式分解,為分式的運算和結果的化簡奠定基礎。
    能力基礎:在過去的數學學習過程中,學生已初步具備觀察、分析、歸納的能力和類比的學習方法。
    二、教學目標:
    知識目標:1、分式的乘除運算法則。
    2、會進行簡單的分式的乘除法運算。
    能力目標:1、類比分數的乘除運算法則,探索分式的乘除運算法則。
    2、能解決一些與分式有關的簡單的實際問題。
    情感目標:1、通過師生討論、交流,培養(yǎng)學生合作探究的意識和能力。
    2、培養(yǎng)學生的創(chuàng)新意識和應用意識。
    三、教學重點、難點。
    重點:分式乘除法的法則及應用。
    難點:分子、分母是多項式的分式的乘除法的運算。
    三、教學過程:
    第一環(huán)節(jié)復習舊知識。
    復習小學學的分數乘除法法則,
    活動目的:
    復習小學學過的分數的乘除法運算,為學習分式乘除法的法則做準備。
    第二環(huán)節(jié)引入新課。
    活動內容。
    你能總結分式乘除法的法則嗎?與同伴交流。
    分式的乘除法的法則:。
    兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母;。
    兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.
    活動目的:
    讓學生觀察運算,通過小組討論交流,并與分數的乘除法的法則類比,讓學生自己總結出分式的乘除法的法則。
    第三環(huán)節(jié)知識運用。
    活動內容。
    例題1:。
    (1)(2)例題2。
    (1)(2)活動目的:
    通過例題講解,使學生會根據法則,理解每一步的算理,從而進行簡單的分式的乘除法運算,并能解決一些與分式有關的簡單的實際問題,增強學生代數推理的能力與應用意識。需要給學生強調的是分式運算的結果通常要化成最簡分式或整式,對于這一點,很多學生在開始學習分式計算時往往沒有注意到結果要化簡。
    第四環(huán)節(jié)走進中考。
    (2012.漳州)第五環(huán)節(jié)課時小結。
    活動內容:
    1.分式的乘除法的法則。
    2.分式運算的結果通常要化成最簡分式或整式.
    3.學會類比的數學方法。
    第六環(huán)節(jié)當堂檢測。
    八年級數學勾股定理教案篇四
    教學。
    目標(含重點、難點)及。
    設置依據教學目標。
    1、了解多面體、直棱柱的有關概念.2、會認直棱柱的側棱、側面、底面.。
    3、了解直棱柱的側棱互相平行且相等,側面是長方形(含正方形)等特征.。
    教學重點與難點。
    教學過程。
    內容與環(huán)節(jié)預設、簡明設計意圖二度備課(即時反思與糾正)。
    一、創(chuàng)設情景,引入新課。
    析:學生很容易回答出更多的答案。
    師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。
    二、合作交流,探求新知。
    1.多面體、棱、頂點概念:
    2.合作交流。
    師:以學習小組為單位,拿出事先準備好的幾何體。
    學生活動:(讓學生從中閉眼摸出某些幾何體,邊摸邊用語言描。
    述其特征。)。
    師:同學們再討論一下,能否把自己的語言轉化為數學語言。
    學生活動:分小組討論。
    說明:真正體現了“以生為本”。讓學生在主動探究中發(fā)現知識,充分發(fā)揮了學生的主體作用和教師的主導作用,課堂氣氛活躍,教師教的輕松,學生學的愉快。
    師:請大家找出與長方體,立方體類似的物體或模型。
    析:舉出實例。(找出區(qū)別)。
    師:(總結)棱柱分為之直棱柱和斜棱柱。(根據其側棱與底面是否垂直)根據底面多邊形的邊數而分為直三棱柱、直四棱柱……直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側面都是長方形含正方形。
    長方體和正方體都是直四棱柱。
    3.反饋鞏固。
    完成“做一做”
    析:由第(3)小題可以得到:
    直棱柱的相鄰兩條側棱互相平行且相等。
    4.學以至用。
    出示例題。(先請學生單獨考慮,再作講解)。
    析:引導學生著重觀察首飾盒的側面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學生養(yǎng)成發(fā)現問題,解決問題的創(chuàng)造性思維習慣)。
    最后完成例題中的“想一想”
    5.鞏固練習(學生練習)。
    完成“課內練習”
    三、小結回顧,反思提高。
    師:我們這節(jié)課的重點是什么?哪些地方比較難學呢?
    合作交流后得到:重點直棱柱的有關概念。
    直棱柱有以下特征:
    有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;
    側面都是長方形含正方形。
    例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。
    板書設計。
    作業(yè)布置或設計作業(yè)本及課時特訓。
    八年級數學勾股定理教案篇五
    我對本節(jié)課的教學過程是這樣設計的:
    1、欣賞圖片,激發(fā)興趣。
    通過欣賞xxxx年在我國北京召開的國際數學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數學成就,引入課題。
    接下來,讓學生欣賞傳說故事:相傳25前,畢達格拉斯在朋友家做客時,發(fā)現朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數量關系。通過故事使學生明白:科學家的偉大成就多數都是在看似平淡無奇的現象中發(fā)現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。
    這樣,一方面激發(fā)學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養(yǎng)。
    2、分析探究,得出猜想。
    通過對地板圖形中的等腰直角三角形到一般直角三角形中三邊關系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。
    在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內交流,然后在全班交流,盡量學習更多的方法。
    3、拼圖證明,得出定理。
    先了解趙爽的證明思路,然后讓學生利用學具自己剪拼,并利用圖形進行證明。
    由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。
    4、反思歸納,總結升華。
    一是讓學生自己回顧總結本節(jié)的收獲。(當然多數為具體的知識和方法)。二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數學素養(yǎng),適時對大家進行思想教育。
    5、練習鞏固。
    主要練習勾股定理的其它證明方法。
    6、作業(yè)設計。
    請你利用網絡資源,收集有關勾股定理的證明方法來進行學習。寫出有關勾股定理知識的小論文。一個月過去了,我已忘記了這一項特殊的作業(yè),但部分學生卻寫出了出乎意料的小論文。
    通過這節(jié)課的兩種不同的上法,以及學生的不同表現與收獲,讓我更深刻地認識到:
    (3)要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會(如布置開放性的學習任務:數學實踐活動、研究學習、寫小論文等)。
    我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現教育的本來目標,而且也一定能讓學生“考出”好的成績;不過,這樣教師一定不會輕松。
    八年級數學勾股定理教案篇六
    今后的教學中:
    (1)立足教材,鉆研教學大綱的要求;試卷中較多題目是根據課本的題目改編而來,從學生的考試情況來看課本的題目掌握不理想,這說明在平時的教學中對書本的重視不夠,過多地追求課外題目的訓練,但忽略學生實實在在地理解課本知識,提高思維能力。課堂上盡量把課堂還給學生,讓學生積極參與到課堂中,多機會給學生展示,表演,講題,把思路和方法講出來,使學生更清淅地理解題目,提升自己對數學的理解。多點讓學生獨立思考,發(fā)現問題,解決問題。
    (2)注重培養(yǎng)學生良好的學習習慣。
    (3)加強例題示范教學,培養(yǎng)學生解題書寫表達。
    (4)多一些數學方法、數學思想的滲透,少一些知識的生搬硬套。
    (5)在數學教學過程中,課堂上系統(tǒng)地對數學知識進行整理、歸納、溝通知識間的內在聯系,形成縱向、橫向知識鏈,從知識的聯系和整體上把握基礎知識。
    (6)針對學生的兩極分化,加強課外作業(yè)布置的針對性。讓每個學生課外有適合的作業(yè)做,對不同層次的學生布置不同難度的作業(yè),提高課外學習的效率,減輕學生課外作業(yè)的負擔。正確看待學生學習數學的差異,克服兩極分化。數學課堂上多考慮、關照中下生,讓他們在數學課堂上聽得進,肯用手。
    (7)教師在平時的課堂教學中必須致力于改變教師的教學行為和學生的學習方式,加強學法指導,提高學生的閱讀能力,平時培養(yǎng)學生的自學能力,使學生實實在在地理解課本知識,提高思維能力。平時要關注課本、關注運算能力、關注教學中的薄弱環(huán)節(jié)。
    八年級數學勾股定理教案篇七
    知識與技能:
    1、了解勾股定理的文化背景,體驗勾股定理的探索過程,了解利用拼圖驗證勾股定理的方法。
    2、了解勾股定理的內容。
    3、能利用已知兩邊求直角三角形另一邊的長。
    過程與方法:
    1、通過拼圖活動,體驗數學思維的嚴謹性,發(fā)展形象思維。
    2、在探索活動中,學會與人合作,并能與他人交流思維的過程和探索的結果。
    情感與態(tài)度:
    1、通過對勾股定理歷史的了解,對比介紹我國古代和西方數學家關于勾股定理的研究,激發(fā)學生熱愛祖國悠久文化的情感,激勵學生奮發(fā)學習。
    2、在探索勾股定理的過程中,體驗獲得結論的快樂,鍛煉克服困難的勇氣,培養(yǎng)合作意識和探索精神。
    二教學重、難點。
    重點:探索和證明勾股定理難點:用拼圖方法證明勾股定理。
    三、學情分析。
    學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。
    四、教學策略。
    本節(jié)課采用探究發(fā)現式教學,由淺入深,由特殊到一般地提出問題,鼓勵學生采用觀察分析、自主探索、合作交流的學習方法,讓學生經歷數學知識的形成與應用過程。
    五、教學過程。
    教學環(huán)節(jié)。
    教學內容。
    活動和意圖。
    創(chuàng)設情境導入新課。
    以“航天員在太空中遇到外星人時,用什么語言進行溝通”導入新課,讓孩子們盡情發(fā)揮他們的想象.而華羅庚建議可以用勾股定理的圖形進行和外星人溝通,為什么呢?通過一段vcr說明原因。
    [設計意圖]激發(fā)學生對勾股定理的興趣,從而較自然的引入課題。
    新知探究。
    畢達哥拉斯是古希臘著名的數學家。相傳在2500年以前,他在朋友家做客時,發(fā)現朋友家用地磚鋪成的地面反映了直角三角形的三邊的某種數量關系。
    (1)同學們,請你也來觀察下圖中的地面,看看能發(fā)現些什么?
    (2)你能找出圖18.1-1中正方形1、2、3面積之間的關系嗎?
    通過講述故事來進一步激發(fā)學生學習興趣,使學生在不知不覺中進入學習的最佳狀態(tài)。
    如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
    回答以下內容:
    (1)想一想,怎樣利用小方格計算正方形a、b、c面積?
    (2)怎樣求出正方形面積c?
    (3)觀察所得的各組數據,你有什么發(fā)現?
    (4)將正方形a,b,c分別移開,你能發(fā)現直角三角形邊長a,b,c有何數量關系?
    引導學生將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.
    問題是思維的起點”,通過層層設問,引導學生發(fā)現新知。
    探究交流歸納。
    拼圖驗證加深理解。
    如圖,每個小方格代表1個單位面積,我們分別以a,b,c三邊為邊長作正方形。
    回答以下內容:
    (1)想一想,怎樣利用小方格計算正方形p、q、r的面積?
    (2)怎樣求出正方形面積r?
    (3)觀察所得的各組數據,你有什么發(fā)現?
    (4)將正方形p,q,r分別移開,你能發(fā)現直角三角形邊長a,b,c有何數量關系?
    由以上兩問題可得猜想:
    直角三角形兩直角邊的平方和等于斜邊的平方。
    而猜想要通過證明才能成為定理。
    活動探究:
    (1)讓學生利用學具進行拼圖。
    (2)多媒體課件展示拼圖過程及證明過程理解數學的嚴密性。
    從特殊的等腰直角三角形過渡到一般的直角三角形。
    滲透從特殊到一般的數學思想.為學生提供參與數學活動的時間和空間,發(fā)揮學生的主體作用;培養(yǎng)學生的類比遷移能力及探索問題的能力,使學生在相互欣賞、爭辯、互助中得到提高。
    通過這些實際操作,學生進行一步加深對數形結合的理解,拼圖也會產生感性認識,也為論證勾股定理做好準備。
    利用分組討論,加強合作意識。
    1、經歷所拼圖形與多媒體展示圖形的聯系與區(qū)別。
    2、加強數學嚴密教育,從而更好地理解代數與圖形相結合。
    應用新知解決問題。
    在應用新知這個環(huán)節(jié),我把以往的單純求解邊長之類的題目換成了幾個運用勾股定理來解決問題的古算題。
    把生活中的實物抽象成幾何圖形,讓學生了解豐富變幻的圖形世界,培養(yǎng)了學生抽象思維能力,特別注重培養(yǎng)學生認識事物,探索問題,解決實際的能力。
    回顧小結整體感知。
    在最后的小結中,不但對知識進行小結更對方法要進行小節(jié),還可向學生介紹了美麗的圖案畢達哥拉斯樹,讓學生切身感受到其實數學與生活是緊密聯系的,進一步發(fā)現數學的另一種美。
    學生通過對學習過程的小結,領會其中的數學思想方法;通過梳理所學內容,形成完整知識結構,培養(yǎng)歸納概括能力。。
    布置作業(yè)鞏固加深。
    必做題:
    1.完成課本習題1,2,3題。
    選做題:
    針對學生認知的差異設計了有層次的作業(yè)題,既使學生鞏固知識,形成技能,讓感興趣的學生課后探索,感受數學證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化。
    八年級數學勾股定理教案篇八
    一、教材分析:
    《正方形》這節(jié)課是九年義務教育人教版數學教材八年級下冊第十九章第二節(jié)的內容??v觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉等平面幾何知識,并且具備有初步的觀察、操作等活動經驗的基礎上出現的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點是正方形的概念和性質,難點是理解正方形與平行四邊形、矩形、菱形之間的內在聯系。根據大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。
    (一)知識目標:
    1、要求學生掌握正方形的概念及性質;
    2、能正確運用正方形的性質進行簡單的計算、推理、論證;
    (二)能力目標:
    1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結等能力;
    2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;
    (三)情感目標:
    1、讓學生樹立科學、嚴謹、理論聯系實際的良好學風;
    2、培養(yǎng)學生互相幫助、團結協(xié)作、相互討論的團隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。
    二、學生分析:
    該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。
    三、教法分析:
    針對本節(jié)課的特點,采用"實踐--觀察--總結歸納--運用"為主線的教學方法。
    通過學生動手,采取幾種不同的方法構造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結出正方形性質定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質理解、鞏固加以升華。
    四、學法分析:
    本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結得出結論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。
    五、教學程序:
    第一環(huán)節(jié):相關知識回顧。
    以提問的形式復習的平行四邊形、矩形、菱形的定義及性質之后,引導學生發(fā)現矩形、菱形的實質是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結論。
    第二環(huán)節(jié):新課講解通過學生們的發(fā)現引出課題“正方形”
    1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現,正方形既是特殊的菱形,又是特殊的矩形,從而總結出正方形的性質。
    2、正方形的性質。
    定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質的學習,之后是進行例題講解。
    4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質的進一步理解,并考察學生掌握的情況。
    第二部分是選擇題,通過體現生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質,使他們充分認識到數學實質是來源于生活并要服務于生活。
    5、課堂小結:此環(huán)節(jié)我是通過圖框的形式小結正方形和前階段所學特殊四邊形之間的內在聯系,通過對所學幾種四邊形內在聯系體現正方形完美的本質,渲染學生們應追求象正方形一樣方正的品質,從而要努力學習以豐富的知識充實自己,達到理想中的完美。
    6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關正方形的知識。
    八年級數學勾股定理教案篇九
    (一)、知識與技能:
    (1)使學生了解因式分解的意義,理解因式分解的概念。
    (2)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
    (二)、過程與方法:
    (1)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。
    (2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。
    (3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。
    (三)、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。
    二、教學重點和難點。
    重點:因式分解的概念及提公因式法。
    難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯系。
    三、教學過程。
    教學環(huán)節(jié):
    活動1:復習引入。
    看誰算得快:用簡便方法計算:
    (1)7/9×13-7/9×6+7/9×2=;
    (2)-2.67×132+25×2.67+7×2.67=;
    (3)992–1=。
    設計意圖:
    注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
    活動2:導入課題。
    p165的探究(略);
    2.看誰想得快:993–99能被哪些數整除?你是怎么得出來的?
    設計意圖:
    引導學生把這個式子分解成幾個數的積的形式,繼續(xù)強化學生對因數分解的理解,為學生類比因式分解提供必要的精神準備。
    活動3:探究新知。
    看誰算得準:
    計算下列式子:
    (1)3x(x-1)=;
    (2)(a+b+c)=;
    (3)(+4)(-4)=;
    (4)(-3)2=;
    (5)a(a+1)(a-1)=;
    根據上面的算式填空:
    (1)a+b+c=;
    (2)3x2-3x=;
    (3)2-16=;
    (4)a3-a=;
    (5)2-6+9=。
    在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。
    活動4:歸納、得出新知。
    比較以下兩種運算的聯系與區(qū)別:
    a(a+1)(a-1)=a3-a。
    a3-a=a(a+1)(a-1)。
    在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
    八年級數學勾股定理教案篇十
    1.了解方差的定義和計算公式。
    2.理解方差概念的產生和形成的過程。
    3.會用方差計算公式來比較兩組數據的波動大小。
    1.重點:方差產生的必要性和應用方差公式解決實際問題。
    2.難點:理解方差公式。
    問題農科院計劃為某地選擇合適的甜玉米種子.選擇種子時,甜玉米的產量和產量的穩(wěn)定性是農科院所關心的問題.為了解甲、乙兩種甜玉米種子的相關情況,農科院各用10塊自然條件相同的試驗田進行試驗,得到各試驗田每公頃的產量(單位:t)如表所示。
    根據這些數據估計,農科院應該選擇哪種甜玉米種子呢?
    來衡量這組數據的波動大小,并把它叫做這組數據的方差(variance),記作。
    意義:用來衡量一批數據的波動大小。
    在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩(wěn)定。
    (1)研究離散程度可用。
    (2)方差應用更廣泛衡量一組數據的.波動大小。
    (3)方差主要應用在平均數相等或接近時。
    (4)方差大波動大,方差小波動小,一般選波動小的。
    例題:在一次芭蕾舞比賽中,甲乙兩個芭蕾舞團都表演了舞劇《天鵝湖》,參加表演的女演員的身高(單位:cm)分別是:
    甲163164164165165166166167。
    乙163165165166166167168168。
    哪個芭蕾舞團的女演員的身高比較整齊?
    1.已知一組數據為2、0、-1、3、-4,則這組數據的方差為。
    2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數如下:
    甲:7、8、6、8、6、5、9、10、7、4。
    乙:9、5、7、8、7、6、8、6、7、7。
    經過計算,兩人射擊環(huán)數的平均數相同,但s,所以確定去參加比賽。
    3.甲、乙兩臺機床生產同種零件,10天出的次品分別是()。
    甲:0、1、0、2、2、0、3、1、2、4。
    乙:2、3、1、2、0、2、1、1、2、1。
    分別計算出兩個樣本的平均數和方差,根據你的計算判斷哪臺機床的性能較好?
    八年級數學勾股定理教案篇十一
    一、教學目的:
    1、掌握菱形概念,知道菱形與平行四邊形的關系;
    3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力;
    4、根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想;
    二、重點、難點。
    1、教學重點:菱形的性質1、2;
    2、教學難點:菱形的性質及菱形知識的綜合應用;
    三、例題的意圖分析。
    四、課堂引入。
    1、(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
    《18、2、2菱形》課時練習含答案;
    5、在同一平面內,用兩個邊長為a的等邊三角形紙片(紙片不能裁剪)可以拼成的四邊形是()。
    a、矩形b、菱形c、正方形d、梯形。
    答案:b。
    知識點:等邊三角形的性質;菱形的判定。
    解析:
    分析:此題主要考查了等邊三角形的性質,菱形的定義、
    6、用兩個邊長為a的等邊三角形紙片拼成的四邊形是()。
    a、等腰梯形b、正方形c、矩形d、菱形。
    答案:d。
    知識點:等邊三角形的性質;菱形的判定。
    解析:
    分析:本題利用了菱形的概念:四邊相等的四邊形是菱形、
    《菱形的性質與判定》練習題。
    一選擇題:
    1、下列四邊形中不一定為菱形的是()。
    a、對角線相等的平行四邊形b、每條對角線平分一組對角的四邊形。
    c、對角線互相垂直的平行四邊形d、用兩個全等的等邊三角形拼成的四邊形。
    2、下列說法中正確的是()。
    a、四邊相等的四邊形是菱形。
    b、一組對邊相等,另一組對邊平行的四邊形是菱形。
    c、對角線互相垂直的四邊形是菱形。
    d、對角線互相平分的四邊形是菱形。
    3、若順次連接四邊形abcd各邊的中點所得四邊形是菱形,則四邊形abcd一定是()。
    a、菱形b、對角線互相垂直的四邊形c、矩形d、對角線相等的四邊形。
    八年級數學勾股定理教案篇十二
    活動目標:
    1、認知目標:理解二等分的含義,學習二等分的方法。
    2、操作目標:通過操作探索出不同的方法給圖形二等分,體驗等分中的包含關系、等量關系。
    3、能力目標:探索對不同圖形進行二等分。
    發(fā)散點:
    運用不同的等分線對圖形進行等分。
    活動準備:
    正方形彩色紙片若干、多項操作學具、棋盤若干,記錄單,剪刀,鉛筆、手偶。
    活動過程:
    (一)等分圖形。
    1、以情景引入。結合大班幼兒的年齡特點,創(chuàng)設了這個問題情境,吸引幼兒參與活動的同時,也能夠更加生活化地展現生活的數學,更加易于幼兒的理解。
    (1)出示手偶:“你們看誰來了?”幼兒:“是平平姐姐。”
    (2)以手偶表演,教師問:“平平姐姐今天怎么不高興了,有什么煩惱嗎?”平平(教師扮):“今天早上吃早點,我發(fā)現只有一片面包片了,可是我要和盈盈一起來分享,小朋友,你們快幫我想想我該怎么辦呢?”
    (3)師:“誰想到好辦法了?”幼兒:“把面包片分成兩份不就行了嗎!”
    (4)平平(教師扮):“可是分完了會有大有小,怎么辦?”
    (5)教師出示正方形的彩色紙片,提問:“面包片是什么形狀的?”幼兒:“正方形的。”教師:“那我們就用正方形的紙來代替面包片幫平平姐姐來分成兩塊一樣大的!”
    2、提供幼兒正方形紙和剪刀,請幼兒操作。提供給幼兒嘗試的機會,驗證自己的想法,并可以不受限制地嘗試各種二等分的方法,用剪刀將其剪開的方法便于幼兒驗證兩部分是否相等。
    3、小結:
    (1)師:“你把正方形分成了幾塊什么形狀,你是怎樣分的?”
    (2)師:“有幾種分的方法”(對角和對邊折)。
    (3)師:“怎樣證明這兩塊一樣大呢?”(比一比)。
    (4)師:“怎樣分才能一樣大呢?”
    (5)教師于幼兒共同總結:只要找到了中心線,就可以將一個分成兩個一樣大的。進一步引導幼兒掌握二等分的關鍵要點。
    (二)運用學具進一步探索。只用紙來等分,以現階段幼兒的年齡特點所致,比較精確的二等分方法只有對角和對邊折兩種,運用學具,抓住學具有洞洞點的特點,可以讓幼兒進一步嘗試以各種折線為中心線進行正方形的二等分,并且能夠保證精確性。促進幼兒發(fā)散性思維的發(fā)展,是幼兒在明確等分要求的.基礎上自由地嘗試二等分的多種方法。此環(huán)節(jié)更加注重幼兒的創(chuàng)造性和獨特性,同時滲透了做一件事情可以有多種方法解決的道理。
    1、師:“你們用了兩種辦法,還有沒有更多的方法呢?”
    2、請幼兒運用學具進行嘗試,并準確找到不同形狀的中心線,探索檢驗的方法。檢驗能夠證明所分的兩部分是一樣大的,檢驗的方法并不是單一的,為幼兒投放了與一塊學具板相同的作業(yè)單的目的就是能夠在記錄等分方法的同時,還可以剪開記錄后的作業(yè)單進行比較證明。除此方法還可以比較等分線兩側的洞洞子每排數量是否相同等方法。
    3、幼兒分組操作,教師針對尋找不同的中心線以及檢查的辦法進行指導,并引導幼兒記錄、檢驗。
    4、小結:展示幼兒作業(yè)單,誰來說一說你用了什么方法進行了等分,你是怎樣指導它們是一樣大的。請幼兒將有創(chuàng)新的分法介紹給其他的幼兒,并展示不同檢驗相等的方法。讓幼兒能夠有交流展示的機會,并且結合大班幼兒集體學習的特點,鼓勵幼兒創(chuàng)新。
    八年級數學勾股定理教案篇十三
    《正方形》這節(jié)課是九年義務教育人教版數學教材八年級下冊第十九章第二節(jié)的內容??v觀整個初中教材,《正方形》是在學生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關知識及簡單圖形的平移和旋轉等平面幾何知識,并且具備有初步的觀察、操作等活動經驗的基礎上出現的。既是前面所學知識的延續(xù),又是對平行四邊形、菱形、矩形進行綜合的不可缺少的重要環(huán)節(jié)。
    本節(jié)課的重點是正方形的概念和性質,難點是理解正方形與平行四邊形、矩形、菱形之間的內在聯系。根據大綱要求,本節(jié)課制定了知識、能力、情感三方面的目標。
    (一)知識目標:
    1、要求學生掌握正方形的概念及性質;
    2、能正確運用正方形的性質進行簡單的計算、推理、論證;
    (二)能力目標:
    1、通過本節(jié)課培養(yǎng)學生觀察、動手、探究、分析、歸納、總結等能力;
    2、發(fā)展學生合情推理意識,主動探究的習慣,逐步掌握說理的基本方法;
    (三)情感目標:
    1、讓學生樹立科學、嚴謹、理論聯系實際的良好學風;
    2、培養(yǎng)學生互相幫助、團結協(xié)作、相互討論的團隊精神;
    3、通過正方形圖形的完美性,培養(yǎng)學生品格的完美性。
    該段學生具有一定的獨立思考和探究的能力,但語言表達能力方面稍有欠缺,所以在本節(jié)課的教學過程中,特意設計了讓學生自己組織語言培養(yǎng)說理能力,讓學生們能逐步提高。
    針對本節(jié)課的特點,采用"實踐--觀察--總結歸納--運用"為主線的教學方法。
    通過學生動手,采取幾種不同的方法構造出正方形,然后引導學生探究正方形的概念。通過觀察、討論、歸納、總結出正方形性質定理,最后以課堂練習加以鞏固定理,并通過一道拔高題對定義、性質理解、鞏固加以升華。
    本節(jié)課重點是從培養(yǎng)學生探索精神和分析歸納總結能力為出發(fā)點,著重指導學生動手、觀察、思考、分析、總結得出結論。在小組討論中通過互相學習,讓學生體驗合作學習的樂趣。
    第一環(huán)節(jié):相關知識回顧。
    以提問的形式復習平行四邊形、矩形、菱形的定義及性質之后,引導學生發(fā)現矩形、菱形的實質是由平行四邊形角度、邊長的變化得到的。并啟發(fā)學生考慮,若這兩種變化同時發(fā)生在平行四邊形上,則會得到什么樣的圖形?讓學生們通過手上的學具演示以上兩種變化,從而得出結論。
    第二環(huán)節(jié):新課講解通過學生們的發(fā)現引出課題“正方形”
    1、正方形的定義:引導學生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請同學們舉手發(fā)言,歸納總結出正方形定義:一組鄰邊相等,且一個角是直角的平行四邊形是正方形。再由此定義啟發(fā)學生們發(fā)現正方形的三個必要條件,并且由這三個條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個角是直角可得到正方形的另兩個定義:一個角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內容借助課件演示其變化過程,進一步啟發(fā)學生發(fā)現,正方形既是特殊的菱形,又是特殊的矩形,從而總結出正方形的性質。
    2、正方形的性質定理1:正方形的四個角都是直角,四條邊都相等;
    定理2:正方形的兩條對角線相等,并且互相垂直、平分,每條對角線平分一組對角。
    以上是對正方形定義和性質的學習,之后是進行例題講解。
    4、課堂練習:第一部分采用三道有關正方形的周長、面積、對角線、邊長計算的填空題,目的是對正方形性質的進一步理解,并考察學生掌握的情況。
    第二部分是選擇題,通過體現生活中實際問題,來提升學生所學的知識,并加以綜合練習,提高他們的綜合素質,使他們充分認識到數學實質是來源于生活并要服務于生活。
    5、課堂小結:此環(huán)節(jié)我是通過圖框的形式小結正方形和前階段所學特殊四邊形之間的內在聯系,通過對所學幾種四邊形內在聯系體現正方形完美的本質,渲染學生們應追求象正方形一樣方正的品質,從而要努力學習以豐富的知識充實自己,達到理想中的完美。
    6、作業(yè)設計:作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學們進一步鞏固有關正方形的知識。
    八年級數學勾股定理教案篇十四
    本節(jié)內容的重點是線段垂直平分線定理及其逆定理.定理反映了線段垂直平分線的性質,是證明兩條線段相等的依據;逆定理反映了線段垂直平分線的判定,是證明某點在某條直線上及一條直線是已知線段的垂直平分線的依據.
    本節(jié)內容的難點是定理及逆定理的關系.垂直平分線定理和其逆定理,題設與結論正好相反.學生在應用它們的時候,容易混淆,幫助學生認識定理及其逆定理的區(qū)別,這是本節(jié)的難點.
    本節(jié)課教學模式主要采用“學生主體性學習”的教學模式.提出問題讓學生想,設計問題讓學生做,錯誤原因讓學生說,方法與規(guī)律讓學生歸納.教師的作用在于組織、點撥、引導,促進學生主動探索,積極思考,大膽想象,總結規(guī)律,充分發(fā)揮學生的主體作用,讓學生真正成為教學活動的主人.具體說明如下:
    學生前面,學習過線段垂直平分線的概念,這樣由復習概念入手,順其自然提出問題:在垂直平分線上任取一點p,它到線段兩端的距離有何關系?學生會很容易得出“相等”.然后學生完成證明,找一名學生的證明過程,進行投影總結.最后,由學生將上述問題,用文字的形式進行歸納,即得線段垂直平分線定理.這樣讓學生親自動手實踐,積極參與發(fā)現,激發(fā)了學生的認識沖突,使學生克服思維和探求的惰性,獲得鍛煉機會,對定理的產生過程,真正做到心領神會.
    線段垂直平分線的定理及逆定理的證明都比較簡單,學生學習一般沒有什么困難,這一節(jié)的難點仍然的定理及逆定理的關系,為了很好的突破這一難點,教學時采用與角的平分線的性質定理和逆定理對照,類比的方法進行教學,使學生進一步認識這兩個定理的區(qū)別和聯系.
    八年級數學勾股定理教案篇十五
    可化為一元二次方程的分式方程的解法.。
    教學難點:解分式方程,學生不容易理解為什么必須進行檢驗.。
    一、新課引入:
    1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
    2.解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?
    3、產生增根的原因是什么?.。
    二、新課講解:
    八年級數學勾股定理教案篇十六
    教學目標:
    1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。
    2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養(yǎng)學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。
    3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發(fā)展學生的空間觀念,增強審美意識,培養(yǎng)學生積極進取的生活態(tài)度。
    重點與難點:
    重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。
    難點:分析典型圖案的設計意圖。
    疑點:在設計的圖案中清晰地表現自己的設計意圖。
    教具學具準備:
    提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。
    教學過程設計:
    1、情境導入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)。
    明確在欣賞了圖案后,簡單地復習旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。
    2、課本。
    1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。
    評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。
    評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。
    (二)課內練習。
    (1)以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。
    (2)利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。
    (三)議一議。
    生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。
    (四)課時小結。
    本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。
    通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)。
    進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。
    八年級數學勾股定理教案篇十七
    教學目標:
    1、知識目標:
    (1)掌握解分式方程的步驟。
    (2)理解解分式方程時驗根的必要性。
    2、能力目標:
    會按照解分式方程的步驟解分式方程。
    3、情感與價值觀:
    (1)培養(yǎng)學生自覺反思求解過程和自覺檢驗的良好習慣,培養(yǎng)嚴謹的治學態(tài)度。
    (2)運用“轉化”的思想,將分式方程轉化為整式方程,從而獲得成就感和學習數學的自信。
    老師引導學生自主探索分式方程的解法,將分式方程轉化為整式方程,在解題中親身體驗“轉化”思想。弄清了“轉化”的方向,也就明白了解分式方程的步驟,解題思路自然清晰,能力隨之形成。
    重點:
    1、探索解分式方程的步驟,熟練掌握分式方程的解法。
    2、體會解分式方程驗根的必要性。
    難點:如何將分式方程轉化為整式方程;體會分式方程驗根的必要性。
    學情與教材分析:我所任教的學生大多頭腦聰明,在老師適當的引導下,有一定的探求新知識的能力。但基礎不夠扎實,如計算容易出錯、考慮問題不夠嚴謹等。另外在學習本節(jié)課之前,已經學習過《解一元一次方程》。對于《解一元一次方程》大部分同學已經掌握,但由于是在七年級學習,有一定的時間間隔,部分同學可能已經遺忘,給上本節(jié)課留下少許的困難。但估計絕大部分同學稍加回憶,應能接近以前的水平。本節(jié)課的內容處在《分式》這章的后半部。《分式》這章內容安排如下的:首先介紹分式及分式的基本性質,接著進行分式的加、減、乘、除的運算,之后是根據實際問題列出分式方程(但未求解)。緊跟其后的是本節(jié)課內容――解分式方程,最后一節(jié)是根據實際問題列出分式方程并求解。由此可見《解分式方程》涵蓋了本章前面的內容,是本章知識的綜合與提高。學習好這部分內容,不但掌握了初二階段有關分式方程的內容,也為初三學習可化為一元二次的分式方程打下了良好的基礎。通過將分式方程轉化為整式方程(一元一次方程)滲透了一種重要的數學思想――轉化思想,即將原問題進行變形,使之轉化為我們所熟悉的或已解決的或易于解決的問題。
    八年級數學勾股定理教案篇十八
    1、了解方差的定義和計算公式。
    2、理解方差概念產生和形成過程。
    3、會用方差計算公式比較兩組數據波動大小。
    重點:掌握方差產生的必要性和應用方差公式解決實際問題。
    難點:理解方差公式。
    (一)知識詳解:
    方差:設有n個數據,各數據與它們的平均數的差的平方分別為。
    用它們的平均數表示這組數據的方差,即。
    給力小貼士:方差越小說明這組數據越穩(wěn)定,波動性越低。
    (二)自主檢測小練習:
    1、已知一組數據為2.0、-1.3、-4,則這組數據的方差為。
    2、甲、乙兩組數據如下:
    甲組:1091181213107;
    乙組:7891011121112。
    分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小。
    引例:問題:從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下(單位:cm):
    甲:9.10.10.13.7.13.10.8.11.8;
    乙:8.13.12.11.10.12.7.7.10.10;
    問:(1)哪種農作物的苗長較高(可以計算它們的平均數:=)?
    (2)哪種農作物的苗長較整齊?(可以計算它們的極差,你可以發(fā)現)。
    歸納:方差:設有n個數據,各數據與它們的平均數的差的平方分別為。
    用它們的平均數表示這組數據的方差,即用來表示。
    (一)例題講解:
    金志強1013161412。
    提示:先求平均數,然后使用公式計算方差。
    (二)小試身手。
    1、甲、乙兩名學生在相同條件下各射擊靶10次,命中的環(huán)數如下:
    甲:7.8.6.8.6.5.9.10.7.4。
    乙:9.5.7.8.7.6.8.6.7.7。
    經過計算,兩人射擊環(huán)數的平均數是,但s=,s=,則ss,所以確定去參加比賽。
    1、求下列數據的眾數:
    (1)3.2.5.3.1.2.3(2)5.2.1.5.3.5.2.2。
    方差公式:
    提示:方差越小,說明這組數據越集中。波動性越小。
    每課一首詩:求方差,有公式;先平均,再求差;求平方,再平均;所得數,是方差。
    1、小爽和小兵在10次百米跑步練習中的成績如下表所示:(單位:秒)。
    如果根據這些成績選拔一人參加比賽,你會選誰呢?
    必做題:教材141頁練習1.2;選做題:練習冊對應部分習題。
    寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!
    八年級數學勾股定理教案篇十九
    如果三角形三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形,其中c為斜邊。
    說明:
    (2)定理中a,b,c及a2+b2=c2只是一種表現形式,不可認為是唯一的,如若三角形三邊長a,b,c滿足a2+b2=c,那么以a,b,c為三邊的三角形是直角三角形,但此時的斜邊是b。
    (1)確定最大邊;
    (2)算出最大邊的平方與另兩邊的平方和;
    (3)比較最大邊的平方與別兩邊的平方和是否相等,若相等,則說明是直角三角形。
    能夠構成直角三角形的三邊長的三個正整數稱為勾股數。
    由直角三角形三邊為邊長所構成的三個正方形滿足“兩個較小面積和等于較大面積”。
    解決圓柱側面兩點間的距離問題、航海問題,折疊問題、梯子下滑問題等,常直接間接運用勾股定理及其逆定理的應用。
    有了上文梳理的勾股定理的逆定理知識點整理,相信大家對考試充滿了信心,同時預祝大家考試取得好成績。