三角形的內(nèi)角說課稿(優(yōu)秀20篇)

字號:

    總結(jié)是了解自己在某個領域的成長和進步的重要方式。借鑒他人的總結(jié)經(jīng)驗,可以提高自己的總結(jié)寫作技巧。如果您需要了解不同領域的總結(jié)寫作技巧,可以參考下面的范文。
    三角形的內(nèi)角說課稿篇一
    大家好!
    今天我說課的題目是《三角形的內(nèi)角》,我將從如下方面作出說明。
    (一)教學內(nèi)容的地位
    本節(jié)課是在研究了三角形的有關概念和學生在對 “三角形的內(nèi)角和等于1800 ”有感性認識的基礎上,對該定理進行推理論證。它是進一步研究三角形及其它圖形的重要基礎,更是研究 多邊形問題轉(zhuǎn)化的關鍵點;此外,在它的證明中第一次引入了輔助線,而輔助線又是解決幾何問題的一種重要工具,因此本節(jié)是本章的一個重點。
    (二)教學重點、難點:
    三角形內(nèi)角和等于180度,是三角形的一條重要性質(zhì),有著廣泛的應用。雖然學生在小學已經(jīng)知道這一結(jié)論,但沒有從理論的角度進行推理論證,因此三角形內(nèi)角和等于180度的證明及應用是本節(jié)課的重點。
    另外,由于學生還沒有正 式學習幾何證明,而三角形內(nèi)角和等于180度的證明難度又較大,因此證明三角形內(nèi)角和等于180度也是本節(jié)課的難點。
    突破難點的關鍵:讓學生通過動手實踐獲得感性認識,將實物圖形抽象轉(zhuǎn)化為幾何圖形得出所需輔助線。
    基于以上分析和數(shù)學課程標準的要求,我制定了本節(jié)課的教學目標,下面我從以下三個方面進行說明。
    (一)知識與技能目標:
    會用平行線的性質(zhì)與平角的定義證明三角形的內(nèi)角和等于1800,能用三角形內(nèi)角和等于180度進行角度計算和簡單推理,并初步學會利用輔助線解決問題,體會轉(zhuǎn)化思想在解決問題中的應用。
    (二)過程與方法目標:
    經(jīng)歷拼圖試驗、合作交流、推理論證的過程,體現(xiàn)在“做中學”,發(fā)展學生的合 情推理能力和邏輯思維能力。
    (三)情感、態(tài)度價值觀目標:
    通過操作、交流、探究、表述、推理等活動培養(yǎng)學生的合作精神,體會數(shù)學知識內(nèi)在的聯(lián)系與嚴謹性,鼓勵學生大膽質(zhì)疑,敢于提出不同見解,培養(yǎng)學生良好的學習習慣。
    七年級學生的特點是模仿力強,喜歡動手,思維活躍,但思維往往依賴于直觀具體的形象,而學生在小學已通過量、拼、折等實驗的方法得出了三角形內(nèi)角和等于180度這一結(jié)論,只是沒有從理論的角度去研究它,學生現(xiàn)在已具備了簡單說理的能力,同時已學習了平行線的性質(zhì)和判定及平角的定義,這就為學生自主探究,動手實驗,討論交流、嘗試證明做好了準備。
    根據(jù)新課程標準的要求,學習活動應體現(xiàn)學生身心發(fā)展特點,應有利于引導學生主動探索和發(fā)現(xiàn),因此,我采用了動手操作— 觀察實驗—猜想論證的探究式教學方法,整個探究學習的過程充滿了師生之間,生生之間的交流和互動,體 現(xiàn)了教師是教學活動的組織者、引導者、合作 者,學生才是學習的主體。并教給學生通過動手實驗、觀察思考、抽象概括從而獲得知識的學習方法,培養(yǎng)他們利用舊知識獲取新知識的能力。
    我結(jié)合七年級學生的年齡特點,采用了“1.情景激趣 引出課題”的環(huán)節(jié)引入課題,這樣可以激發(fā)學生學習興趣和求知欲,為探索新知識創(chuàng)造一個最佳的心理和認知環(huán)境。讓學生說明三角形內(nèi)角和是180度,是本節(jié)課的重點、難點,為此我設計了“2.自主探索 動手實驗 ”“3.討論交流 嘗試證明”以下兩個環(huán)節(jié)。 定理的掌握必須要有訓練作為依托,因此我設計了“4.應用新知 鞏固提高。為了培養(yǎng)學生學習數(shù)學的興趣,在競爭中體驗成功的快樂。我設計了“5. ‘漁技’大比拼”這4道習題既含蓋了方程的思想又包括了整體的思想,還讓學生提前感受到了反證法的方法,有利于學生掌握重要的數(shù)學思想方法。回顧使人記憶深刻,反思促人進步。在“6.暢談體會 課外延伸 ”這一環(huán)節(jié)我選擇從三個方面,讓學生進行 回顧反思和作業(yè)補充。我認為學生要從一堂課中得到收獲不僅僅是知識上的,更重要的是讓他們通過這種方式,獲取比知 識本身更重要的東西,那就是數(shù)學方法,數(shù)學能力以及對數(shù)學的積極情感。
    本節(jié)課的設計從學生已有的知識經(jīng)驗出發(fā),遵循學生的認知規(guī)律,將實物拼圖與說理論證有機結(jié)合,在動手操作,合情推理的基礎上進行嚴密的推理論證,使學生對知識的認識從感性逐步上升到理性。以問題為載體,在探究解決問題策略的過程中學會知識、感悟方法、訓練思維、發(fā)展能力,練習的設計起點低、范圍廣、有梯度,以滿足不同程度學生的需要。樹立大數(shù)學觀 ,把課堂探究 活動延伸到課外,在課與課之間,新舊知識之間,數(shù)學與生活之間搭建橋梁,為學生長遠的發(fā)展奠基。
    本節(jié)課的教學在一種輕松愉快的氛圍中完成,大部分學生能參與活動中,突出了重點 ,突破了難點。完成了教學任務。取得了較好的教學效果。練習除注重基礎外 并進行了延伸。拓寬了學生思維的空間。美中不足的是,還有少部分學習基礎較差的學生可能沒有在參與活動中去思考,收獲不大。
    新課程的教學評價對老師和學生都提出了新的要求 :因此整個教學過程中我對學生的如下方面作出了多元化的關注:1、關注學生探索結(jié)論、分析思路和方法的過程。2、關注學生說理的能力和水平。3、關注學生參與教學活動的程度。以期待人人都能學有 所得,不同的學生在課堂上得到不同的發(fā)展。
    以上是我對這節(jié)課的初淺認識,希望得能到各位專家、各位老師的指導,謝謝大家!
    三角形的內(nèi)角說課稿篇二
    “三角形的內(nèi)角和”是人教版小學數(shù)學四年級下冊第五單元第四節(jié)的內(nèi)容,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì)。本課教學內(nèi)容不算多,學生只需要翻看課本就會知道三角形的內(nèi)角和是180°,但是陳麗老師并沒有讓學生這樣做?!皵?shù)學學習的過程實際上是數(shù)學活動的過程”。課程標準要求我們“將課堂還給學生,讓課堂煥發(fā)生命的活力”,要求我們“努力營造學生在教學活動中獨立自主學習的時間和空間,使他們成為課堂教學中重要的參與者與創(chuàng)造者,落實學生的主體地位,促進學生的自主學習和探究?!痹诮虒W中,陳老師力求探究,將教學思路擬定為“創(chuàng)設情境,激趣引題——自主合作,探究新知——交流釋疑,歸納總結(jié)——拓展應用,反思升華”四個環(huán)節(jié),努力構建探究型的課堂教學模式。具體體現(xiàn)在以下幾個方面:
    課一開始,陳老師創(chuàng)設了一個實踐操作的活動情境:讓學生畫一個含有兩個直角的三角形。很顯然三角形是畫不出來的,學生同樣也不知道畫不出來。簡單的活動激活了學生的思維,讓他們產(chǎn)生了問題:是不是三角形的角有些什么秘密呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
    在教學中,陳老師巧妙運用“猜想、驗證”的方式引導學生進行自主學習和探究活動。學生大膽猜想三角形的內(nèi)角和是180°,讓學生對問題形成了統(tǒng)一的認識,使后邊的探索和驗證活動有了明確的目標。這個時候,陳老師就把課堂大量的時間和空間留給學生,在學生交流探究設想和打算采用的方法后,放手讓每個同學自主參與驗證活動,在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,同時發(fā)展空間觀念和論證推理能力。驗證的具體過程為:量角求和——撕角拼一拼——折角拼一拼。拼角的方法具有一般性,結(jié)論的形成不缺乏科學性。這個環(huán)節(jié)的設計更重要的是變“聽數(shù)學”為“做數(shù)學”,讓學生在“做中學”。
    學生在活動中體驗,在交流中消除疑惑,獲得新知。這節(jié)課生與生、生與師的交流不僅僅停留在知識的層面上,陳老師還引導學生對獲得知識所用的方法進行了總結(jié),加強了學法指導。
    課程標準提倡練習的'有效性。本節(jié)課的練習設計陳老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用。兩個小三角形拼成一個較大的三角形互動練習讓學生進一步理解任意三角形的內(nèi)角和都是180°;后面的練習設計從圖形到文字,由一般到特殊;“開心一刻”更是把學生帶到無窮的學習樂趣之中。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
    兩點建議:
    2、學生的猜想結(jié)果都是180°,這時老師是否可以反問:你們是怎樣知道的?便于學生的學習活動更流暢的進入下一個環(huán)節(jié)。
    總之,我個人認為陳老師對“四步教學法”模式的把握是成功的,學生在這種課堂教學模式下的學習是自主的,是活動的,也是快樂的。
    三角形的內(nèi)角說課稿篇三
    在整個教學設計上謝老師充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證{自主探究}——鞏固內(nèi)化——拓展延伸”,努力構建探索型的課堂教學模式。具體體現(xiàn)在以下幾點:
    1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執(zhí),到的誰的內(nèi)角和大呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
    2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
    3、善用驗證{自主探索}:學生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動{即驗證三角形的內(nèi)角和是否是180度?},在活動中,把放和引有機的結(jié)合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
    4、善于引導鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內(nèi)角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
    5、有一定的拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
    總之,本節(jié)課教學活動中謝老師充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
    三角形的內(nèi)角說課稿篇四
    在整個教學設計上謝老師充分體現(xiàn)“以學生發(fā)展為本”教育理念,將教學思路擬定為“談話激趣設疑導入——猜想——驗證——鞏固內(nèi)化——拓展延伸”,努力構建探索型的課堂教學模式。具體體現(xiàn)在以下幾點:
    1、善用激趣設疑導入:教學的藝術不在于傳授知識,而在于喚醒、激發(fā)和鼓勵。剛開始上課,謝老師用選王大會設懸念,三種類型的角在激烈的爭執(zhí),到的誰的內(nèi)角和大呢?這樣,在很短的時間內(nèi)最大限度的激發(fā)學生探究數(shù)學的愿望和興趣,而且也很自然地揭示了課題。
    2、巧用猜想:學生有了探索的愿望和興趣,可是不能沒有目標的去探索,那樣只會事倍功半,甚至沒有結(jié)果,這時謝老師就提到到底三角形的內(nèi)角和是不是180度呢,我們總不能口說無憑吧?使后邊的探索和驗證活動有了明確的目標。
    3、善用驗證:學生形成統(tǒng)一的猜想{即三角形的內(nèi)角和等于180度}后,謝老師就把課堂大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動,在活動中,把放和引有機的結(jié)合,鼓勵學生積極開動腦筋,從不同的途徑探索解決問題的方法。不但讓每個學生自主參與驗證活動,而且使學生在經(jīng)歷觀察、操作、分析、推理和想象活動過程中解決問題,發(fā)展空間觀念和論證推理能力。具體過程為:量一量——拼一拼——看一看。
    4、善于引導鞏固內(nèi)化:俗話說的好:“熟能生巧”。數(shù)學離不開練習,要掌握知識,形成技能技巧,一定要通過練習。養(yǎng)成良好的思維品質(zhì)也要通過一定的思考練習,課程標準提倡練習的有效性。對此,謝老師非常注意將數(shù)學的思考融入不同層次的練習之中,很好的發(fā)揮練習的作用,如第一關牛刀小試:給出一個三角形的兩個角度,學生求第三個角,從中培養(yǎng)學生應用意識和解決問題的能力;第三關過關斬將:讓學生判斷有兩個小三角形拼成的三角形的內(nèi)角和的度數(shù),使學生在圖形變化的過程中掌握知識,培養(yǎng)思維的靈活性,從中發(fā)展學生的空間觀念和空間想象能力。這些練習設計目的明確,針對性強,使學生不但鞏固了知識,更重要的是數(shù)學思維得到不斷的發(fā)展。
    5、有一定的拓展創(chuàng)新:數(shù)學具有嚴密的邏輯性和抽象性。而學生學習內(nèi)容的呈現(xiàn)是從簡單到復雜,思維方式是從具體到抽象的一個循序漸進的過程,前面學習的知識往往是后面進一步學習的基礎。要培養(yǎng)學生思維的靈活性,可以先讓學生學會對知識的遷移。本課最后,謝老師設計了這樣一道題目:學了三角形的內(nèi)角和后,你知道四邊形的內(nèi)角和是多少度嗎?這道題通過對本節(jié)課所學知識的遷移就可以完成,既能對學生進行思維訓練,又能培養(yǎng)學生應用知識的能力,更能培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
    總之,本節(jié)課教學活動中謝老師充分體現(xiàn)以下特點:以學生發(fā)展為本,以學生為主體,思維為主線的思想;充分關注學生的自主探究與合作交流;練習體現(xiàn)了層次性,知識技能得于落實和發(fā)展。是一節(jié)非常成功的課。
    三角形的內(nèi)角說課稿篇五
    一、構建新的課堂教學模式。
    傳統(tǒng)的教學往往只重視對結(jié)論的記憶和模仿,而這節(jié)課老師把學生的學習定位在自主建構知識的基礎上,建立了“猜想——驗證——歸納——運用”的教學模式。
    二、培養(yǎng)學生勇于猜想,大膽創(chuàng)新的精神。
    教學中老師遵循的基本教學原則是激勵學生展開積極的思維活動。先創(chuàng)設猜角的游戲情景,讓學生對三角形的三個角的度數(shù)關系產(chǎn)生好奇,引發(fā)學生的探究欲望。
    三、為學生提供了大量數(shù)學活動的機會,讓學生真正成為學習的主人。
    “給學生一些權利,讓他們自己選擇;讓他們自己去鍛煉;給學生一些問題,讓他們自己去探索;給學生一片空間,讓學生自己飛翔?!边@正是課堂教學改革中學生的主體性的表現(xiàn)。所以在這節(jié)課中老師樹立了數(shù)學教學為學生服務,創(chuàng)設有助于學生自主學習,合作交流的機會,通過想辦法求三角形的內(nèi)角和這一核心問題,引發(fā)學生去思考,去探究。這樣學生的潛能的以激活,思維展開了想象,能力得以發(fā)展。
    四、給學生一個開放探究的學習空間。
    培養(yǎng)學生的問題意識是數(shù)學課堂教學的核心問題,所以課堂上學生的學習過程就是解決問題的過程,當一個問題解決完后又引發(fā)出新的問題,使學生體會到成功的喜悅,使數(shù)學課堂充滿挑戰(zhàn)。所以課堂上老師沒有因?qū)W生發(fā)現(xiàn)三角形內(nèi)角和是180度而罷休,然后用一個大的三角形剪成兩個小的,用兩個小的拼成大的內(nèi)角和延伸,使學生悟出規(guī)律,這樣學生帶著問題在課后向更高的學習目標繼續(xù)探索,一追求更大的成功。
    一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。
    將本文的word文檔下載到電腦,方便收藏和打印。
    三角形的內(nèi)角說課稿篇六
    “三角形的內(nèi)角和”是人教版小學四年級下冊第五單元第四節(jié)的內(nèi)容?!叭切蔚膬?nèi)角和”是三角形的一個重要性質(zhì),是“空間與圖形”領域的重要內(nèi)容之一,學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。經(jīng)過第一學段以及本單元的學習,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的概念,打下了堅實的基礎。
    在教學中李老師充分體現(xiàn)了新課程標準的基本理念:讓學生“人人學有價值的數(shù)學”。從學生已有的經(jīng)驗出發(fā),讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程。善于激發(fā)學生的學習積極性,向?qū)W生提供充分從事數(shù)學活動的機會,讓他們積極主動地探索,解決數(shù)學問題,發(fā)現(xiàn)數(shù)學規(guī)律,獲得數(shù)學經(jīng)驗;李老師善于做好學生學習的組織者、引導者和合作者,在全面參與和了解學生的學習過程中起著對學生進行積極的評價,關注他們的學習方法、學習水平和情感態(tài)度,促使學生向著預定的目標發(fā)展的作用”。
    三角形的內(nèi)角說課稿篇七
    課程標準這樣描述:通過觀察、操作了解三角形內(nèi)角和是180。
    分析教材內(nèi)容,在上學期的學習中學生已經(jīng)掌握了角的`分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學好它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習其他圖形內(nèi)角和的基礎,同時為初中進一步論證做好準備。
    課前我對學情進行了分析:
    1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
    2、已經(jīng)有不少學生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。
    通過對課程標準的認識,以及內(nèi)容分析和學情分析,我制定了這樣的學習目標:
    1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應用這一規(guī)律解決實際的問題。
    2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
    針對這一目標的完成,我設計了一下評價方式:
    1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
    2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
    1、通過3個練習題(1、做一做。2、說一說.3、拼一拼、想一想。)。
    檢測學習目標1的掌握情況。
    2、通過小組、同桌合作、匯報,教師引導學生理解本節(jié)課所蘊含的學習方法,檢測學習目標2的掌握情況。
    教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格。
    學具準備:三角板、量角器。
    這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
    1、觀察猜測,引入新知;
    2、動手操作,探索新知;
    3、鞏固新知,拓展應用;
    4、總結(jié)評價、延伸知識。
    第一環(huán)節(jié),觀察猜測,引入新知。
    由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
    (1)鈍角變小,另外兩個角怎樣變?
    (2)鈍角變大,另外兩個角怎樣變?
    (3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。
    第二環(huán)節(jié),動手操作,探索新知。
    先讓學生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
    四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
    這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要。
    課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內(nèi)角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。
    這樣引導學生通過直角三角形的內(nèi)角和是180度來推導出銳角和鈍角三角形的內(nèi)角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
    第三環(huán)節(jié)、鞏固新知,拓展應用。
    用三角形的這一特性來解決一些問題。
    1、基本練習。
    通過做一做和說一說這兩個練習來強化學生認知。
    2、拓展練習。
    拼一拼、想一想。
    (1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和。
    (2)一個三角形去掉一部分。
    引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關。
    (3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?
    (4)如果變成五邊形,你還能求出他的度數(shù)嗎?
    充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎上滲透數(shù)學的“轉(zhuǎn)化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
    第四環(huán)節(jié)、總結(jié)評價、延伸知識。
    通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
    猜測(180度)。
    驗證:測量、撕拼、折疊結(jié)論。
    我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
    三角形的內(nèi)角說課稿篇八
    一堂好課不應是自始至終的高潮和精彩,也不必是高科技現(xiàn)代教育技術的集中展示。一堂好課不是看它的熱鬧程度,而在于學生從中得到了什么,它留給人們的應是思考、啟示和回味。2月19日上午,在沈家門第一小學,我有幸聆聽了趙斌娜老師執(zhí)教的《三角形的內(nèi)角和》一課,這就是一堂好課。
    趙老師營造了寬松和諧的課堂氣氛,讓學生能主動參與學習活動,既關注了學生的個人差異和不同的學習需求,又注重了學生的個體感悟,強調(diào)情感體驗的過程。確立了學生在課堂教學中的主體地位,使學生在學習過程中既調(diào)動了積極性,又激發(fā)了學生的主體意識和進取精神。學生在自主、合作、探究的學習方式中互相激勵,取長補短,能團結(jié)協(xié)作,最終形成了相應能力;同時培養(yǎng)了學生刻苦鉆研,事實求是的態(tài)度。
    教學過程是一堂課關鍵中的關鍵,新課標提出數(shù)學教學是數(shù)學活動的教學,而數(shù)學活動應是學生自己建構知識的活動。教師讓學生“在參與中體驗,在活動中發(fā)展”。本節(jié)課有操作活動、自主探索與合作交流、應用活動三個方面,下面我重點談談操作活動。
    1、在實踐材料上下了工夫。
    操作實踐的材料是精心選擇的,老師為學生準備了用卡紙制作的形狀、大小、顏色不同的三角形各幾個,這樣學生在操作時候,便于選擇、測量、拼擺、觀察、思考問題,而且這些三角形顏色醒目、比較大,學生應用起來很得手,操作的材料和學生的動手實踐配合恰當。
    2、找準時機讓學生進行實踐操作。
    本節(jié)課安排了兩次操作活動:一是在得出三角形內(nèi)角和規(guī)律前進行實踐操作,促使學生在實踐操作中探究新知識;二是在初步得出規(guī)律之后,讓學生通過實踐操作來驗證新知識。幫助學生清楚地認識到第一次出現(xiàn)內(nèi)角和偏差的原因是測量誤差造成的。給學生提供的這兩次動手實踐的機會,不僅提高了操作的效果,更重要的使“聽數(shù)學”變?yōu)椤白鰯?shù)學”。促使學生在“做數(shù)學”的過程中對所學知識產(chǎn)生了深刻的體驗,從中感悟和理解到新知識的形成和發(fā)展,體會了數(shù)學學習的過程與方法,獲得數(shù)學活動的經(jīng)驗。
    3、把實踐操作和數(shù)學思維結(jié)合起來。
    學生通過實踐操作獲得的認識是一種感性的認識,是外在的直觀的印象。在本節(jié)課中趙老師在學生實踐操作的基礎上引導學生把動手實踐和數(shù)學思維結(jié)合起來,先讓學生思考出可以用量、撕和拼的方法來推導三角形內(nèi)角和的度數(shù),接著引導學生說出量的方法,最后讓學生實際測量。采取邊說邊操作,邊討論邊操作的方式,讓手、腦、口并用,在操作和直觀教學的基礎上及時對三角形內(nèi)角和規(guī)律進行抽象概括。做到邊動手,邊思考。同時學生獲得了一種數(shù)學思想和方法,學會了解決一些類似的一系列的問題,提高了實踐動手的有效性。
    三角形的內(nèi)角說課稿篇九
    三角形的內(nèi)角和是北師大版四年級下冊第二單元的內(nèi)容。三角形的內(nèi)角和是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。
    本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象三角形的內(nèi)角和的規(guī)律,打下了堅實的基礎。
    因此,我確定本節(jié)課的教學目標是:
    知識與技能:通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180。知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。能應用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題。
    發(fā)展學生動手操作、觀察比較和抽象概括的能力。
    情感、態(tài)度與價值觀:體驗數(shù)學活動的探索樂趣,體會研究數(shù)學問題的思想方法。
    學生經(jīng)歷探究三角形內(nèi)角和的全過程并歸納概括三角形內(nèi)角和等于180。
    三角形內(nèi)角和的探索與驗證,對不同探究方法的指導和學生對規(guī)律的靈活應用。
    整個教學將體現(xiàn)以人為本,先放后扶的教學策略。放,不是漫無目的的放,而是為學生提供足夠的探究規(guī)律的材料和時間,放手讓學生自主學習,合作探究;扶,則是根據(jù)學生的不同探究方法和出現(xiàn)的錯誤,給予恰當指導,引導學生歸納概括出規(guī)律。
    《課程標準》明確指出:要結(jié)合有關內(nèi)容的教學,引導學生進行觀察、操作、猜想,培養(yǎng)學生初步的思維能力。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數(shù)學思維方式。在教學中,學生通過測量、拼折、驗證等方式確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了觀察能力和歸納概括能力,又體現(xiàn)了動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了探索能力和創(chuàng)新精神。
    基于以上分析,我以猜測、驗證、結(jié)論和應用四個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗。
    通過出示一個角形,讓學生說知道三角形的知識來引出三角形的內(nèi)角的概念,讓學生自由猜測,三角形內(nèi)角和是多少?引出課題,以疑激思。
    動手實踐,自主探究,是學生學習數(shù)學的重要方式,新課程的一個重要理念就是提倡學生做數(shù)學用親身體驗的方式來經(jīng)歷數(shù)學,探究數(shù)學,這要求老師首先為學生提供充分的研究材料,以及充裕的時間,保證學生能真正地試驗,操作和探索。
    這一環(huán)節(jié)我設計為以下三步:
    1、操作感知。
    組織學生通過算一算初步感知三角形的內(nèi)角和。根據(jù)學生特點,為了節(jié)約學生上課的時間,作為預習作業(yè),我提前讓學生在家里自制鈍角、銳角、直角三角形,并測量出每個角的度數(shù),寫在三角形對應的角上,也填在書上的表格里。這時直接讓學生計算,學生匯報計算結(jié)果,不同的學生可能會有不同的結(jié)果,有可能大于180或小于180甚至等于180,只要相對合理(允許一點誤差)都給與肯定。這時可引導學生得出結(jié)論(強調(diào)在排除測量誤差的前提下):三角形的內(nèi)角和是180度。在這一過程中,學生有困惑,有疑問,而正是這些困惑激發(fā)了學生更強的探究欲望,正是這些疑問,使得合作成為學生的內(nèi)在需要。
    2、小組合作。
    針對探究過程中不同思維能力的學生,要做到因材施教。對于得出結(jié)論的學生要鼓勵他們思考新的方法,對于無法下手的學生,要啟發(fā)他們知道三角形的內(nèi)角和,我們可以把角合起來看是多少?能用什么方法將三個角合起來。在探究學習中,老師只是起一個引導者的作用,引導學生不斷地深入探究,盡可能用多種合理的方法,驗證結(jié)論。
    3、交流反饋,得出結(jié)論。
    學生完成探究活動之后,在有親身體驗的基礎上,我將選擇不同方法的代表,在展示平臺上展示自己的探究過程,并說說自己是怎樣想的。我關注的不是學生最后論證的結(jié)果,而是學生思維的過程。學生可能通過:拼一拼、折一折、畫一畫的方法,驗證得出三角形的內(nèi)角和是180度,并通過觀察對比各組所用的三角形,是不同類型的而且大小不同的,發(fā)現(xiàn)這一規(guī)律是具有普遍性的,對于任意三角形都是適用。在學生探究之后,我用課件重新演示了3種方法,讓學生有一個系統(tǒng)的知識體系。
    揭示規(guī)律之后,學生要掌握知識,形成技能技巧,就要通過解答實際問題的練習來鞏固內(nèi)化。根據(jù)學生能力的不同,我將練習分為以下3個層次。
    1、基礎練習。要求學生利用三角形內(nèi)角和是180度在三角形內(nèi)已知兩個角,求第三個角。由于學生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字敘述題。在這之間指導學生注意一題多解。
    2、提高練習。如已知一個直角三角形的一個角的度數(shù),求另一個角的度數(shù);已知一個等腰三角形的頂角或底角的度數(shù),求底角或頂角的度數(shù)。
    3、拓展練習。針對不同思維能力的學生,我設計的思考題是要求學生應用三角形內(nèi)角和是180的規(guī)律,求多邊形的內(nèi)角和。我的目的不僅僅是為了讓學生去求解多邊形的內(nèi)角和,更重要的是為了讓學生靈活應用知識點,培養(yǎng)學生的空間思維能力。
    這樣安排可以兼顧不同能力的學生,在保證基本教學要求的同時,盡量滿足學生的學習需要,啟發(fā)學生的思維活動。
    本節(jié)課通過這樣的設計,學生全身心投入到數(shù)學探究互動中去,學生不僅學到科學探究的方法,而體驗到探索的甘苦,領略成功的喜悅,學生在探索中學習,在探索中發(fā)現(xiàn),在探索中成長,最終實現(xiàn)可持續(xù)性發(fā)展。
    猜測驗證結(jié)論應用。
    三角形的內(nèi)角說課稿篇十
    三角形的內(nèi)角和是四年級下冊第五單元的內(nèi)容,是在學生認識三角形的特征、分類的基礎上進行教學的,主要通過不同形式的動手操作驗證三角形的內(nèi)角和的度數(shù)。
    一、亮點。
    1.注重數(shù)學思想方法的滲透。在教學中,孔石蕾老師首先通過猜想,讓學。
    生通過量一量銳角三角形、直角三角形和鈍角三角形每個角的度數(shù),有的學生得到三角形的內(nèi)角和正好是180°,有的大于180°,而有的則小于180°,由此讓學生去想辦法去驗證三角形的內(nèi)角和的度數(shù)。在驗證的過程中,學生采用了把三角形的三個角撕下來拼成直角的方法、把三角形的三個角折成平角的方法得出了三角形的內(nèi)角和是180度,接著教師又通過動畫演示操作和幾何畫板的量角的優(yōu)勢,讓學生清晰地看出三角形內(nèi)角和的度數(shù)是180度,最后又應用這一知識進行了綜合的練習。在整個教學過程中,教師采用了猜想、驗證、得出結(jié)論、應用的四個探究環(huán)節(jié),讓學生經(jīng)歷了知識的發(fā)生、發(fā)展過程,提高了解決問題的能力。
    2.精心準備,精彩呈現(xiàn)。在教學過程中,孔石蕾老師在課件的制作,幾何畫板的應用、知識材料的拓展、習題的選擇等方面進行了精心設計和準備,教學過程流暢、教學環(huán)節(jié)緊湊,教學語言清晰,有效地達成了教學目標,使學生在學習的過程中不僅掌握了知識,也掌握了學習數(shù)學的方法。
    二、建議。
    在教學過程中,可以適當?shù)倪M行知識的延伸拓展,如通過學習三角形的內(nèi)角和對于后續(xù)的學習有什么影響,可以想到四邊形的內(nèi)角和等等方面的內(nèi)容。
    三角形的內(nèi)角說課稿篇十一
    課程標準這樣描述:通過觀察、操作了解三角形內(nèi)角和是180。
    分析教材內(nèi)容,在上學期的學習中學生已經(jīng)掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學好它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習其他圖形內(nèi)角和的基礎,同時為初中進一步論證做好準備。
    課前我對學情進行了分析:
    1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
    2、已經(jīng)有不少學生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。
    通過對課程標準的認識,以及內(nèi)容分析和學情分析,我制定了這樣的學習目標:
    1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應用這一規(guī)律解決實際的問題。
    2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
    針對這一目標的完成,我設計了一下評價方式:
    1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
    2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
    1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)
    檢測學習目標1的掌握情況。
    教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
    學具準備:三角板、量角器.
    這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
    1、觀察猜測,引入新知;
    2、動手操作,探索新知;
    3、鞏固新知,拓展應用;
    4、總結(jié)評價、延伸知識。
    第一環(huán)節(jié),觀察猜測,引入新知。
    由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
    (1)鈍角變小,另外兩個角怎樣變?
    (2)鈍角變大,另外兩個角怎樣變?
    (3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。
    第二環(huán)節(jié),動手操作,探索新知。
    1、直角三角形的內(nèi)角和。
    (一)直角三角形內(nèi)角和
    先讓學生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
    四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
    這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要。
    (二)、銳角三角形、鈍角三角形的內(nèi)角和
    課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內(nèi)角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。
    這樣引導學生通過直角三角形的內(nèi)角和是180度來推導出銳角和鈍角三角形的內(nèi)角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
    第三環(huán)節(jié)、鞏固新知,拓展應用
    用三角形的這一特性來解決一些問題
    1、基本練習
    通過做一做和說一說這兩個練習來強化學生認知。
    2、拓展練習
    拼一拼、想一想
    (1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和
    (2)一個三角形去掉一部分
    引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關。
    (3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?
    (4)如果變成五邊形,你還能求出他的度數(shù)嗎?
    充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎上滲透數(shù)學的“轉(zhuǎn)化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
    第四環(huán)節(jié)、總結(jié)評價、延伸知識
    通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
    三角形的內(nèi)角和
    猜測(180度)
    驗證:測量、撕拼、折疊結(jié)論
    三角形的內(nèi)角和是180度
    我的板書簡明扼要,體現(xiàn)了本節(jié)課的重點,而且是對本節(jié)課學習方法的一個回顧。
    三角形的內(nèi)角說課稿篇十二
    各位老師:
    你們好,我是來應聘xx數(shù)學老師的x號考生,我今天抽到的試講題目是《三角形的內(nèi)角和》,下面開始我的試講。
    大家拿出事先準備好的三角板和量角器吧,同學們,你們現(xiàn)在用量角器來測量一下每一個三角形的角的度數(shù),待會老師會進行統(tǒng)計。(轉(zhuǎn)身畫兩個三角板模型),測好了吧,下面請靠窗的同學告訴老師你的測量答案。30度60度90度,非常好,那另一個呢?45度45度和90度,非常精確,請坐,相信咱們其他同學也一定能夠測量出來。那么大家仔細觀察一下,這兩組數(shù)據(jù)有沒有什么相似點。有的同學說都有個九十度,很好,還有呢,很好!有的同學發(fā)現(xiàn)了,說這三個角加起來是180度,非常棒。也就是這兩個三角形內(nèi)角和是180度。
    可是是不是所有內(nèi)角和都是180度啊,同學們,你們自己分別畫一個不同的銳角、鈍角、直角三角形,并且測量每個內(nèi)角度數(shù),并報給老師內(nèi)角和。好,請第一排的女生起來回答,你的三個內(nèi)角和是多少?179,180,180很好,大家知道為什么第一個不是嗎?對,是因為畢竟有誤差的存在,很棒。
    下面大家按以前的安排分成六個組,交給你們一個任務,你們討論一下,怎么來驗證我們剛剛得出的這個結(jié)論呢?給大家十分鐘時間來討論。
    老師看到很多同學都皺起了眉頭,那老師來給大家一點小提示, 我們試著把三角形的三個角剪下來拼拼看。啊,很棒我看到前排的同學把三個角拼成了一個平角,大家知道平角多少度?180。那下面,大家可以動動手,任意再畫幾個三角形,用剛剛的方法看看能不能拼成一個平角?好,大家都非常積極,通過剛剛的驗證,我們可以肯定:三角形的內(nèi)角和是180度。
    那接下來我們回到咱們剛開始上課的問題:為什么不能畫一個有兩個直角的三角形?誰愿意給大家說說?好,你舉手最快,請你來說說。嗯,很好,因為有兩個九十度的角加起來就是180度了, 不可能畫出一個三角形,太棒了。請坐。
    大家看大屏幕,這里有兩個三角形,老師給分別給大家標出了其中兩個角的度數(shù),有沒有同學告訴我剩下的度數(shù)啊?趕緊開動腦筋算算看。好,算好的同學大聲告訴老師,第一個是30度,很棒。第二個50度,很棒,算的非常準確,看來大家上課都非常認真。
    這堂課我們就上到這里,請大家回去完成課后習題1到3。好,下課!
    三角形的內(nèi)角說課稿篇十三
    課程標準這樣描述:
    通過觀察、操作了解三角形內(nèi)角和是180°,分析教材內(nèi)容,在上學期的學習中學生已經(jīng)掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關系及三角形的分類等知識。積累了一些有關三角形的知識和經(jīng)驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°,學好它有助于學生理解三角形的三個內(nèi)角之間的關系,也是進一步學習其他圖形內(nèi)角和的基礎,同時為初中進一步論證做好準備。
    課前我對學情進行了分析:
    1、學生在學習本課前已經(jīng)掌握了銳角、直角、鈍角、平角和周角的度數(shù),認識了三角形的基本特征及其分類,由于學生的數(shù)學知識、能力和思考問題的角度有一定的差異,因此比較容易出現(xiàn)解決問題策略的多樣化。
    2、已經(jīng)有不少學生知道了三角形內(nèi)角和是180度的結(jié)論,但是很可能都知其然不知其所以然。
    通過對課程標準的認識,以及內(nèi)容分析和學情分析,我制定了這樣的學習目標:
    1、通過量、拼、折、剪等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°并會應用這一規(guī)律解決實際的問題。
    2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。
    針對這一目標的完成,我設計了一下評價方式:
    1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。
    2、表現(xiàn)性評價:通過小組討論表現(xiàn)、學生回答問題情況,適當對學生進行點撥。
    1、通過3個練習題(1、做一做。2、說一說 3、拼一拼、想一想)檢測學習目標1的掌握情況。
    教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格
    學具準備:三角板、量角器、
    這節(jié)課的教學我通過一下四個環(huán)節(jié)完成。
    1、觀察猜測,引入新知;
    2、動手操作,探索新知;
    3、鞏固新知,拓展應用;
    4、總結(jié)評價、延伸知識。
    第一環(huán)節(jié),觀察猜測,引入新知。
    由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內(nèi)角,發(fā)現(xiàn)在這些三角形中最大的內(nèi)角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:
    (1)鈍角變小,另外兩個角怎樣變?
    (2)鈍角變大,另外兩個角怎樣變?
    (3)鈍角變大、變大、變大再變大,還能再大嗎?發(fā)現(xiàn)再大就成平角了。平角多少度?這時把三角形三個內(nèi)角的加起來,和可能多少呢?猜測:180度。
    第二環(huán)節(jié),動手操作,探索新知。
    1、直角三角形的內(nèi)角和。
    (一)直角三角形內(nèi)角和
    先讓學生觀察一副三角板的內(nèi)角和,發(fā)現(xiàn)都是180度,和猜測是一樣的,是不是所有的直角三角形內(nèi)角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。
    四人小組合作,拿出學具袋里三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。
    這個環(huán)節(jié)引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內(nèi)角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗證,達到結(jié)論的統(tǒng)一,從而使學生明白獲得探究問題的方法比獲得結(jié)論更為重要。
    (二)銳角三角形、鈍角三角形的內(nèi)角和
    課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內(nèi)角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內(nèi)角和也是180度。我們就可以說所有三角形的內(nèi)角和都是180度。這是三角形的一個特性。
    這樣引導學生通過直角三角形的內(nèi)角和是180度來推導出銳角和鈍角三角形的內(nèi)角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。
    第三環(huán)節(jié)、鞏固新知,拓展應用
    用三角形的這一特性來解決一些問題
    1、基本練習
    通過做一做和說一說這兩個練習來強化學生認知。
    2、拓展練習
    拼一拼、想一想
    (1)兩個三角形拼成大三角形,說出大三角形的內(nèi)角和
    (2)一個三角形去掉一部分
    引導學生發(fā)現(xiàn),無論三角形的形狀或大小如何改變,內(nèi)角和都是180度,看來三角形的內(nèi)角和度數(shù)和他的大小形狀都無關。
    (3)再把這個三角形剪去一部分剪成一個四邊形,它的內(nèi)角和是多少度?
    (4)如果變成五邊形,你還能求出他的度數(shù)嗎?
    充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內(nèi)角和等于180度。在此基礎上滲透數(shù)學的“轉(zhuǎn)化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。
    第四環(huán)節(jié)、總結(jié)評價、延伸知識
    通過這個環(huán)節(jié)讓學生談一談自己的收獲或感受,對本節(jié)課的知識進行拓展升華。
    三角形的內(nèi)角說課稿篇十四
    《三角形的內(nèi)角和》是人教版小學數(shù)學四年級下冊第五單元的內(nèi)容?!叭切蔚膬?nèi)角和”是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,學生已經(jīng)具備一定的關于三角形的認識的直接經(jīng)驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象“三角形的內(nèi)角和”的規(guī)律,打下了堅實的基礎。
    一節(jié)成功的課,不僅在于對教材的把握,還有對學生的研究。四年級的學生正處于具體形象思維為主導的階段,他們解決問題的能力很強,但自控力稍差。因此本節(jié)課將注重引導學生動腦思考,動手實踐,打破以知識傳授為主的傳統(tǒng)數(shù)學課堂模式,采用靈活多樣的教學方法,牢牢將學生的注意力集中在課堂中。
    根據(jù)新課程的要求及教材的編寫特點,充分考慮到四年級學生的思維水平,我確立如下三維教學目標:。
    知識與技能目標:通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應用這一知識解決生活中簡單的實際問題。
    過程與方法目標:經(jīng)歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結(jié)的能力。
    情感態(tài)度價值觀目標:在參與學習的過程中,感受數(shù)學的魅力,體驗成功的喜悅,激發(fā)學習數(shù)學的興趣。
    根據(jù)教學目標,我確定了本節(jié)課的重點和難點。重點為三角形內(nèi)角和定理,而三角形內(nèi)角和定理推理的過程為本節(jié)課的難點。
    為了更好地突出重點,突破難點,堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,我將采用啟發(fā)式教學法,引導學生利用已有的知識經(jīng)驗去探索新知,并在探索過程中掌握本節(jié)重難點,同時輔之以多媒體教學設備,直觀地呈現(xiàn)教學內(nèi)容。
    我將引導學生采用自主探究,合作交流的方式進行學習,通過動手動腦動口來掌握本節(jié)課的教學重難點。
    為了更好地完成本節(jié)課的教學內(nèi)容,突出重點突破難點,我設計了以下幾個教學環(huán)節(jié):
    (一)創(chuàng)設情境,導入新課。
    為了引入新課,調(diào)動學生的學習興趣,一開始上課我便用多媒體播放有關三角形內(nèi)角和情境視頻:在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭了,我們的內(nèi)角和是一樣大的,因為三角形的內(nèi)角和是180°”。根據(jù)視頻中三角形的對話,順勢引出題目——三角形的內(nèi)角和。
    多媒體課件展示有關三角形內(nèi)角和的內(nèi)容,激發(fā)學生深厚的學習興趣和求知欲望,快速的進入學習高潮。
    (二)自主探究,感受新知。
    首先讓學生畫幾個不同類型的三角形。然后同桌互相量一量,算一算,三角形3個內(nèi)角的和各是多少度?通過測量,學生可以發(fā)現(xiàn)三角形的內(nèi)角和是180°。
    接著我會提出一個問題是不是所有的三角形的內(nèi)角和都是180°,如何進行驗證你的結(jié)論呢?接下來我會讓學生分小組討論,針對學生出現(xiàn)的問題,我給予指導,討論過后,請同學匯報,鼓勵學生用自己的語言表達,無論學生回答的全面與否,都給予積極的評價,其他同學認真傾聽后做出判斷,進行補充,提高學生的注意力。
    通過小組之間的討論,引導學生采用剪拼的方法進行驗證,先把一個三角形的三個角剪下來,再拼一拼,拼成一個平角。
    以上教學活動采用讓學生主動探索、小組合作交流的學習方式,使學生充分經(jīng)歷數(shù)學學習的全過程,體現(xiàn)以生為本的教學理念。學生在全程參與中不僅掌握新知發(fā)展能力培養(yǎng)的推理能力,又鍛煉學生的語言表達能力和溝通能力,同時讓學生體驗數(shù)學與生活的緊密聯(lián)系。
    (三)鞏固練習,強化知識。
    我利用小學生好勝心強的特點,以闖關的形式將課本的習題展現(xiàn)在多媒體上來鞏固本節(jié)課所學的知識,這樣設計能增加數(shù)學的趣味性,激發(fā)學生的學習興趣,并查看他們知識的掌握情況。
    (四)課堂小結(jié)。
    我將此環(huán)節(jié)分為兩部分。第一部分是以學生為主體的知識性總結(jié),讓學生暢談本節(jié)課的感受和收獲,及時了解學生的學習情況和情感體驗。第二部分是以教師為主體的情感性總結(jié),我會對學生的表現(xiàn)予以表揚和激勵,激發(fā)學生的學習興趣,增強學習自信心。
    (五)布置作業(yè)。
    針對學生的年齡特點,我會讓學生在課下和家長交流今天的收獲和感受,從而讓家長了解學生在校的學習情況,并促進學生與家長的溝通。
    說板書設計。
    一個好的板書應該是簡潔明了整潔美觀,重難點突出,能夠?qū)W生理解本節(jié)知識有一定的強化作用,因此我的板書是這樣設計的。
    以上就是我的全部說課,感謝各位老師的聆聽?。ň瞎?。
    三角形的內(nèi)角說課稿篇十五
    尊敬的各位老師:
    你們好!
    今天我說課的內(nèi)容是北師大版小學數(shù)學四年級下第二單元“認識圖形”中探索與發(fā)現(xiàn)部分的“三角形的內(nèi)角和”這部分知識。本課指導學生通過直觀操作的方法,探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。讓學生在實驗活動中,體驗探索的過程和方法。能使學生應用三角形內(nèi)角和的性質(zhì)解決一些簡單問題。在認真學習《數(shù)學課程標準》,深入鉆研教材,充分了解學生的基礎上,我準備從以下幾方面進行說課。
    “認識圖形”是“空間與圖形”的重要內(nèi)容之一。學生在此之前已經(jīng)對三角形有了一定的認識。因為教材的小標題為“探索與發(fā)現(xiàn)”,所以我主要是通過讓學生在自主探索中學習本課內(nèi)容。先讓學生明確“內(nèi)角”的意義,然后引導學生探索三角形內(nèi)角和等于多少。
    結(jié)合學生已經(jīng)有的知識經(jīng)驗,對于本課我確立了以下幾個教學目標:
    1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的度數(shù)和等于180度。已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。
    2、滲透猜想--驗證--結(jié)論--運用--引申的學習方法,培養(yǎng)學生動手操作和合作交流的能力,培養(yǎng)學生的探究意識。
    3、培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學應用數(shù)學的興趣,體驗學習數(shù)學的快樂。
    把教學重難點設定為驗證三角形的內(nèi)角和是180°,并學會應用。
    本堂課我采取了“開放型的探究式”教學模式,運用“猜一猜——量一量——拼—拼——折一折——看一看……”的教學法,使學生全面參與、全員參與、全程參與,真正確立其主體地位。讓學生知道身邊的數(shù)學問題隨處可見,能用自己所學的知識解決生活當中的事情,培養(yǎng)學生的發(fā)散思維,進一步激發(fā)學生學習數(shù)學的熱情。在在具體活動中,我讓學生大膽猜想,自主探索三角形的內(nèi)角和是多少度?再通過測量、拼折、驗證等方式讓學生確定三角形內(nèi)角的度數(shù)和。這樣,既培養(yǎng)了學生的觀察能力和歸納概括能力,又體現(xiàn)了學生動手實踐、合作交流,自主探索的學習方式,同時也培養(yǎng)了學生探索能力和創(chuàng)新精神。
    本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。因此我依據(jù)學生的認知規(guī)律將教學過程分為以下幾個環(huán)節(jié):
    (一)復習舊知
    由于學生在此之前已經(jīng)學過了一些關于三角形的一些知識,為了讓學生在學習上有一定的連貫性,我首先設計了一個問題“你對三角形有哪些了解?”,讓學生在復習當中加深對三角形的認識,自然引出“內(nèi)角”一詞,為后面的探索奠定基礎。
    (二)創(chuàng)設情境,激趣導入
    教育家葉圣陶先生也曾經(jīng)說過:“興趣是最好的老師?!币虼?,本節(jié)課一開始,我采用故事導入,用兩個大小不同的三角形,創(chuàng)設一個擬人化的對話情境,“大”對“小”說:“你看我個大所以我的內(nèi)角和一定比你大?!薄靶 眴柕剑骸澳强刹灰欢ǎ译m然個小可我的內(nèi)角和不一定比你小?。 眱扇藸幷摬恍?,請同學們幫忙解決問題,引入今天所要學習的內(nèi)容。在這一環(huán)節(jié)中把問題隱藏在情景之中,將會引起學生迫不及待探索研究的興趣,引發(fā)學生的思考,要比較內(nèi)角和的大小,就要知道各自的內(nèi)角的度數(shù),從而引導學生開始對“三角形的內(nèi)角和是多少”進行思索,引發(fā)學生探知欲望,也為下一步的教學架橋鋪路。
    (三)動手操作,自主探究
    由于學生對三角形的內(nèi)角和已經(jīng)產(chǎn)生了一定的求知欲,在此我首先設計了一個問題“什么是三角形的內(nèi)角和?怎樣才能求出三角形的內(nèi)角和?”從而引起學生的繼續(xù)思考。在此問題提出的基礎上,我又分別設計了兩個活動。
    活動一:讓每組同學分別畫出大小,形狀不同的若干個三角形,并分別量出三個內(nèi)角的度數(shù),并求出它們的和。填入記錄表中。活動二:讓學生分組匯報己的記錄表,闡述發(fā)現(xiàn)了什么。
    由于本節(jié)課是一節(jié)發(fā)現(xiàn)探索的課程,所以我在此環(huán)節(jié)進行了這樣的設計。通過這樣的活動,引導學生從“實際操作”到“具體感知”,再從“具體感知”到“抽象概念”,讓學生初步理解三角形的內(nèi)角和是180度。在量一量、算一算中產(chǎn)生猜想,在探索中發(fā)現(xiàn),在活動中思考,經(jīng)歷三角形內(nèi)角和的研究方法,體會活動結(jié)果,進一步激發(fā)學生的學習興趣,同時也培養(yǎng)了學生與他人合作交流的意識。
    (四)驗證結(jié)論
    學生完成探究活動之后,已經(jīng)知道了三角形內(nèi)角和。我做了這樣的提問“除了測量計算出三角形內(nèi)角和,你還有什么方法可以驗證三角形內(nèi)角和是180??”學生可以通過:量一量、拼一拼、折一折的方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。體會驗證三角形內(nèi)角和的數(shù)學思想方法,加深學生對這部分知識的記憶。
    (五)鞏固練習
    在鞏固練習中,我遵循由易到難的規(guī)律,設計了分層訓練。第一層:基本訓練,通過練習明確,會求簡單的三角形內(nèi)角和。第二層:綜合訓練,通過學生觀察、分析,從紛繁復雜的條件中獲取有價值的信息解決問題。最后一道實踐活動讓學生根據(jù)三角形的內(nèi)角和探索經(jīng)驗去探索四邊形的內(nèi)角和,對知識進行遷移,使學生得到了發(fā)展。
    (六)總結(jié)評價
    三角形的內(nèi)角說課稿篇十六
    《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義.
    (二)教學目標。
    基于以上對教材的分析以及對教學現(xiàn)狀的思考,我從知識與技能,教學過程與方法,情感態(tài)度價值觀三方面擬定了本節(jié)課的教學目標:。
    1.通過"量一量","算一算","拼一拼","折一折"的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應用這一知識解決一些簡單問題.
    2.通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進行探究實驗,滲透"轉(zhuǎn)化"的數(shù)學思想.
    3.通過數(shù)學活動使學生獲得成功的體驗,增強自信心.培養(yǎng)學生的創(chuàng)新意識,探索精神和實踐能力.
    (三)教學重,難點。
    因為學生已經(jīng)掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識.對于三角形的內(nèi)角和是多少度,學生并不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內(nèi)角和是180°.在整個過程中學生要了解的是"內(nèi)角"的概念,如何驗證得出三角形的內(nèi)角和是180°.因此本節(jié)課我提出的教學的重點是:驗證三角形的內(nèi)角和是180°.
    本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°.
    因為《課程標準》明確指出:"要結(jié)合有關內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力".四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段.因此,本節(jié)課,我將重點引導學生從"猜測――驗證"展開學習活動,讓學生感受這種重要的數(shù)學思維方式.
    我以引入,猜測,證實,深化和應用五個活動環(huán)節(jié)為主線,讓學生通過自主探究學習進行數(shù)學的思考過程,積累數(shù)學活動經(jīng)驗.
    引入。
    呈現(xiàn)情境:出示多個已學的平面圖形,讓學生認識什么是"內(nèi)角".(把圖形中相鄰兩邊的夾角稱為內(nèi)角)長方形有幾個內(nèi)角(四個)它的內(nèi)角有什么特點(都是直角)這四個內(nèi)角的和是多少(360°)三角形有幾個內(nèi)角呢從而引入課題.
    【設計意圖】讓學生整體感知三角形內(nèi)角和的知識,這樣的教學,將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學知識背景,滲透數(shù)學知識之間的聯(lián)系,有效地避免了新知識的"橫空出現(xiàn)".
    猜測。
    提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢。
    【設計意圖】引導學生提出合理猜測:三角形的內(nèi)角和是180°.
    (三)驗證。
    (2)撕―拼:利用平角是180°這一特點,啟發(fā)學生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼.
    (3)折-拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°.
    (4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°.
    一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°.從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°.
    【設計意圖】利用已經(jīng)學過的知識構建新的數(shù)學知識,這不僅有助于學生理解新的知識,而且是一種非常重要的學習方法.在探索三角形內(nèi)角和規(guī)律的教學中,注意引導學生將三角形內(nèi)角和與平角,長方形四個內(nèi)角的和等知識聯(lián)系起來,并使學生在新舊知識的連接點和新知識的生長點上把握好他們之間的內(nèi)在聯(lián)系.在整個探索過程中,學生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮.
    深化。
    觀察指著黑板上兩個大小不同但三個角對應相等的三角形并說明原因,三角形變大了,但角的大小沒有變.)。
    結(jié)論:角的兩條邊長了,但角的大小不變.因為角的大小與邊的長短無關.
    實驗:教師先在黑板上固定小棒,然后用活動角與小棒組成一個三角形,教師手拿活動角的頂點處,往下壓,形成一個新的三角形,活動角在變大,而另外兩個角在變小.這樣多次變化,活動角越來越大,而另外兩個角越來越小.最后,當活動角的兩條邊與小棒重合時.
    結(jié)論:活動角就是一個平角180°,另外兩個角都是0°.
    【設計意圖】小學生由于年齡小,容易受圖形或物體的外在形式的影響.教師主要是引導學生與角的有關知識聯(lián)系起來,通過讓學生觀察利用"角的大小與邊的長短無關"的舊知識來理解說明.
    對于利用精巧的小教具的演示,讓學生通過觀察,交流,想象,充分感受三角形三個角之間的聯(lián)系和變化,感悟三角形內(nèi)角和不變的原因.
    (五)應用。
    1.基礎練習:書本練習十四的習題9,求出三角形各個角的度數(shù).
    3.(1)將兩個完全一樣的直角三角形拼成一個大三角形,這個大三角形的內(nèi)角和是多少。
    (2)將一個大三角形分成兩個小三角形,這兩個小三角形的內(nèi)角和分別是多少。
    4.智力大挑戰(zhàn):你能求出下面圖形的內(nèi)角和嗎書本練習十四的習題。
    【設計意圖】習題是溝通知識聯(lián)系的有效手段.在本節(jié)課的四個層次的練習中,能充分注意溝通知識之間的內(nèi)在聯(lián)系,使學生從整體上把握知識的來龍去脈和縱橫聯(lián)系,逐步形成對知識的整體認知,構建自己的認知結(jié)構,從而發(fā)展思維,提高綜合運用知識解決問題的能力.
    第一題將三角形內(nèi)角和知識與三角形特征結(jié)合起來,引導學生綜合運用內(nèi)角和知識和直角三角形,等邊三角形等圖形特征求三角形內(nèi)角的度數(shù).
    第二題將三角形內(nèi)角和知識與三角形的分類知識結(jié)合起來,引導學生運用三角形內(nèi)角和的知識去解釋直角三角形,鈍角三角形中角的特征,較好地溝通了知識之間的聯(lián)系.
    第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內(nèi)角的變化情況,進一步理解三角形內(nèi)角和的知識.
    第四題是對三角形內(nèi)角和知識的進一步拓展,引導學生進一步研究多邊形的內(nèi)角和.教學中,學生能把這些多邊形分成幾個三角形,將多邊形內(nèi)角和與三角形內(nèi)角和聯(lián)系起來,并逐步發(fā)現(xiàn)多邊形內(nèi)角和的規(guī)律,以此促進學生對多邊形內(nèi)角和知識的整體構建.
    引入:。
    猜測:。
    驗證:。
    量——算。
    撕——拼。
    折——拼。
    三角形的內(nèi)角說課稿篇十七
    我執(zhí)教的《三角形內(nèi)角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內(nèi)容,是在學生學習了《三角形的特性》以及《三角形三邊關系》,《三角形的分類》之后進行的,在此之后則是《多邊形的內(nèi)角和》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎,因此,學習和掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。
    怎樣提供一個良好的探究平臺,使學生有興趣去研究三角形內(nèi)角的和呢?愛因斯坦說過:“問題的提出往往比解答問題更重要”,因此這節(jié)課在復習舊知“三角形的特征”后,我引出了研究問題“三角形的內(nèi)角指的是什么?”“三角形的內(nèi)角和是多少?”“你猜三角形的內(nèi)角和是多少度?你是怎么猜的?這個問題一拋出去馬上激發(fā)學生的學習熱情。由于學生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。
    《標準》指出:“教師應激發(fā)學生的積極性,向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗?!逼鋵嵢切蝺?nèi)角和是多少?大部分的學生已經(jīng)知道了這一知識,所以很輕松地就可以答出。但是只是“知其然而不知其所以然”,所以我覺得本課的重點就是要讓他們知道“知其所以然”,因此接著就讓學生分組討論:有什么辦法可以驗證得出這樣的結(jié)論。學生會提出度量、折一折的方法,然后讓學生拿出課前準備的銳角三角形、直角三角形、鈍角三角形以小組為單位有選擇的用度量的方法或者用折一折的方法,通過小組合作交流,讓學生各抒已見,暢所欲言,鼓勵學生傾聽他人的方法,從中獲益,增加了學生的合作探究精神,有意識地培養(yǎng)學生邏輯推理能力,增強了語言表達能力,并潛移默化中滲透了一個重要數(shù)學思想―――轉(zhuǎn)化思想。
    在猜測后先獨立思考驗證的方法,再進行全班交流,給學生充分的活動時間和空間,讓學生動手操作,使學生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學生嚴謹、科學正確的研究態(tài)度,讓學生在活動中積累基本的數(shù)學活動經(jīng)驗,為后續(xù)的學習提供了經(jīng)驗支撐。
    研究是為了應用,在應用“三角形內(nèi)角和是180°”這一結(jié)論時,第一層練習是基礎練習題:已知三角形中兩個內(nèi)角的度數(shù),求另一個角;已知一個角的度數(shù)(等腰三角形中頂角或底角的度數(shù)),讓學生應用結(jié)論求另外的一個內(nèi)角的度數(shù);一個角的度數(shù)都不交代,給出三角形的特征(等邊三角形),求這個三角形每個角的度數(shù)。第二層練習是讓學生用學過的知識解決生活中實際問題的內(nèi)角度數(shù)。第三層練習是拓展深化練習,讓學生運用已有經(jīng)驗去判斷思索,如:“大三角形的內(nèi)角和比小三角的內(nèi)角和大”對嗎?“你能畫出兩個直角三角形嗎?為什么?等問題。體現(xiàn)習題設計的坡度性與層次性,讓不同的學生都各有所收獲,關注了學生差異問題。
    在教學中,由于我對學生了解的不夠充分,讓學生自己想其它的驗證方法,難度較大,浪費了大量時間,拖課了。因此在設計教案時要深入了解學生,反復研究切合實際的教學設計,這是我在以后的備課中要注重的地方。
    三角形的內(nèi)角說課稿篇十八
    今天我說課的內(nèi)容是人教版九年義務教育小學數(shù)學四年級下冊第五單元第67頁的《三角形的內(nèi)角和》。根據(jù)xxx教授的授課七步法,即說教材,說學情,說目標,說模式,說方法,說設計,說板書,我將進行本課的說課。
    一、說教材。
    “三角形的內(nèi)角和”是新課標人教版四年級下冊第五單元第三節(jié)的內(nèi)容。本節(jié)課是在學生學過角的度量、三角形的特征和分類等知識的基礎上進行教學的,“三角形的內(nèi)角和”是三角形的一個重要性質(zhì),學好它有助于學生理解三角形內(nèi)角之間的關系,也是進一步學習幾何的基礎。
    仔細分析教材的知識結(jié)構,它是分成3個部分來呈現(xiàn)的。第一部分是讓學生通過量一量、算一算,初步感知三角形的內(nèi)角和是180°;第二部分是通過拼角的實驗來探究并歸納三角形內(nèi)角和的規(guī)律,第三部分是運用規(guī)律、解決問題。教材這樣編排由發(fā)現(xiàn)問題,到驗證問題,再到運用規(guī)律,充分體現(xiàn)了知識結(jié)構的有序性和強烈的數(shù)學建模思想,既符合四年級學生的認知規(guī)律,又突出了本課教學的重點。
    二、說學情。
    1、通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎技能。
    2、學生的生活經(jīng)驗是可利用的教學資源。我在課前了解到,已經(jīng)有不少學生知道了三角形內(nèi)角和是180度,但卻不知道怎樣才能得出這個結(jié)論,因此學生在這節(jié)課上的主要目標是驗證三角形的內(nèi)角和是180度。
    三、說目標。
    根據(jù)小學數(shù)學教學大綱對四年級學生的具體要求,結(jié)合教材特點及學生年齡特征,將本節(jié)課的目標制定為以下幾點:
    認知技能:學生動手操作,在猜想后通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。
    數(shù)學思考:在操作實驗中,讓學生感受圖形的轉(zhuǎn)化過程及數(shù)學建模思想,初步培養(yǎng)學生的空間思維觀念。
    解決問題:在運用知識解決問題的過程中,感受所學知識的重要性,初步培養(yǎng)學生的應用意識。
    情感態(tài)度:通過各種實驗活動,激發(fā)學習興趣,體驗學習成功感,并在教學中,感受生活與數(shù)學的密切聯(lián)系。
    將運用各種實驗方法探究三角形內(nèi)角和為180度的過程并掌握規(guī)律,運用規(guī)律解決實際問題確定為本節(jié)課的教學重點。而同時學生難以理解不易掌握的探究規(guī)律的全過程則是本節(jié)課的教學難點。
    四、說模式。
    “三角形的內(nèi)角和”一課,知識與技能目標并不難,我認為本節(jié)課更重要的是通過自主探索與合作交流使學生經(jīng)歷知識的形成過程,領悟轉(zhuǎn)化思想在解決問題中的應用,以及在探索過程中,培養(yǎng)學生實事求是、敢于質(zhì)疑的科學態(tài)度,同時合作交流中,開拓思維、提升能力?;谝陨侠砟?,本節(jié)課,我準備引導學生采用自主探究、猜想驗證、合作探究的學習模式。體現(xiàn)“以學生的發(fā)展為本”這一教育理念。
    五、說方法。
    本節(jié)課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180度。
    因為《課程標準》明確指出:“要結(jié)合有關內(nèi)容的教學,引導學生進行觀察,操作,猜想,培養(yǎng)學生初步的思維能力”。四年級學生經(jīng)過第一學段以及本單元的學習,已經(jīng)掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點引導學生從“猜測――驗證”展開學習活動,讓學生感受這種重要的數(shù)學思維方式。
    六、說設計。
    根據(jù)我對教材的把握和對學情的了解,設計了4個環(huán)節(jié)展開教學。
    一、創(chuàng)設情境,發(fā)現(xiàn)問題。
    小游戲:猜一猜藏在信封后面的是什么三角形。
    三角形的這三個角究竟存在什么奧秘呢,我們一起來研究研究。
    (創(chuàng)設的不是生活中的情境,而是數(shù)學化的情境。有的孩子認為一個三角形中可能會有兩個鈍角,還有的提出等邊三角形中可能會有直角,這兩個問題顯現(xiàn)出學生在認知上的矛盾,學生用已經(jīng)學的`三角形的特征只能解釋“不能是這樣”,而不能解釋“為什么不能是這樣”。這樣引入問題恰好可以利用學生的這種認知沖突,激發(fā)學生的學習興趣,讓學生在疑問與猜想中尋找驗證的方法。)。
    教學進入第二環(huán)節(jié)——引導探究。
    二、動手操作,探究規(guī)律。
    1.介紹內(nèi)角、內(nèi)角和,并提出猜想。
    師:我們現(xiàn)在研究三角形的三個角,都是它的內(nèi)角。
    師:今天我們就來一起探究《三角形的內(nèi)角和》。猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
    2.確定研究范圍。
    師:研究三角形的內(nèi)角和,是不是應該包括所有的三角形?只研究黑板上這一個行不行?那就隨便畫,挨個研究吧。(學生反對)。
    請你想個辦法吧!
    (通過引導學生分析,“研究哪幾類三角形,就能代表所有的三角形”這個問題,來滲透研究問題要全面,也就是完全歸納法的數(shù)學思想)。
    3.建立模型,解決問題。
    (一)測量法:
    (1)學生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關系都接近180度。
    (3)記錄小組測量結(jié)果及討論結(jié)果。
    實驗材料尺子剪刀量角器銳角三角形紙片直角三角形紙片鈍角三角形紙片。
    方法一三角形的形狀每個內(nèi)角的度數(shù)三個內(nèi)角的。
    三角形的內(nèi)角說課稿篇十九
    三角形的內(nèi)角和是四年級下冊第五單元的內(nèi)容,是在學生認識三角形的特征、分類的基礎上進行教學的,主要通過不同形式的動手操作驗證三角形的內(nèi)角和的度數(shù)。
    1.注重數(shù)學思想方法的滲透。在教學中,孔石蕾老師首先通過猜想,讓學。
    生通過量一量銳角三角形、直角三角形和鈍角三角形每個角的度數(shù),有的學生得到三角形的內(nèi)角和正好是180°,有的大于180°,而有的則小于180°,由此讓學生去想辦法去驗證三角形的內(nèi)角和的度數(shù)。在驗證的過程中,學生采用了把三角形的三個角撕下來拼成直角的方法、把三角形的三個角折成平角的方法得出了三角形的內(nèi)角和是180度,接著教師又通過動畫演示操作和幾何畫板的量角的優(yōu)勢,讓學生清晰地看出三角形內(nèi)角和的度數(shù)是180度,最后又應用這一知識進行了綜合的練習。在整個教學過程中,教師采用了猜想、驗證、得出結(jié)論、應用的四個探究環(huán)節(jié),讓學生經(jīng)歷了知識的發(fā)生、發(fā)展過程,提高了解決問題的能力。
    2.精心準備,精彩呈現(xiàn)。在教學過程中,孔石蕾老師在課件的制作,幾何畫板的應用、知識材料的拓展、習題的選擇等方面進行了精心設計和準備,教學過程流暢、教學環(huán)節(jié)緊湊,教學語言清晰,有效地達成了教學目標,使學生在學習的過程中不僅掌握了知識,也掌握了學習數(shù)學的方法。
    在教學過程中,可以適當?shù)倪M行知識的延伸拓展,如通過學習三角形的內(nèi)角和對于后續(xù)的學習有什么影響,可以想到四邊形的內(nèi)角和等等方面的內(nèi)容。
    三角形的內(nèi)角說課稿篇二十
    本節(jié)課在整個教學設計上臧老師充分體現(xiàn)“以學生發(fā)展為本”教育理念,她將教學思路擬定為“猜想——驗證{自主探究}——運用”,努力構建探索型的課堂教學模式,善于捕捉課堂中的動態(tài)資源。具體體現(xiàn)在以下幾點:
    課一開始臧老師就讓學生猜謎語,一下子就把孩子們的注意力吸引了過來,緊接著又出現(xiàn)三類三角形對自己內(nèi)角和度數(shù)大小的不同看法,由此出現(xiàn)疑問和矛盾,引起了學生探索的欲望,同時引出了課題。
    臧老師先從學生已有的經(jīng)驗出發(fā),指生說出三角板每個角的度數(shù),并求出它們的內(nèi)角和是180°。接著讓學生猜想是不是所有三角形內(nèi)角和都是180度,這樣最大限度的激發(fā)學生探究的愿望和興趣,也為后邊的探索和驗證活動有了明確的目標。
    課堂中老師把大量的時間和空間留給學生,讓他們開展有針對性的數(shù)學探究活動,即:量一量、拼一拼。在活動中,鼓勵學生積極并開動腦筋,從不同的途徑探索解決問題的方法。
    首先讓學生動手測量三角形內(nèi)角和,幫助學生清楚地認識到測量會產(chǎn)生誤差造成結(jié)果不統(tǒng)一。“沒有得到統(tǒng)一的結(jié)果,這個辦法不能使人信服怎么辦?還有沒有其它的辦法呢”這兩個恰到好的問題一下激活了學生的探究欲望,使第二次活動顯得自然,有一種水到渠成的效果。
    接下來學生通過撕一撕、拼一拼再次來驗證新知識。這樣不僅提高了操作效果,更重要的是在操作過程中學生對所學知識產(chǎn)生了深刻的體驗。
    課程標準提倡練習的有效性,為此,臧老師非常注意將數(shù)學思考融入不同層次的練習中,很好的發(fā)揮練習的作用。如:求三角形第三個角的度數(shù),其中有一道90°、40°,學生按常規(guī)解決后,臧老師緊接著問“還有沒有最快的方法?”有效培養(yǎng)了學生的應用意識和解決問題的能力,也培養(yǎng)了學生的發(fā)生思維。
    總之,這堂課臧老師有效注重彰顯解決問題的策略,挖掘在解決問題過程中所體現(xiàn)的數(shù)學思想。這堂課臧老師不僅把知識傳授給了學生,更重要的是讓學生真正意義上從“學會知識”轉(zhuǎn)變?yōu)椤皶W知識”。